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Abstract: The coal and coal-bearing measures in the Jungar Coalfield in Inner Mongolia are charac-
terized by rare earth element (REE) enrichment. Combustion in coal-fired power plants can lead to
further enrichment of REEs in coal ash, which serves as a new potential source for REE extraction
and smelting. Further, investigating the content, modes of occurrence, and transformation behav-
ior of REEs during coal combustion may help in better understanding REE differentiation during
coal combustion and facilitate the development of economically feasible REE recovery technologies.
Therefore, in this study, we analyzed coal ash from the Jungar Energy Gangue Power Plant in Inner
Mongolia via inductively coupled plasma mass spectrometry, X-ray diffraction, and scanning electron
microscopy combined with energy-dispersive spectroscopy. Our results showed that the REE content
of the feed coal was 220 µg/g, slightly higher than the average for global coal. Additionally, fly
ash had a higher REE content (898 µg/g) than bottom ash, and its rare earth oxide content was
approximately 1152 µg/g, which meets the industrial requirements. Bottom and fly ashes contained
similar minerals; however, their relative abundances were different. Specifically, mullite, quartz,
calcite, and gypsum were slightly more abundant in fly ash than in bottom ash, whereas amorphous
solids were slightly more abundant in bottom ash than in fly ash. Furthermore, fly ash, dominated by
Si- and Al-rich minerals, was composed of irregular particles of different shapes and sizes. It also
contained monazite and REE fluoro-oxides, which possibly originated from the feed coal and had
mineral structures that remained unchanged during coal combustion. Thus, the REE fluoro-oxides
possibly resulted from the conversion of bastnaesite in the feed coal during combustion and thereafter
became attached to the edge of the Si–Al minerals in the fly ash.

Keywords: Jungar Coalfield; coal ash; rare earth elements; fly ash; differentiation; REE minerals

1. Introduction

Rare earth elements (REEs), which are also often referred to as “industrial gold”, are
widely used in military applications, communications technology, new energy development,
petrochemical processing, metallurgy, modern agriculture, and other commercial fields
owing to their excellent physical properties. Further, they constitute an irreplaceable
resource for upgrading and modernizing industry. They have also become a strategic
mineral resource of China [1–3]. At their peak, China’s REE reserves accounted for 71.1%
of the global total; however, this share has dropped sharply to <34% [4,5]. Therefore, the
identification of new REE sources has become a priority. In this study, REEs refer to the
lanthanides, scandium (Sc), and yttrium (Y).

The formation of coal, which is an organic-rich rock, is characterized by reduction
and adsorption barriers, and under certain coupling conditions, coal-bearing series can
concentrate a variety of metals [6–12], offering the possibility of recovering critical elements
from coal and coal ash [13–16]. In recent years, the abundance, origin, and modes of
occurrence of critical elements in coal have been investigated [17–24], and all these studies
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have shown that coal is a promising source of critical metals [25–29]. The Jungar Coalfield
in Inner Mongolia is a typical area for metal element enrichment in coal measures [30–35]
and could potentially serve as a new source of REEs.

Further, coal ash, which generally includes fly ash and bottom ash, is a byproduct
of coal combustion in coal-based power plants. As most of the organic matter in coal is
lost after combustion, REEs are further enriched in coal ash [36–39]. Specifically, fly ash,
which is fine and light, flies into the smokestacks of power plants and is captured using
filters, while bottom ash is heavy, clumps, and settles at the bottom of the furnace. Owing
to the differences in their properties, the metallic elements in coal ash differ between fly
and bottom ashes.

Generally, there are two types of coal-fired generator set boilers based on differ-
ent combustion methods, namely pulverized coal furnaces and circulating fluidized bed
(CFB) boilers. Specifically, the combustion temperature in CFB boilers varies in the
range of 800–950 ◦C, while the flame temperature in pulverized coal boilers is as high
as 1300–1700 ◦C. Further, the characteristics of the coal ash resulting from these different
boilers with different combustion temperatures are considerably different.

Hower et al. [10] studied the distribution characteristics of REEs in fly ash from
different regions, and Dai et al. [40] and Zhao et al. [41] studied the mineral characteristics
and differentiation of REEs in fly ash from the Junge Power Plant (with a pulverized coal
furnace) using Hedaigou coal as fuel. Although Hedaigou coal is also used as fuel in the
Jungar Energy Gangue Power Plant, the minerals and REE differentiation characteristics of
its fly ash are different from those of the coal ash from the Junge Power Plant [40].

