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Abstract: In recent years, the development of airborne magnetic survey technology based on un-
manned aerial vehicles (UAVs) has been rapidly advancing. The commonly used systems are the
fixed-wing UAV-based, multi-rotors UAV-based, and unmanned helicopters-based magnetic survey
systems. And, a type of hybrid UAV that uses a vertical takeoff and landing (VTOL) and fixed-wing
cruise mode is increasingly being used to carry airborne magnetic survey systems. To meet the
requirements of most UAVs for small-sized and lightweight payloads, a miniature magnetic survey
system was developed and integrated into a hybrid fixed-wing UAV and formed an aeromagnetic
survey system. And, a peripheral mineral exploration test was conducted in a known porphyry
copper–gold deposit in southeastern China using the system. By processing the collected magnetic
data with 3D inversion of susceptibilities, potential ore-bearing intrusive rocks were quickly identified
and delineated, providing clues for peripheral mineral exploration in the mining area.

Keywords: unmanned aerial vehicle; UAV; hybrid fixed-wing UAVs; vertical taking off and landing;
VTOL; aeromagnetic; mineral prospecting; Chating deposit

1. Introduction

Aeromagnetic surveying has always been an important foundational technique in
mineral exploration. The manned fixed-wing and helicopter-borne aeromagnetic surveys
have achieved countless remarkable results worldwide. The UAV-borne aeromagnetic
survey is an airborne geophysical survey method that utilizes UAV platforms. In recent
years, the increasing use of UAVs in various fields has led to the emergence of UAV-
based geophysical surveys known as a hot research area [1–17]. The common types
of UAVs presently used for an aeromagnetic survey are fixed-wing UAVs, unmanned
helicopters (UHs), and multi-rotor UAVs [18]. Among these types of UAV aeromagnetic
survey systems, fixed-wing UAVs and multi-rotor UAVs are commonly used and both
have found their respective fields of expertise in terms of application. Fixed-wing UAVs
have the advantages of long endurance and high speed, making them suitable for rapid
measurements of large areas. However, they require runways for take-off and landing and
are not suitable for low-speed and high-resolution surveys. Multi-rotor UAVs can perform
tasks automatically and are easy to operate with terrain following function making them
suitable for small-scale, high-resolution surveys. They are relatively cheap but have poor
payload capability and short flight duration, compared to medium- and large-sized fixed-
wing UAVs. Unmanned helicopters can take-off and land vertically and are suitable for
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missions in complex terrain or dangerous areas, such as volcanoes. They can change flight
speed according to mission needs, but their complex mechanical structure brings higher
operational risks and maintenance costs in case of failures in complex survey conditions.

The Institute of Geophysical and Geochemical Exploration (IGGE) has been continu-
ously focusing on, investigating, and implementing UAV geophysical surveys since the
2010s and has made great progress in this area [19]. We developed the first functional
fixed-wing UAV airborne geophysical survey system in China using the CH3 UAV, and
we have conducted a total of 150,000 km of field surveying [20]. In addition to fixed-wing
drones, we have also carried out research and applications of UH and multi-rotor drones in
geophysical surveys [21,22]. During the process of all the work above, the need for UAVs
with VTOL capabilities and fast flight speed has become increasingly evident. Then, we
discovered that this type of hybrid fixed-wing UAV was able to meet our requirements.
This type of UAV achieves VTOL in multi-rotor mode and cruises in fixed-wing mode. It
has the advantages of both multi-rotor UAVs’ ability to take off and land vertically and
fixed-wing UAVs’ high-speed flight, long endurance, and large payload capability. It is
very suitable as an aeromagnetic survey platform.

We have developed a hybrid fixed-wing UAV-borne aeromagnetic survey system
and successfully completed an experimental measurement around a known copper–gold
deposit in southern China in 2021. The measurement results provided intuitive and effective
clues for prospecting work around the mining area, which shows that the systems have
essentially reached production capacity.

2. Development of the Hybrid Fixed-Wing UAV Aeromagnetic Survey System

The hybrid fixed-wing UAV aeromagnetic survey system developed by IGGE, Lang-
fang, China (iHFUAM) was designed to satisfy unique requirements for UAV aeromagnetic
surveys. The system was designed to enable rapid deployment with vertical takeoff and
landing capabilities, while also achieving high flight speeds to efficiently cover large ar-
eas. The iHFUAM comprises a self-developed miniaturized aeromagnetic system and a
JOUAV-manufactured CW-30 Hybrid fixed-wing UAV.

