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Abstract: The Ildeus mafic–ultramafic complex represents plutonic roots of a Triassic magmatic arc
tectonically emplaced into the thickened uppermost crust beneath the Mesozoic Stanovoy collided
margin. The mafic–ultramafic complex cumulates host Ni-Co-Cu-Pt-Ag-Au sulfide-native metal-alloy
mineralization produced through magmatic differentiation of subduction-related primary mafic
melt. This melt was sourced in the metal-rich sub-arc mantle wedge hybridized by reduced high-
temperature H-S-Cl fluids and slab/sediment-derived siliceous melts carrying significant amounts of
Pt, W, Au, Ag, Cu and Zn. Plutonic rocks experienced a pervasive later-stage metasomatic upgrade
of the primary sulfide–native metal–alloy assemblage in the presence of oxidized hydrothermal
fluid enriched in sulfate and chlorine. The new metasomatic assemblage formed in a shallow
epithermal environment in the collided crust includes native gold, Ag-Au, Cu-Ag and Cu-Ag-
Au alloys, heazlewoodite, digenite, chalcocite, cassiterite, galena, sphalerite, acanthite, composite
Cu-Zn-Pb-Fe sulfides, Sb-As-Se sulfosalts and Pb-Ag tellurides. A two-stage model for magmatic–
hydrothermal transport of some siderophile (W, Pt, Au) and chalcophile (Cu, Zn, Ag) metals in
subduction–collision environments is proposed.

Keywords: arc plutonic roots; Mesozoic Stanovoy collided margin; ultramafic metasome; sediment
melting; adakites; hydrothermal fluids; Ni-Co-Cu-Pb-Zn sulfides; native ore metals and alloys;
magmatic–hydrothermal transport

1. Introduction

Most ore deposits at modern and ancient convergent margins are formed from metals
contributed by asthenospheric and lithospheric mantle sources [1–9]. However, the exact
modes of metal transport in subduction zone environments are still subject to vigorous
scientific debate. The predominant paradigm suggests that ore metals are preferably
transported by dense hydrous fluids associated with magma movement between a range
of mantle and crustal geochemical reservoirs [10–26]. Most siderophile and chalcophile
elements eagerly partition into an aqueous fluid phase, especially in the presence of sulfur
and halogens [27–38]. The transport and mobilization of ore elements can also be assisted
by the formation of metal-rich sulfide magma [39–45]; pulsated build-up of large, fluid-
saturated sub-volcanic magma chambers [46–52]; or by flotation of metal-rich sulfides
and other ore minerals (e.g., magnetite) on gaseous bubbles in lava flows and shallow
melt conduits [53–59]. Recent discoveries of native metals (Cu, Ag, Au) and Cu-Sn-Co-
Ag alloys in vesicular basalts from Hawaii, Vesuvius, Etna and Stromboli suggest metal
pre-concentration and enrichment via vapor-assisted fractional crystallization during lava
solidification prior to later-stage hydrothermal alteration and the remobilization of ore
metal components [60,61].
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We have recently reported textural and compositional evidence for the association of
Au, Au-Ag and Cu-Ag-Au alloys as well as other chalcophile and siderophile metals with
magmatic minerals in a range of explosive volcanic rocks from the Lesser Khingan Range
in the Russian Far East, Cretaceous adakite lavas from the Stanovoy Suture Zone in East
Siberia, Tertiary shoshonite from the Western United States and young dacitic lava from
the Bolivian Andes [62–65]. These data suggest high-temperature magmatic origins for
some ore components in subduction tectonic settings (including possible slab failure and
breakoff cases) and the cycling of ore metals in the crust–mantle system through the perco-
lation of metal-rich, fluid-saturated mantle-derived sulfide and silicate liquids [66–68]. In
addition, arc-related plutonic root systems provide effective pathways for metal transport
from lithospheric and asthenospheric mantle sources to the upper crust [69,70], whereupon
these metals are chemically and physically transformed and incorporated under predomi-
nantly oxidized conditions into various hydrothermal deposits at convergent and collided
margins [9,13,71–74].

This paper presents new geological, mineralogical and geochemical data from the
recent (2022) drilling of a mineralized arc-related plutonic system in the Stanovoy Suture
Zone (SSZ) of the Russian Far East, which casts new light on ore metal transport and
mobility in subduction zones [69,70]. We specifically aim to address the following issues:
(1) the diversity of metal associations in arc-related plutonic systems; (2) the relative role
and importance of magmatic versus hydrothermal processes; and (3) the composition
and evolution of fluid and redox conditions during the formation and development of
magmatic plumbing systems at ancient convergent and collided margins.