In this study, the distribution and differentiation characteristics of REEs in feed coal,
fly ash, and bottom ash from the Jungar Energy Gangue Power Plant were investigated.
The mineral characteristics of fly ash and the possible behavioral characteristics of REEs
during the combustion process were also examined to provide a reference for the utilization
of REEs present in fly ash.

2. Materials and Methods
2.1. Overview of the Study Area

The Jungar Coalfield is located in the northeastern margin of the Ordos Basin in Inner
Mongolia, China [42–45]. The coal measure strata in this coalfield comprise the Taiyuan
Formation of the Upper Carboniferous (C3t) and main coal seam No. 6. The main sources
of the elements in the coal are the middle Proterozoic potassium feldspar granite of the
Yinshan Paleoland and the weathering crust of the Benxi Formation. The REE content of
coal from the Heidaigou coal mine varies in the range of 54.57–559 µg/g, with the mean
content being 248 µg/g (2.83-fold higher than the average content of REEs in Chinese
coal) [35,46,47].

The Jungar Energy Gangue Power Plant is located in Xuejiawan, Jungar County, Inner
Mongolia, northern China. At this power plant, a DG480/13.73-II11 CFB combustion boiler
(Dongfang Boiler Company, Sichuan, China) is used, and the fuel is coal from the No. 6
coal seam of the Taiyuan Formation [48,49] in the Heidaigou open-pit mine (Figure 1), with
an ash yield of approximately 20%. Further, the combustion temperature in this boiler is
between 850 and 900 ◦C.
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2.2. Sample Collection and Analysis Methods
2.2.1. Sample Collection and Preparation

The samples were collected from the same batches of feed coal, fly ash from an
electrostatic precipitator, and bottom ash. After cooling, the fly and bottom ash samples
were collected under normal boiler operating conditions and stored in sealed bags. Feed
coal was collected from the coal storage yard of the power plant. To ensure that the samples
were representative, we collected and mixed feed coal samples from five evenly distributed
points in the coal pile before analysis.

2.2.2. Elemental and Mineralogical Analysis

The feed coal, fly ash, and bottom ash samples were analyzed for moisture and fixed
carbon and sulfur contents. Their loss on ignition (LOI) values were also determined via
heating at 815 ◦C for at least 1 h. Further, the feed coal samples were analyzed for ash yield.
The analyses were performed according to Chinese National Standard GB/T 212-2008.

An Axios-Max X-ray fluorescence spectrometer (XRF) was used to determine the
contents of the oxides of major elements, including SiO2, TiO2, Al2O3, Fe2O3, MgO, CaO,
Na2O, K2O, SO3, MnO2, and P2O5, in the high-temperature (815 ◦C) samples of the feed
coal, fly ash, and bottom ash. This analysis of oxide contents was performed according to
Chinese National Standard GB/T 21114-2019.

The mineral contents of the feed coal, fly ash, and bottom ash samples were quantified
via powder X-ray diffraction (XRD). The feed coal and bottom ash samples were crushed
and sieved through a 200-mesh sieve for XRD analysis using an XD3 XRD analyzer. The
XRD patterns of the samples were recorded over a 2θ interval of 2◦–70◦ with a step size of
0.02◦ in accordance with Chinese Petroleum and Gas Standard SY/T 6210-1996.

A 300X inductively coupled plasma mass spectrometer (ICP-MS) was used to measure
the REE and trace element contents of the feed coal, fly ash, and bottom ash samples, which
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were first subjected to microwave digestion in ultrapure concentrated HNO3 using high-
pressure quartz vessels. These analyses were performed according to Chinese National
Standard GB/T 14506.30-2010.

A Vega II LMU band energy spectrometer and a scanning electron microscope (SEM–
EDX) were used for morphological observations and to determine the microscopic appear-
ance and major elemental composition of the minerals in the feed coal, fly ash, and bottom
ash samples. The samples were carbon coated to increase their conductivity.

3. Results and Discussion
3.1. Properties

Table 1 lists the moisture content, ash yield, fixed carbon and sulfur contents, and loss
on ignition (LOI) values of the samples from the Jungar Energy Gangue Power Plant. The
feed coal samples have a low sulfur content (0.42%), a medium ash yield (26.54%), a fixed
carbon content (44.37%), and an LOI of 72.16%. The fixed carbon contents of the fly ash and
bottom ash samples were 4.09 and 6.21%, respectively. The feed particle size of the CFB
boiler is large (≤10 mm), and the unburned carbon particles maintain a certain particle
size as well as a high density. Thus, they were easily discharged with bottom ash. The LOI
values of the fly ash and bottom ash samples were 7.49 and 7.55%, respectively, and were
mainly related to the carbon and moisture contents of the samples.