2.1. Miniaturized Aeromagnetic Instruments Suitable for Drones

In general, except for some large or specially designed ones, the payload and capacity
of conventional UAVs are significantly lower than those of manned aircraft, making it
impractical to directly integrate traditional aeromagnetic instruments designed for manned
aircraft onto UAV platforms. Therefore, there is a need to develop smaller and lighter
aeromagnetic instruments specifically for use on UAV platforms. While there are several
established aeromagnetometers for UAVs, they are often expensive or time-consuming to
acquire, leading us to develop our own instruments.

To address the need for small and lightweight aeromagnetometers for UAVs, we
developed the Miniature Aerial Magnetic System of IGGE (iMAMS) with support from
the National Key Research and Development Program. The iMAMS is a self-designed
system that includes the following main components: Front-end Analog Component,
Signal Transformation Component, Synchronization and Trigger Component for Global
Navigation Satellite System (GNSS), Master Card, and Power Component.

With dimensions of 150 mm × 150 mm × 130 mm, a weight of approximately 2.5 kg
individually, and about 6 kg in a measuring set, the iMAMS is significantly smaller and
lighter than those typical aeromagnetic systems for manned aircrafts. The iMAMS enables
simultaneous acquisition of GNSS, altimeters, fluxgate, and four channels of optically
pumped magnetometer (OPM) data. It also provides VGA/HDMI for video output, USB
and serial ports for system control, and interfaces for communication with UAVs and remote
link access specially designed to meet the requirements for UAV measurements. Figure 1
shows the main components of the iMAMS that only use fluxgate sensors for measurements.
When higher precision measurements are required, OPM can be additionally connected
with the fluxgate used as flight maneuvers data. When using only fluxgate magnetometers
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for measurement, the system weight can be reduced by about 1 kg to approximately
5 kg. In order to be compatible with more usage scenarios, the host is equipped with
19 interfaces, most of which are actually redundant. If only fluxgate sensors are used
for measurement, the recording equipment would not require so many interfaces, and
the volume and weight would naturally be reduced. It is entirely possible to develop a
dedicated fluxgate measurement system with a weight of 2–3 kg by completely removing
unnecessary components.
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Figure 1. A typical set of components of iMAMS.

The main parameters of the data acquisition system (DAS) of the iMAMS are as follows:
System noise is 0.1 pT; resolution is 0.35 pT; sampling rate is 800 Hz; measurement frequency
is 1 Hz, 5 Hz, 10 Hz, 20 Hz, and 40 Hz optional; and temperature stability is±5ppb@100Mhz.
The main parameters of the fluxgate sensor are as follows: The measurement range is
±100 µT; the bandwidth is DC~1 kHz; the linearity is ≤0.01% of full scale; the time-domain
noise is 0.1 nT RMS @10Hz; and the frequency-domain noise is 10~20 pT/

√
Hz @1Hz. The

direction error and sensitivity depend on the magnetometer used. Taking the SCINTREX
CS-3 magnetometer as an example, the sensitivity is 0.6 pT/

√
Hz, and the directional error

is ±0.2 nT.

2.2. Integration
2.2.1. Magnetic Interference Background Testing of the UAV

The iHFUAM is based on the CW30 hybrid fixed-wing UAV, which boasts a wingspan
of 4 m, a length of 2.1 m, a maximum payload of 6.5 kg, an endurance of 3–6 h, a cruising
speed of around 90 km/h, a maximum take-off altitude of 3800 m, and a maximum wind
resistance of 12 m/s. CW30 is a hybrid power UAV that utilizes a combination of electric
power from batteries for VTOL and switches to a gasoline engine for propulsion during
cruising. It possesses the capability for beyond-visual-range communication and flight,
subject to obtaining the necessary authorization for such operations.