2. Geologic Background and Samples

The Stanovoy Suture Zone (SSZ) forms the northernmost part of the Central Asian Oro-
genic Belt (CAOB) at its junction with the southern edge of the Siberian craton (Figure 1A).
The CAOB represents the world’s largest accretionary orogen with a substantial Phanero-
zoic juvenile crustal component [75,76]. It is composed of Proterozoic to Paleozoic oceanic,
island-arc, back-arc basin, seamount and oceanic plateau terranes tectonically mingled
with fragments of the Precambrian structural–metamorphic basement [75–77] and stitched
together by granitoid complexes [78]. The SSZ includes variably metamorphosed (mostly
under amphibolite, locally granulite facies conditions) Precambrian to Phanerozoic conti-
nental, oceanic and arc-related terranes thrusted onto the southern margin of the Siberian
craton (Aldan shield) during closure of the Mongol–Okhotsk oceanic basin in the Early
Mesozoic [79,80]. The modern structure of the SSZ is clearly reminiscent of a typical colli-
sional orogen affected on the regional scale by post-collisional extensional tectonics and
mafic-to-felsic magmatism [69,81].

The central part of the SSZ is composed of several Phanerozoic-arc-related terranes
tectonically intermingled with Precambrian high-grade metamorphic rocks intruded by
Mesozoic mafic–ultramafic complexes, some of which are quite intricately constructed
with a complex magmatic crustal architecture [69]. These mafic–ultramafic complexes are
interpreted as plutonic roots of a Mesozoic magmatic arc (similar to the modern Andes
and Kamchatka) formed in response to the northward subduction of the Mongol–Okhotsk
oceanic floor beneath the Siberian craton [82]. The Triassic (232–233 Ma) Ildeus mafic–
ultramafic complex intrudes Precambrian gneisses, mafic crystalline schists and amphi-
bolites of the Precambrian Stanovoy Series and carries recently (2018–2022) discovered
exotic Ni-Co-Cu-Au-Ag-Pt sulfide-native metal-alloy mineralization hosted in cumulate
and metasomatic ultramafic rock lithologies [69,70,83]. Mineralized ultramafic rocks are
associated with a distinctive magnetic signature (Figure 1B) coupled with low apparent
resistivity and elevated polarization values usually coincident with the highest abundances
of sulfides, native metals and alloys in ultramafic plutonic rock.
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Figure 1. (A) Simplified tectonic setting of the Stanovoy Suture Zone (SSZ) in the general geody-
namic context of Eastern Siberia and Far East Russia. “B”—location of the Ildeus complex. (B) Mag-
netic map of the northern portion of Ildeus mafic–ultramafic complex showing location of the 2022 
drill holes. (C) Lithologic columns for the northern portion of the Ildeus complex based on the 2022 
drilling results. 

The Ildeus intrusion is characterized by crude lithological zoning (Figure 1C) with its 
core being predominantly composed of various ultramafic rocks such as dunite, plagio-
clase-bearing dunite, harzburgite, lherzolite, olivine websterite and wehrlite. Relatively 
narrow (<50 m) marginal zones are composed of gabbro-norite (locally grading into nor-
ite) and gabbro-anorthosite. Contacts with host Precambrian gneiss based on field map-
ping are almost always tectonic. However, hole ILN-001 intersected an intrusive contact 
between the fine-grained gabbro-norite and amphibole-biotite gneiss (Figure 1C). Some 
parts of the Ildeus complex are characterized by large-scale primary magmatic layering 
(holes ILN-002 and ILN-006 in Figure 1C). The ultramafic sequence is frequently intruded 
by pyroxenite and lamprophyre dikes along with felsic veins and dikelets (Figure 2). Felsic 
veins (Figure 2) display very high Sr/Y ratios (>100) typical of high-SiO2, low-MgO 

Figure 1. (A) Simplified tectonic setting of the Stanovoy Suture Zone (SSZ) in the general geodynamic
context of Eastern Siberia and Far East Russia. “B”—location of the Ildeus complex. (B) Magnetic
map of the northern portion of Ildeus mafic–ultramafic complex showing location of the 2022 drill
holes. (C) Lithologic columns for the northern portion of the Ildeus complex based on the 2022
drilling results.