Table 1. Moisture content, fixed carbon and sulfur contents, ash yield, and loss on ignition values for
samples from the Jungar Energy Gangue Power Plant (wt.%).

Sample Mad Ad Fcd Std LOI

Feed coal 5.00 26.54 44.37 0.42 72.16
Fly ash 0.60 \ 4.09 0.18 7.49

Bottom ash 0.12 \ 6.21 0.22 7.55
Note: M, moisture; ad, air dry basis; A, ash; d, dry basis; Fc, fixed carbon; St, total sulfur; LOI, loss on ignition;
\, no data.

3.2. Chemistry
3.2.1. Chemistry of Feed Coal

Table 2 lists the contents and characteristics of the elements in the feed coal and coal
ash samples from the Jungar Energy Gangue Power Plant. The concentration coefficient
(CC) proposed by Dai et al. [50] was used for the evaluation (CC = the ratio of element
concentration in investigated coal samples to element concentration in global hard coal
samples [51]; 10 < CC < 100, significantly enriched; 5 < CC < 10, enriched; 2 < CC < 5,
slightly enriched; 0.5 < CC < 2, normal; CC < 0.5, depleted). For Eu, Gd, Ho, Tm, and Lu,
the CCs varied between 2 and 4, while the overall CC of the REEs was 2.78, indicating an
enrichment. The SiO2 and Al2O3 contents of the feed coal exceeded the global coal average.
Specifically, the Al2O3 content was 2.26 times the global coal average, while the Fe2O3 and
CaO contents were far less than the global coal average (Figure 2).
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Table 2. Concentrations of major element oxides (%) and REEs (µg/g) in feed coal and coal com-
bustion products from the Jungar Energy Gangue Power Plant.

Sample Feed Coal Bottom Ash Fly Ash
Differentiation

Coefficient
(DC)

Global Coal
Concentration

Coefficient
(CC)

SiO2 12.07 46.39 37.55 0.81 8.47 1.43
TiO2 0.33 0.69 1.20 1.74 0.33 1.00

Al2O3 13.49 46.42 52.24 1.13 5.98 2.26
Fe2O3 0.47 3.52 1.39 0.39 4.85 0.10
MgO 0.10 0.10 0.54 5.40 0.22 0.45
CaO 0.72 1.82 3.58 1.97 1.23 0.59

Na2O 0.05 0.10 0.18 1.80 0.16 0.31
K2O 0.10 0.29 0.43 1.48 0.19 0.53
SO3 0.60 0.34 0.88 2.56 \ \

MnO2 0.006 0.01 0.02 2.00 \ \
P2O5 0.005 0.05 0.24 4.80 \ \

La 37.00 42.30 181.00 4.28 11.00 3.36
Ce 69.10 79.60 325.00 4.08 23.00 3.00
Pr 7.33 9.16 34.80 3.80 3.50 2.09
Nd 25.30 30.20 116.00 3.84 12.00 2.11
Sm 5.21 5.32 23.40 4.40 2.00 2.61
Eu 0.89 0.95 3.99 4.20 0.47 1.89
Gd 4.63 4.79 19.60 4.09 2.70 1.71
Tb 0.82 0.83 3.24 3.90 0.32 2.56
Dy 5.21 5.07 20.70 4.08 2.10 2.48
Y 27.80 24.90 112.00 4.50 8.40 3.31
Sc 8.31 10.05 32.70 3.25 3.90 2.13
Ho 1.02 0.96 3.88 4.04 0.54 1.89
Er 2.70 2.58 9.68 3.75 0.93 2.90
Tm 0.41 0.40 1.45 3.63 0.31 1.32
Yb 2.61 2.56 9.27 3.62 1.00 2.61
Lu 0.39 0.39 1.36 3.49 0.20 1.95

REE 198 220 898 4.08 72.37 2.75

Note: The average elemental content of global coal was based on a previous study [51]; \, no data.