To reduce the magnetic interference from UAV components (such as engines) on the
sensor, we conducted a magnetic interference test on the CW30. We designed a simple
grid with a spacing of 0.5 m and an area of 5 m by 4.5 m centered on the cabin and first
measured the magnetic field background at the test points. We then separately measured
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the magnetic field at each cross point with the propulsion engine off and on. The test,
when the propulsion engine was on, has been conducted under simulated airborne thrust
power. A CW30 is a relatively small aircraft whose thrust power is not very large; thus, two
manufacturer engineers can control the aircraft in front of the wings. The motion test of
the wing and tail rudder servos was carried out during the aircraft background test before
the engine was started. There was obvious interference when close to the servo, and the
servo motors are locked during flight; therefore, the interference of servo movements was
not conducted. The measurement results showed that the propulsion engine generated
the highest magnetic field, reaching about 150 nT when off and 210 nT when on (Figure 2).
These results are similar to those of fixed-wing UAVs with comparable shapes [23]. The
maximum magnetic interference from the UAV occurs at the engine and decreases rapidly
as the distance from it increases. Therefore, to minimize the impact of propulsion engines,
magnetometer sensors should be installed as far away from the engines as possible. In this
case, we placed the magnetic sensor 2.5 m away from the propulsion engine to reduce the
magnetic interference.
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The way of VTOL in this type of UAV makes it feasible to use a scheme where the
aeromagnetometer is suspended a few meters below the UAV. However, the suspended
aeromagnetometer may more or less increase the operational difficulty and risk of take-off
and landing. Therefore, after comprehensive analyzing, we chose the current type for refitting.

2.2.2. Refitting and Integration

Based on the results of the magnetic background test, we have mounted a CS-VL
Cesium magnetometer from SCINTREX on a flexible rigid rod that extends approximately
1.5 m forward from the nose. The rod is fixed to the cabin at one end, with a sensor attached
to a specialized engineering plastic bracket located at the other end. The fluxgate is
positioned in the middle of the rod. The iMAMS is situated on a specially designed bracket
inside the cabin, while the GNSS antenna is secured to the cabin cover and the altimeter is
installed beneath the belly. The iHFUAM has a mission payload of approximately 6 kg and
is powered by a separate high-density battery pack, enabling the aeromagnetic instruments
to function independently of the UAVs’ energy source. This allows for simple and efficient
flight surveys, with the ability to take off and land on any small, stable, flat surface, such as
roads, grassland, and even a vehicle roof (Figure 3).
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3. Application in Mineral Prospecting

We conducted an experimental measurement using iHFUAM around the newly dis-
covered Chating copper–gold deposit in Anhui Province, China, with the aim of revealing
the magnetic characteristics of the deposit and identifying potential mineralized zones near
Chating based on aeromagnetic data. Additionally, we sought to verify the measurement
production performance of iHFUAM.

3.1. Geology of the Survey Area

The survey area is situated in the Nanling-Xuancheng ore region (NXOR) of the
Middle-Lower Yangtze River Metallogenic Belt (MLYMB). The MLYMB is located along
the northern margin of the Yangtze Plate, northwest of which is the Dabie Orogenic Belt.
The northern margin of the Yangtze Plate can be further divided into the Northern Sub-
Yangtze Foreland Belt in the north and the Jiangnan Uplift Belt in the south, separated by
the Chongyang–Changzhou Fault (CCF). The Jiangnan Uplift Belt is part of the Jiangnan
Orogenic Belt. Therefore, the Northern Sub-Yangtze Foreland Belt is sandwiched between
the Dabie Orogenic Belt and the Jiangnan Orogenic Belt. The MLYMB is an important
polymetallic metallogenic belt producing copper, iron, gold, and silver in China. It hosts
over 100 types of mineral deposits with proven resources. Over 2200 deposits of nonferrous
metals, ferrous metals, precious metals, and rare metals have been found, forming seven
mineral concentration areas centered by large- and medium-sized ore clusters, such as
Ningwu, Luzong, Tongling, etc. [24–26] (Figure 4a).

In recent years, a cluster of copper–gold–lead–zinc–molybdenum–tungsten polymetal-
lic deposits, such as Chating Cu-Au deposit, Tongshan-Qiaomaishan Cu-W, Magushan
Cu-Mo deposit, and Shizishan Cu deposit, have been discovered in NXOR, which has been
designated as the eighth metallogenic cluster zone of MLYMB [25]. The NXOR is located
along the southeastern margin of the Middle and Lower Yangtze River depression. Most
of the area is covered by thick Quaternary overburden. The main structures of the NXOR
trend to the NNE, including the Jiangnan Fault (JNF), Kunshan Fault (KSF), Sanli-Hexi
Fault (SHF), and Qingshui-Hewan Fault (QHF). At the secondary structural level, the main
structures are the east–west-trending Zhouwang Fault (ZWF) and the northwest-trending
Ma’anshan-Langxi Fault (MLF). The main fold in the area is the Jingtingshan-Liqiao an-
ticline between LQF and KSF. On both sides of the anticline are two sedimentary basins:
Xuancheng Basin in the east and Nanling Basin in the west (Figure 4b).
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Figure 4. Regional geological map of survey area (modified after [26]): (a) Location of the study
area; (b) Sketch of a regional geological map of MLYMB; (c) geological and mineral map of the
Xuancheng area. Abbreviations: XGF, Xiangfan-Guangji fault; TLF, Tancheng-Lujiang fault; HPF,
Huanglishu-Poliangting fault; CCF, Chongyang-Changzhou fault; QHF, Qingshui-Hewan fault; SHF,
Sanli-Hexi fault; LQF, Liqiao fault; KSF, Kunshan fault; JNF, Jiangnan fault; ZWF, Zhouwang fault;
MLF, Ma’anshan-Langxi fault.