The Ildeus intrusion is characterized by crude lithological zoning (Figure 1C) with its
core being predominantly composed of various ultramafic rocks such as dunite, plagioclase-
bearing dunite, harzburgite, lherzolite, olivine websterite and wehrlite. Relatively narrow
(<50 m) marginal zones are composed of gabbro-norite (locally grading into norite) and
gabbro-anorthosite. Contacts with host Precambrian gneiss based on field mapping are
almost always tectonic. However, hole ILN-001 intersected an intrusive contact between
the fine-grained gabbro-norite and amphibole-biotite gneiss (Figure 1C). Some parts of the
Ildeus complex are characterized by large-scale primary magmatic layering (holes ILN-002
and ILN-006 in Figure 1C). The ultramafic sequence is frequently intruded by pyroxenite
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and lamprophyre dikes along with felsic veins and dikelets (Figure 2). Felsic veins (Figure 2)
display very high Sr/Y ratios (>100) typical of high-SiO2, low-MgO adakites [64,84]. High-
Ti and Nb (TiO2 = 3–3.5 wt.%; Nb = 10–15 ppm) lamprophyres [69] are similar to arc-related
high-Nb basalts associated with the subduction of young oceanic crust, adakite-mantle
hybridization and the melting of rutile/titanite-rich mantle sources in subduction and
collision environments [64,85,86].
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Figure 2. (A) Field occurrence of felsic veins in Ildeus ultramafic rock. (B) Sr/Y versus Y (ppm)
discrimination diagram for felsic veins and gabbroic rocks from the Ildeus intrusion. Fields for
Au-bearing adakites and arc-related igneous rocks are modified from [84,85].

Mafic–ultramafic plutonic rocks from the Ildeus complex have been overprinted with
two principal types of the later-stage hydrothermal alteration: (1) hydrous ultramafic
and (2) silicic (Figure 1C). Ultramafic metasomatic rocks are typically composed of talc,
serpentine and chlorite with minor carbonate and tremolite (with some relics of primary
magmatic pyroxene and olivine). They commonly form either stockwork zones 20–50 m
in width, or narrow (typically under 10 m) ultramafic metasomes with completely obliter-
ated igneous textures and primary mineral assemblages. Quartz-rich (silicic) metasomes
are frequently associated with low- and high-sulfidation quartz veins with minor cal-
cite, adularia and mica and are occasionally developed around adakite dikes and veins
(Figure 3F). Silicic metasomatic zones are principally composed of quartz with minor and
variable amounts of biotite, muscovite, calcite, adularia, barite and some (usually under
5 tmodal percent) sulfide represented by pyrite, pyrrhotite, chalcopyrite, sphalerite, galena
and tennantite-tetrahedrite. Relic, chemically and physically corroded and abraded pent-
landite and Co-rich pentlandite are also occasionally observed among silicic metasomatic
assemblages. Locally, narrow zones (first meters) of silicic metasomes and quartz veins
crosscut ultramafic hydrothermal assemblages (talc + serpentine + chlorite), indicating that
silicic alteration (including isolated quartz veinlets and bulk silicification) was the latest
metasomatic episode within the Ildeus magmatic–hydrothermal system.

Samples of all ultramafic and mafic igneous lithologies along with ultramafic meta-
somes and felsic veins were collected from the 2022 diamond drill core (Figure 3). Relative
positions of all samples used in this study within the individual lithologic drill hole columns
are shown in Figure 1C. Igneous and metasomatic rocks as well as the associated mineral-
ization were studied using a range of petrologic and geochemical methods.
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Figure 3. Metasomatic rocks and later-stage felsic dikes in the Ildeus mafic–ultramafic complex.
(A) Ultramafic (talc + chlorite + serpentine ± carbonate) metasome in harzburgite. (B) Ultramafic
(talc + serpentine ± chlorite ± carbonate) stockwork in dunite. (C) Spotty chloritization around
ultramafic metasomes. (D) Quartz-rich (with minor calcite, adularia, chlorite, biotite, sericite and
muscovite) metasome in contact with quartz vein (on the left) and ultramafic rock (on the right).
(E) Quartz-rich (with minor calcite, adularia, chlorite, biotite, sericite and muscovite) metasome with
relics of host ultramafic rock. (F) Adakite dike intruding ultramafic rock.