3.2.2. Distribution of REEs in Fly Ash and Bottom Ash

The total REE content in fly ash was 898 µg/g, which was 1152 µg/g when expressed
in terms of rare earth oxides (REOs). According to the Chinese geological and mineral
industry standard “Specifications for rare earth mineral exploration (DZ/T 0204-2022)”,
this content exceeds the minimum industrial grade requirement for an REE deposit. Further,
the REE content of bottom ash was 220 µg/g. Thus, the REEs showed clear differentiation
between fly ash and bottom ash, and the differentiation coefficient (DC) [52] (DC = ratio of
the elemental content of fly ash to that of bottom ash) was used to characterize the degree
of differentiation (Table 2, Figure 3). The DC of the REEs was approximately 4; i.e., the REE
content in the fly ash samples was four times that in the bottom ash samples, indicating
that after combustion, REEs were predominantly enriched in fly ash.
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The REE content of the coal sample (ash basis) was used to standardize the REE content
of the fly and bottom ashes (Figure 4). The pattern of REEs in the fly ash was right-skewed,
and relative to heavy REEs (including Sc and Y), light REEs tended to migrate into fly ash
after combustion.
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3.2.3. Distribution of Major Elements in Fly Ash and Bottom Ash Samples

The sum of the SiO2 and Al2O3 contents of the coal ash samples (fly ash and bottom
ash samples) was approximately 90%, indicative of coal ash with a high silica–aluminum
content. Specifically, the Al2O3 contents of the bottom ash samples were above 45% and
above 50% in the fly ash samples. This could be attributed to the high kaolinite and
boehmite contents of the feed coal (from the Heidaigou mine). Further, the Al2O3 content
of bottom ash was less than that of fly ash, indicating that the Al2O3 originating from
minerals in coal during combustion was more easily discharged with fly ash. The Fe2O3
content of bottom ash was 3.52%, 2.5-fold higher than that of fly ash (1.39%). This is because
Fe2O3 in the coal ash is generally converted from pyrite during combustion, and hematite
(Fe2O3) has a higher density and is more likely to fall into bottom ash after combustion.
Additionally, the CaO and SO3 contents of fly ash were higher than those of bottom ash;
this may be related to the greater ease of discharge of sulfur fixation products (CaSO4) into
fly ash. Further, Ti, Mg, P, K, and Na tended to migrate into fly ash (Table 2, Figure 3).

3.3. Mineral Characteristics
3.3.1. Feed Coal Minerals

The mineral composition of feed coal is an important factor that affects the composition
of coal ash. Kaolinite (Table 3, Figures 5 and 6a) was the main mineral in the feed coal, ac-
counting for 74.7% of the total mineral content, followed by boehmite (10.2%), calcite (6.8%;
Figure 6b), gypsum (5.1%; Figure 6c), and other minor minerals. This is consistent with the
previously reported mineral composition for coal from the Heidaigou coal mine [46–48,53].
REE-bearing minerals, including bastnasites (Figure 6d) and monazite (Figure 6e,f), were
also found in the coal samples from the Jungar Coalfield [35].

Table 3. Mineral composition of feed coal samples from the Jungar Energy Gangue Power Plant (%).

Kaolinite
(H2Al2O8
Si2·H2O)

Boehmite
(AlOOH)

Pyrite
(FeS)

Quartz
(SiO2)

Calcite
(CaCO3)

Gypsum
(CaSO4
2H2O)

Feed coal 74.7 10.2 1.9 1.3 6.8 5.1
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Figure 6. Scanning electron photomicrographs of minerals in Jungar coal. (a) Kaolinite (Kln),
(b) calcite (Cal), and (c) gypsum (Gpy) in feed coal. (d) Bastnaesite in coal from the Haerwusu mine,
(e,f) Monazite in coal from the Haerwusu mine.

Notes: (1) Feed coal was obtained from the Heidaigou coal mine; (2) panels (d–f) are from
reference [35]. Qz, quartz.

3.3.2. Minerals in Coal Ash

The mineral types in bottom ash and fly ash were essentially the same but showed
different relative contents. Specifically, the mullite, quartz, and gypsum contents of fly ash
were slightly higher than those of bottom ash, while the amorphous mineraloid content of
bottom ash was slightly higher than that of fly ash. Given that the density of hematite is
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much higher than that of other minerals in coal combustion products, it was mainly present
in bottom ash (Table 4, Figure 7).

Table 4. Mineral compositions of coal combustion products (%).