The Chating deposit is located on the northwest side of the Liqiao anticline. The survey
area is mostly underlain by Quaternary sediments, with a thickness of about 20 m that
increases from southeast (SE) to northwest (NW). Volcanic rocks of the Upper Cretaceous
are exposed south of the mining area. The Liqiao anticline to the southeast is composed
of Silurian sandstone, Devonian mudstone, and mainly carbonate rocks of the Permian
and Early Triassic. The main tectonic structures in the area are the northeast (NE) and
southwest (SW) fractures, with the NE ones being dominant (Figure 5a).

Beneath the Quaternary cover in the Chating ore district are intermediate-acidic
terrestrial volcanic rocks of the Lower Cretaceous and terrestrial clastic sedimentary rocks
of the Upper Cretaceous. No obvious alteration and mineralization are observed, but
strong weathering exists. According to drill core exposures, the quartz diorite porphyry
body outlined is nearly vertical and roughly forms a northeast-trending lenticular shape
in plain view, over 5 km long and less than 1 km wide at its widest point. Veins of diorite
porphyry and quartz diorite porphyry commonly cut the quartz diorite porphyry body.
Drill core exposures show that the wall rock of the quartz diorite porphyry body is Lower
Triassic limestone. At the contact between the quartz diorite porphyry body and the wall
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rock, dolomite and dolomitized limestone are developed, in which no mineralization is
observed. The orebody is hosted in a concealed quartz diorite porphyry intrusion with a
cover thickness of 100 to 200 m. In plain view, the orebody covers an area slightly larger
than 1000 m by 500 m. Drill exploration depth is controlled within 2000 m. Aphanitic
agglomerate is developed within the quartz diorite porphyry intrusion. The distribution
range of the aphanitic agglomerate is basically consistent with but slightly smaller than the
mineralization range, which shows an inverted bell shape. The deep mineralization has
not been fully delimited (Figure 5b).
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3.2. Magnetic Characteristics of the Chating Ore Area

The magnetic parameters of geological strata, igneous rocks, and ores in the Chating
area were statistically obtained using magnetic susceptibility data from rock samples and
drill cores. The results are shown in Table 1.

Statistically, in the Chating mining area, Upper Cretaceous agglomerate and clastic rocks
have medium to low magnetism, except when a small amount of andesite is developed.
Most of the Lower Cretaceous volcanic rocks have medium to low magnetism. The strata
of Triassic, Permian, Carboniferous, Devonian, and Silurian have no magnetism or weak
magnetism. Granite porphyry has medium to low magnetism. Quartz diorite porphyry,
Lamprophyre, and Diorite porphyry have medium to high magnetism. Chalcopyrite ore and
copper-mineralized rocks have medium to low magnetism, which is insufficient to directly
produce a significant magnetic anomaly different from other magnetic geological bodies.

Overall, the susceptibility of the sedimentary strata in the study area varies within a
relatively small range, approximately from 0 to 80 × 10−6 SI. The main intrusive rocks in
the area show a significant increase in susceptibility, ranging from approximately 1600 to
3300 × 10−6 SI. Because ore deposits are mostly formed within these strongly magnetic
intrusive rocks, defining these rocks with airborne magnetic data can provide very useful
exploration insights.
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Table 1. Statistical magnetic parameters in Chating area.

