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Gas dispersion, the breakage of a mass of gas into a population of small bubbles, is one
of the most important subprocesses occurring in flotation machines. The technology estab-
lishes hydrodynamic conditions for the selective separation of particles via the formation
and removal of bubble–particle aggregates. Flotation machines are designed and operated
to provide a collection zone for the formation of bubble–particle aggregates, and a froth
zone for the separation and concentration of these aggregates into a concentrate stream.
Operators manipulate gas flow rate, pulp density, and frother concentration to maximize
the available area of the bubble population. In addition, the froth depth and frother type
are also defined to control the breakage rate of bubble–particle aggregates, as they rise to
overflow into the concentrate launder. The variables used to characterize gas dispersion are
the bubble size distribution (represented as an average diameter), gas holdup, superficial
gas rate, and water carried by bubbles from the collection into the froth zone.

The eleven papers submitted to this Special Issue show the current interest of different
research groups in improving metallurgical performance based on characterizing and better
understanding machine hydrodynamics. There are four contributions on the development
of online sensors, simulators, and models to define the machine designs and operating
strategies: (i) a correlation between froth water content and water overflow rate [1], (ii) a
correlation between gas holdup and flotation performance, which demonstrated that
the former captured the combined effect of gas rate and frother concentration [2], (iii) a
demonstration of a model reliability to predict bubble size from gas velocity and holdup
measurements [3], and (iv) a simulation tool that incorporated gas dispersion, which
proved the potential of changing the launder designs to improve flotation performances [4].
Bubble size measurement was another area with three contributions: the effect on inter-
facial area by considering stereological corrections in the bubble size estimation from 2D
images [5], the increase in the automatically identified bubbles by modifying the sampling
devices to reduce the presence of clusters [6], and the detection of abnormal hydrody-
namic conditions (presence of cap-shaped bubbles) in industrial flotation machines [7].
An option for increasing the formation of bubble–particle aggregates is the use of micro
and nanobubbles: a review on the generation, detection, and applications of nanobubbles
in flotation was included in this volume [8], along with a study on the potential of bulk
micro-nano-bubbles to improve quartz recovery [9]. The use of pulps containing soluble
ions and frother molecules at the same time has been common in current flotation practice:
(i) the arrangement of adsorbed frother molecules on the bubble surface proved to be
influenced by the presence of different ions in the pulp [10], and (ii) electrolytes proved
to reduce bubble coalescence, favoring the formation of small bubbles; however, in some
conditions, they also promoted the formation by breakup, resulting in larger bubbles [11].

We appreciate the invitation extended by Minerals to organize this Special Issue.
Special thanks go to all the authors for their time in preparing manuscripts, and also to the
professionals that participated in the reviewing process.
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