Sample Mullite
(3Al2O3·2SiO2)

Quartz
(SiO2)

Hematite
(Fe2O3)

Gypsum
(CaSO4
2H2O)

Amorphous
Solid

Bottom ash 16.3 6.9 4.7 1.1 71.0
Fly ash 19.8 7.1 1.5 2.6 69.0
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The mullite content of the coal ash samples from the Jungar Energy Gangue Power
Plant was much lower than that of coal ash from the Jungar Power Plant (with a pulverized
coal furnace at a combustion temperature of 1300 ◦C–1400 ◦C), which also uses Hedaigou
coal as fuel [40,41]. Specifically, it varies in the range of 16.3%–19.8% (Table 4; Figure 7)
and was approximately half that reported for the Jungar Power Plant (37.4%–34.9%) [41].
Further, the amorphous mineraloid content of the coal ash from the Jungar Energy Gangue
Power Plant was 69%–71% (Table 4), whereas that of coal ash from the Jungar Power Plant
was in the range of 52.6%–54.8% [41]. These differences could be attributed to kaolinite,
the main mineral in the feed coal, which was transformed into amorphous metakaolin at
400 ◦C, and thereafter, metakaolin was gradually transformed into mullite at 900 ◦C [54,55].
Therefore, the presence of mullite in the coal ash samples was possibly caused by the
temperature exceeding 900 ◦C during the combustion process. Furthermore, given that
kaolinite is mainly converted into amorphous metakaolin, the amorphous solid contents of
our samples were higher than those of the coal products of the Jungar Power Plant.

Scanning electron microscopy was employed to investigate the morphology of fly
ash (Figure 8). Overall, the fly ash was composed of particles with irregular shapes and
sizes (Figure 8a), mainly comprising Si-Al minerals [40,41,55,56]. Spherical iron silicate
minerals were also observed (Figure 8b), and during combustion, the iron compounds in
the coal possibly reacted with the silicates in the coal ash to form low-melting iron silicate
fly ash particles [54,57]. Unburned carbon particles (Figure 8c) and zircons with good
crystal shapes (Figure 8d) were also identified.



Minerals 2023, 13, 1212 9 of 14

Minerals 2022, 12, x FOR PEER REVIEW 9 of 15 
 

 
Figure 7. XRD spectrum of fly ash from the Jungar Energy Gangue Power Plant. 

Scanning electron microscopy was employed to investigate the morphology of fly ash 
(Figure 8). Overall, the fly ash was composed of particles with irregular shapes and sizes 
(Figure 8a), mainly comprising Si-Al minerals [40,41,55,56]. Spherical iron silicate miner-
als were also observed (Figure 8b), and during combustion, the iron compounds in the 
coal possibly reacted with the silicates in the coal ash to form low-melting iron silicate fly 
ash particles [54,57]. Unburned carbon particles (Figure 8c) and zircons with good crystal 
shapes (Figure 8d) were also identified. 

 

Figure 8. Scanning electron photomicrographs of fly ash. (a) Overall appearance of fly ash from the
Jungar Energy Gangue Power Plant, (b) iron silicate minerals, (c) carbon granule, (d) zircon.

3.3.3. Modes of Occurrence of REEs

SEM-EDS was employed to observe REE fluoro-oxides and monazite in the fly ash
samples (Figure 9, Table 5). The mode of occurrence of REEs in the coal ash was closely
related to that in raw coal. Seredin and Dai [58] and Crowley [59] suggested that REEs
in coal may occur (1) within primary minerals, such as monazite and xenotime, from the
source area or volcanic ash; (2) within authigenic minerals, such as lanthanite, parisite, and
bastnaesite, after diagenesis; (3) within organic matter [60,61]; and (4) as adsorbed ions.
In general, the mineral properties of the source or volcanic ash were stable, as evidenced
by the existence of monazite (Figure 9c), showing its original mineral structure, even after
combustion in the CFB boiler. Reportedly, REE minerals with low stability and REEs
occurring in organic matter or as adsorbed ions are likely to enter the amorphous glass
phase [55,56,62] after coal combustion.

Table 5. Weight and atomic percentages of elements shown in the EDS spectrum in Figure 9.