Strata and Rock Type Samples
Susceptibility (10−6 SI)

Minimum Maximum Average

Upper Cretaceous clastic rocks 3 1.36 1.39 1.36

Lower Cretaceous volcanic rocks 120 2.6 3533.1 335.6

Triassic carbonate rocks 60 0.9 23.1 7.9

Permian sandstone 60 0 18 2.5

Carboniferous carbonate rocks 90 0 24.4 2.9

Devonian sandstone 40 0 1195.6 84.8

Silurian sandstone 60 3.1 1470 88.2

Quartz diorite porphyry 270 1.9 6691.9 1673.6

Lamprophyre 180 1.5 7827.7 2654.8

Diorite porphyry 30 110.5 6041.5 3385.5

Copper-bearing breccia 60 1.1 8422.4 486.3

Chalcopyrite ore 60 26.4 2410.9 252.8

3.3. Field Survey

The survey area is mainly agricultural, with a flat terrain and no significant magnetic
disturbances, except for some small villages and a town to the west. This makes it suitable
for UAV-borne aeromagnetic surveys (Figure 6a). We designed 47 survey lines in the
SE-NW direction, perpendicular to the main structural orientation, with a total length of
about 350 km. The iHFUAM is very portable and only needs two pilots and a geophysicist
to conduct the flight surveys. In this trial, we used a sports utility vehicle (SUV) to transport
and deploy the iHFUAM, and we chose a river embankment near the survey area to take
off and land (Figure 3). The iHFUAM could be manually or autonomously controlled by an
experienced pilot during take-off or landing. When flying over the survey lines, it followed
predefined paths autonomously. We monitored the diurnal variations of the magnetic field
during the survey flights.
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We completed the field survey in one day with two flights. The first sortie lasted 2.4 h
and the second one lasted 3 h. During the flight, the aircraft control computer autonomously
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flew according to the preset routes and altitudes, with an average flight speed of about
90 km/h to 100 km/h and a magnetic data sampling rate of 10 Hz. We acquired a total of
372 km of aeromagnetic data with an average line spacing of 250 ± 1.3 m and an average
flight altitude (distance to the ground) of 152 m (Figure 7). Figure 7 shows that the iHFUAM
had outstanding position control, even under the influence of the unexpected windy and
chilly weather on the flight day. Most of the line deviations were less than 5 m, with only a
few deviations of more than 10 m in the north corner. The actual measured height from
the ground was generally between 140 and 160 m, which met our intended goal of an
average flight altitude of 150 m. Please note that we increased the planned flight altitude
from 100 m to 150 m for safety reasons in windy conditions after rainy and snowy weather.
Additionally, the main objective of this measurement was experimental and for validation,
which allowed us to make temporary adjustments to the flight altitude.
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We created simple illustrations of the total magnetic intensity (TMI) data using a
straightforward approach, where we first calculated the average value of all TMI mea-
surements and used this average as a baseline. TMI values greater than the average were
assigned warm colors, while those less than the average were assigned cool colors. Based
on this approach, we generated two graphical representations of the TMI data: a color
zone scatter plot (Figure 8a) and a profile plot (Figure 8b) along the survey lines. Figure 8a
allows for a quick observation of the planar distribution of TMI within the survey area,
which consists of two high-value areas at the northeast and southwest ends, respectively,
and a low-value area in the center. The difference between the maximum and minimum
TMI values is approximately 500 nT. In comparison, Figure 8a,b shows similar magnetic
field features but provides a more intuitive representation of TMI magnitude across the
survey area based on distance. Figure 8b shows that the strongest magnetic field intensity
is in the northeast, while the southwest has a relatively weaker magnetic field intensity.
Both figures show a prominent TMI high-value area associated with the Chating deposit,
which is likely related to the presence of concealed intrusive rocks, as discussed earlier.
Furthermore, it is reasonable to speculate that other concealed intrusive rocks may exist
beneath the high-value areas in the northeast and southwest based on these findings.

3.4. Corrections

During airborne magnetic surveys, errors can arise in measurement data due to
changes in the Earth’s magnetic field over time, differences in instrument installation
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methods, and inherent magnetic interference from the system. As a result, it is essential to
correct the raw data obtained from measurements to ensure higher quality data [27].
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3.4.1. Diurnal Variation Correction (DVC)

During the flying time, the magnetic diurnal variation data was synchronously
recorded using a magnetic base station, with a recording rate of 10 Hz. The measure-
ment data of the base station was subtracted from the aeromagnetic data using the GNSS
time channel as a reference to eliminate the effect of the diurnal variation of the geomagnetic
field on the measurement data.

3.4.2. Lag Correction

The magnetometer of iHFUAM is installed 1.5 m away in front of the nose, while
the GNSS antenna is installed above the cabin, resulting in a positional difference of
approximately 2.5 m between them. Therefore, the recorded magnetic field values during
flight are always relatively forward in position, causing a positional difference on different
flight lines. Lag correction is the process of appropriately dragging the magnetic field
values backward to achieve consistency between the magnetic field values and spatial
positions. Considering the flight speed of about 90–100 km/h and the data sampling rate
of 10 Hz, the estimated sampling point distance is approximately 3 m. Therefore, we
performed one fiducial lag correction on the magnetic data after DVC.

3.4.3. Heading Correction

Heading correction is usually employed to reduce errors caused by the inherent
magnetic field of the aircraft in different directions. Generally, reciprocal measurements
on two cross-intersection lines are used to obtain the correction parameters during field
surveys. Due to the inability to carry out a compensation flight, we estimated the difference
of two adjacent reverse measurement lines in the stable magnetic field area for heading
correction. Corrections of −3 nT and +3 nT for the northwest and southeast measurement
lines were applied, respectively.

3.4.4. Removal of IGRF

To eliminate the influence of changes in the Earth’s magnetic field with respect to geo-
graphical coordinates and altitude on the measurement data, we used the 13th generation
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International Geomagnetic Reference Field (IGRF 13) to calculate the normal magnetic field
value for each measurement data and corrected them point by point.

After applying these corrections, we obtained what is typically referred to as the
magnetic anomaly (MA). In fact, due to the iHFUAM being based on small- to medium-
sized UAVs with low inherent interference, only minor adjustments were made to the lag
correction and heading correction, which achieved satisfactory results in this survey.

3.5. Noise Level of the Magnetic Data

As mentioned above, due to airspace restrictions and precipitation, we were unable to
carry out measurement flights, such as tie lines and repeat lines. To evaluate the quality of the
measurement data, we calculated the fourth difference noise of the magnetic field on the survey
line, which can, to some extent, represent the data quality during dynamic measurement.

The fourth difference for the magnetic data can be calculated as follows:

fourth difference =
T−2 − 4T−1 + 6T0 − 4T+1 + 2T+2

16
(1)

where T−2, T−1, T+1, and T+2 are two consecutive readings before and after the current
magnetic field T0, respectively.

As an example, we calculated the fourth difference of the survey line passing through
the Chating deposit and plotted the profile together with the magnetic field values (Figure 9a).
Additionally, we calculated the fourth difference of the aeromagnetic data for all survey
lines and performed histogram statistics. The results showed that the majority of the fourth
differences of the aeromagnetic data were between ±0.01 nT (Figure 9b). This can be consid-
ered as a good level of aeromagnetic noise, from an industry-standard (between ±0.05 nT)
perspective [23,28].
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3.6. Gridding and Transformations
3.6.1. Gridding

The MA data are usually transformed into grid data after the corrections. Grid data
is more regular and facilitates statistical analysis and visualization. Moreover, gridding
reduces data volume, improves data processing efficiency, and facilitates further processing
and analysis. Generally, the grid cell size is recommended to be between one-fourth and
one-third of the line spacing [29]. In this case, the line spacing is 250 m, and the typical cell
size should be around 75 m. However, since the flight altitude is slightly higher at around
150 m, we adjust the grid cell size to 100 m and use the minimum curvature method to grid
MA (Figure 10a).
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3.6.2. Reduce to Pole

Reduce to pole (RTP) is a useful method for magnetic data processing. RTP converts
the magnetic data to a direction perpendicular to the Earth’s surface. Essentially, it removes
the dipolar nature of magnetic anomalies through computations, allowing the anomalies to
better correspond to the geological source bodies. We applied the RTP transformation to
the MA of the study area using a geomagnetic inclination of 47.67 degrees and a declination
of −5.87 degrees. As a result of RTP, the range of most anomalies is reduced, and their
morphology becomes simpler, making the data easier to interpret and utilize (Figure 10b).

From Figure 10, it is evident that after performing the RTP process, there were clear
changes in the magnetic anomaly distribution in the surveyed area. The central positions
of several major anomalies shifted northward. Moreover, the core ranges became more
concentrated, reflecting more accurately the locations and sizes of magnetic geological features.

3.7. Interpretation

Three-dimensional (3D) inversion is currently an important data processing and inter-
pretation technique in magnetic surveying. Compared to profile maps and contour maps,
3D inversion can obtain 3D magnetic structural information of underground space, which
reflects the magnetic structure underground more intuitively. There are mainly two types of
3D inversion: shape model inversion and automatic property model inversion. The 3D auto-
matic property model inversion divides the underground source area into regular hexahedral
composite unit models, forming a 3D regular mesh of hexahedral units. During the inversion
calculation, the shapes of these units remain unchanged while their properties change, and the
distribution of magnetic sources is depicted by changes in properties to achieve the inversion
purpose. Due to its advantages, such as an easy operation of model properties, an ability
to simulate any complex geological body, and a few restrictions on method technology, 3D
automatic property inversion has always been the mainstream research direction of three-
dimensional inversion. However, it has faced two major challenges: the problem of multiple
solutions and the problem of computation time. Scholars have addressed these two issues
by imposing additional constraints to constrain the inversion process and by carrying out
deep research and applying optimizing inversion algorithms and using multi-core parallel
technology to improve computation speed [30–43].