Element C O F Al Si P S Ca Ag La Ce Nd Th

Figure 7a Wt.% 9.80 27.67 8.44 5.95 3.57 \ 0.68 2.87 \ 4.86 14.90 7.20 14.07
At.% 22.16 46.98 12.06 5.99 3.45 \ 0.57 1.94 \ 0.95 2.89 1.36 1.65

Figure 7b Wt.% 8.26 57.79 \ 15.63 16.70 1.62 \ \ \ \ \ \ \
At.% 12.47 65.51 \ 10.50 10.79 0.73 \ \ \ \ \ \ \

Figure 7c Wt.% 9.70 46.37 0.77 7.11 6.80 6.60 \ 0.28 1.15 6.10 12.06 3.06 \
At.% 17.43 62.56 0.87 5.69 5.23 4.60 \ 0.15 0.20 0.95 1.86 0.46 \

Notes: “\” indicates no data.
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Figure 9. Scanning electron photomicrographs (BSD) and energy-dispersive spectroscopy of REE
minerals in fly ash. (a) Rare earth element fluoro-oxides attached to the edges of aluminosilicates,
with the accompanying energy spectrum; (b) enlargement of boxed area in Figure 7a, with the
accompanying aluminosilicate energy spectrum; (c) monazite in fly ash, with the accompanying
energy spectrum.

3.3.4. Minerals of Rare Earth Elements

Previous studies have shown that REEs in coal mainly occur in carbonates (kimurite,
lanthanite, and bastnaesite), sulfates, phosphates (monazite, xenotime, and apatite), and
silicates (clay and zircon) and can also occur in symbiosis with organic matter [63–68]. Jiu
et al. [35] discovered REE minerals, such as monazite and bastnaesite, in coal from the
Haerwusu mine (Figure 6d–f), which is adjacent to the Hedaigou mine (Figure 1).

The bright parts in the SEM images of the fly ash sample from the Jungar Energy
Gangue Power Plant were identified as REE minerals (Figure 9). Specifically, the minerals
in Figure 9a mainly contained F, La, Ce, and Nd at the concentrations of 12.06, 0.95, 2.89,
and 1.36 at.%, respectively, and were inferred to be REE fluoro-oxides [69–78], produced
via the conversion of bastnaesite in boilers at high temperatures. Reportedly, fluorine in
bastnaesite can be removed [70,71] to obtain REOs via roasting at 800 ◦C in humid air
(60% humidity) with water participating in the reaction. However, this does not satisfy the
humidity requirements for coal-fired boilers. When roasting is performed in dry air (at
800 ◦C), cerium fluoride minerals undergo the following reaction [70,71]:

REFCO3 ==> REFO + CO2

This reaction results in the formation of a new rare earth fluoro-oxide (REFO) that is
chemically stable [77,78] and can exist independently. Additionally, owing to the release
of CO2 during the reaction process, the molecular structure of REFO may be damaged,
i.e., fractured at the reaction position such that it appears to exist at the mineral edge
(Figure 9a,b).

The minerals shown in Figure 9c, which were inferred to be monazite minerals, mainly
contained P, La, Ce, and Nd at the concentrations of 4.5, 0.95, 1.86, and 0.46 at.%, respec-
tively [69]. The two REE mineral types observed via SEM showed different morphological
characteristics for the coal ash: the REFO particles appeared small (size approximately
1 µm) and adhered to the edges of the main aluminosilicate minerals of fly ash, while
monazite appeared relatively large (size approximately 20 µm) and existed independently
in a granular form in bottom ash. These differences may be related to the behavioral
characteristics of the two minerals during the combustion process. Monazite has good
thermal stability [74]; hence, in the combustion process of the CFB boiler, where the tem-
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perature generally does not exceed 1000 ◦C, the structure and properties of monazite do
not change [70,71].

4. Conclusions

(1) The REE content in the feed coal of the Jungar Energy Gangue Power Plant was found
to be 198 µg/g, slightly higher than the average REE content for global coal. After
combustion in a CFB boiler, the REE content of coal ash was markedly concentrated,
and there was an evident difference in the distribution of the REEs between fly ash
and bottom ash. Additionally, the extraction and utilization of REEs from fly ash
did not require exploration and mining costs; hence, such ash has development and
utilization value for REE extraction.

(2) The mullite, quartz, calcite, and gypsum contents of fly ash were slightly higher
than those of bottom ash, whereas amorphous solids were slightly more abundant in
bottom ash than in fly ash. Compared with previously reported findings, this study
showed that combustion temperature had a more significant effect on the mullite and
amorphous mineraloid contents of coal ash.

(3) Monazite in fly ash mainly existed in the form of particles that likely originated from
raw coal, and its mineral structure did not change during coal combustion. Further, we
observed that REE fluoro-oxides can be obtained from bastnaesite during combustion.
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