We conducted a rapid self-constrained three-dimensional magnetization inversion of
aeromagnetic data using MAG3D, which was developed by the Geophysical Inversion Re-
search Team at the University of British Columbia based on the research by Li et al. [30–32].
And, it is currently one of the most widely used magnetic three-dimensional property
inversion modules. Based on the existing basic geological information, we expected that the
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magnetic geological bodies within the study area were not particularly complex. To quickly
obtain three-dimensional magnetization information, we created a simple regular 3D mesh
file with a cell side length of 200 m each, and with 83 cells in the eastward direction, 78 cells
in the northward direction, 20 cells in the depth direction. With two strong magnetic
anomalies on the boundary, four additional cells in each direction were added to reduce
boundary effects. We used the default parameters of MAG3D to perform a self-constrained
and fast three-dimensional magnetization inversion: The input data were the designed
mesh file and measured aeromagnetic data (magnetic field values multiplied by 5% and
plus 0.01 nT as uncertainty noises); the sensitivity file was automatically generated by
the program, using the default depth weighting parameter β = 3; the inversion mode
was the default discrepancy mode; the smoothing coefficient used the default parameters
αs = 0.0001 and αx = αy = αz = 1; the initial SI was set to 0.0001, and the lower and upper
bounds of SI were set to 0 and 1, respectively. Then, we obtained the magnetization spatial
information within the 4 km depth range. Figure 11 illustrates the forward response of the
inversion susceptibility model and the difference between observed data and forward data.
It can be observed that the large errors are mainly distributed in the complex magnetic field
area with a larger magnetic gradient in the southern part of the survey area.
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Figure 12 shows the results of the inversion, including the 3D voxel model of the
entire area, five vertical sections along the survey lines, one vertical section along the
perpendicular line, and a geological section of the Chating deposit. According to the
summarized magnetic characteristics of rocks (Table 1), it can be observed that the range of
magnetization susceptibility of the intrusive rocks within the survey area is approximately
several thousand times 10−6 SI. Then, we clipped the display range of cells by adjusting
the susceptibility values in the 3D view and compared it with the geological section of the
Chating deposit to make the displayed cells range roughly equivalent to the intrusive rock
in the geological section. And, we found that setting the minimum susceptibility value to
5000 × 10−6 (i.e., 0.005) SI corresponds well with the range of remaining cells and the range
of intrusive rocks in the geological section (Figure 13). Therefore, from the perspective
of simple deduction, we consider that the cells with susceptibility greater than 0.005 SI
represent the areas where intrusive rocks were present in the survey area.

As we do not have any other data besides the measured aeromagnetic data, the profile
map of the Chating deposit, and the magnetic susceptibility data of samples, we believe
that the mineralization background and conditions in the measurement area are highly
similar. Since the measurement area is a small region of only a few square kilometers, we
can use simple logical deductions, such as “from known to unknown” and “from near to
far”, to preliminarily speculate the ore prospects in this area.
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The cells interpreted as intrusions are shown in a top view, and the range of the rock
mass will be projected onto the surface. We can use this to circle the planar distribution
range of the intrusive rock mass and number them from R1 to R12 (Figure 14). From
Figure 14, we find the Chating deposit has a very good correlation with R1. We assume
some simple principles for judging the possibility of mineralization in other rock masses:

1. Rock masses closer to R1 are more likely to be mineralized, mainly R2, R3, R4, R5, R6,
R7, and R8.

2. Rock masses with similar shapes and sizes to R1 have more similar ore-forming
conditions to R1, mainly R2, R3, R5, R8, R9, and R12.

3. Rock masses in the same local structural zone as R1 are more likely to be mineralized,
mainly R2, R3, R4, R5, R6, R7, R8, R9, and R10.

By simply intersecting the rock mass classification sets defined by the three principles,
we can group the rocks from high to low mineralization potential. In other words, we can
recommend the priority order for subsequent exploration work:

1. R2, R3, R5, R8 (Red-dashed polygons in Figure 14).
2. R4, R6, R7, R9 (Blue-dashed polygons in Figure 14).
3. R10, R11, R12 (Green-dashed polygons in Figure 14).

Minerals 2023, 13, x FOR PEER REVIEW 15 of 18 
 

 

As we do not have any other data besides the measured aeromagnetic data, the pro-
file map of the Chating deposit, and the magnetic susceptibility data of samples, we be-
lieve that the mineralization background and conditions in the measurement area are 
highly similar. Since the measurement area is a small region of only a few square kilome-
ters, we can use simple logical deductions, such as “from known to unknown” and “from 
near to far”, to preliminarily speculate the ore prospects in this area. 

The cells interpreted as intrusions are shown in a top view, and the range of the rock 
mass will be projected onto the surface. We can use this to circle the planar distribution 
range of the intrusive rock mass and number them from R1 to R12 (Figure 14). From Fig-
ure 14, we find the Chating deposit has a very good correlation with R1. We assume some 
simple principles for judging the possibility of mineralization in other rock masses: 
1. Rock masses closer to R1 are more likely to be mineralized, mainly R2, R3, R4, R5, 

R6, R7, and R8. 
2. Rock masses with similar shapes and sizes to R1 have more similar ore-forming con-

ditions to R1, mainly R2, R3, R5, R8, R9, and R12. 
3. Rock masses in the same local structural zone as R1 are more likely to be mineralized, 

mainly R2, R3, R4, R5, R6, R7, R8, R9, and R10. 
By simply intersecting the rock mass classification sets defined by the three principles, 

we can group the rocks from high to low mineralization potential. In other words, we can 
recommend the priority order for subsequent exploration work: 
1. R2, R3, R5, R8 (Red-dashed polygons in Figure 14). 
2. R4, R6, R7, R9 (Blue-dashed polygons in Figure 14). 
3. R10, R11, R12 (Green-dashed polygons in Figure 14). 

 
Figure 14. The projection of the cells with susceptibility greater than 0.005 SI in inversion results 
onto the geological map. 

4. Discussion and Conclusions 
To meet the practical needs of small space and light load for small- and medium-

sized UAVs, we have developed the iMAMS, which is integrated into a hybrid fixed-wing 

Figure 14. The projection of the cells with susceptibility greater than 0.005 SI in inversion results onto
the geological map.

4. Discussion and Conclusions

To meet the practical needs of small space and light load for small- and medium-sized
UAVs, we have developed the iMAMS, which is integrated into a hybrid fixed-wing UAV
to form the iHVUAM. The iHVUAM experimental measurement and mineral exploration
prediction applications have been carried out around the known Chating deposit. By
means of a rapid 3D magnetic susceptibility inversion, 12 intrusive rock masses have been
delineated, and the order of subsequent exploration work has been recommended. Other
researchers have carried out explorations based on gravity, magnetism, controlled-source
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audio-frequency magnetotellurics (CSAMT) and have also conducted drilling validation in
this area. They have discovered lead–zinc–silver and lead–zinc–gold deposits in the R2
and R8 areas, respectively.

Based on the above work, we can draw several conclusions:

1. Compared to traditional aeromagnetic systems used on manned aircrafts, the iMAMS
has a smaller size and weight. The host weight is approximately 2.5 kg, and the entire
system weight with a OPM is about 6.5 kg. It is already quite suitable for use in
medium- and small-sized UAV-borne aeromagnetic systems.

2. The iHFUAM is compact and very flexible to deploy. It only requires three people
to conduct a flight survey. The ability of VTOL in the survey area as well as the
flight speed of about 90 km/h to 100 km/h with a maximum endurance of 3.5 h in
a single sortie are all helpful in improving the measurement efficiency. The ability
to fly autonomously on a predefined path enables a very good flight control quality
and lower magnetic interference from the UAV itself and is beneficial for acquiring
good data. The iHFUAM already has the essential capabilities to provide efficient and
flexible aeromagnetic measurements.

3. As the earliest developed and most widely used and mature measurement method
in airborne geophysical exploration, magnetic surveying has the characteristics of
being fast and efficient. In addition to directly searching for magnetic minerals, such
as magnetite, it has been proven to be an effective mineral exploration method by
indirectly delineating mineralized rock masses with magnetic properties by using
technical means, such as 3D susceptibility inversion.

4. Although the iHVUAM has obtained satisfactory data for us at the time, we must
acknowledge that the work process was not good enough due to various constraints.
To achieve better development, integrating the compensation module is an important
task that we will undertake in the follow-up work.

5. Patents

There is a patent authorized by China National Intellectual Property Administration
resulting from this work (Authorization No. ZL202120873578.3).
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