3. Analytical Methods

Petrographic studies of magmatic and metasomatic rocks were carried out using an
Imager A2m petrographic microscope (Carl Zeiss, Oberkochen, Germany).

Major element oxides in magmatic and metasomatic rocks from the Ildeus mafic–
ultramafic complex were measured on pressed pellets using a S4 Pioneer XRF spectrometer
(Bruker, Leipzig, Germany). The analytical accuracy for major element oxides in the course
of this study was ± 10%. Abundances of trace elements were determined with an ELAN
9000 ICP-MS (Perkin Elmer, Woodbridge, Ontario, Canada) after the acid digestion of a
powdered sample. International geochemical reference samples LDI-3 (gabbro), WMG-1a
(mineralized gabbro), BHVO-2 (USGS; Hawaiian basalt) and JB-3 (Geological Survey of
Japan; Fuji basalt), along with Perkin Elmer standard solutions PE# N9300231-9300234
for internal calibration, were used to control the accuracy of analytical measurements. In
the course of this study, the accuracy was ±5% for trace element abundances of >20 ppm
and ±10% for chemical elements with abundances of <20 ppm [70]. Platinum-group
elements (Ru, Rh, Ir, Pd, Pt) and Au were determined by ICP-MS after separation and
pre-concentration by Na2O2 fire-assay and tellurium co-precipitation following the method
described in [87].

A detailed systematic study of native metals, alloys and associated mineral phases
was completed using a VEGA 3 LMH TESCAN (Czech Republic) scanning electron micro-
scope (SEM) with the Oxford X-Max 80 Gb energy-dispersive spectrometer (EDS) with the
following operating conditions: accelerating voltage of 20 kV, beam current of 530 nA and
beam diameter of 0.2 µm. A set of reference samples including 37 natural and synthetic
oxides, minerals and pure native metals (Oxford/108699 no. 6067) was used as standards.
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Co-standard Oxford Instruments/143100 no. 9864-15 was used for daily calibration of the
SEM instrument. The accuracy of the EDS analyses was estimated to be ±0.1 wt.%. Special
sample preparation protocols reported in detail in [68] designed to prevent contamination
were utilized to expose metallic phases in situ and determine their relationships with host
silicate and oxide phases as well as associated rock-forming and accessory minerals.

During the SEM-EDS analysis of micron-sized inclusions in silicate and oxide minerals,
the area affected by X-ray radiation more often than not includes both the inclusion itself
and a portion of host mineral (matrix) immediately surrounding the inclusion. Chemical
elements present in the matrix are excited and added to the resultant X-ray energy spectrum
of the micro-inclusion, making correct interpretation of the studied micro-object naturally
challenging. We present in this paper results of X-ray analyses of micro-objects (micro-
minerals, metals, alloys) screened and corrected for the energy peaks of matrix elements.
The key principle of this screening procedure is to only account for elements not present
in the composition of the matrix (host mineral). If the concentration of a certain element
in the micro-inclusion is equal to the content of the same element in the surrounding
matrix, this particular chemical element was treated as matrix-derived and excluded from
any further consideration. We have also evaluated inter-element ratios in our SEM-EDS
analyses of both host minerals and micro-inclusions. If inter-element ratios in both host
and inclusion were identical or sufficiently similar, these chemical elements (or one of
the analyzed elements) were interpreted as most probably host mineral-related and were
excluded from the analytical results for a particular micro-inclusion. Matrix-screened and
corrected metal contents in micro-inclusions were then normalized to 100%.

All analytical procedures were carried out at the Khabarovsk Innovative-Analytical
Center (KhIAC) of the Institute of Tectonics and Geophysics, Far Eastern Branch of the
Russian Academy of Sciences, Khabarovsk, Russian Federation.

4. Results

The results of the petrologic–geochemical investigation of magmatic and metasomatic
rocks from the Ildeus mafic–ultramafic complex are presented in the following two sections.
Major and trace element data for representative magmatic and metasomatic rocks from the
Ildeus mafic–ultramafic complex are listed in Tables 1–4.

Table 1. Representative major and trace element compositions of peridotites.

Sample# 20059 40114 50220 50180 50197 30361 40106 30327 50221

Rock type Dunite Pl-Dunite Pl-Dunite Harz Srp Harz Harz Lherz Serp Wehrlite
SiO2
(wt.%)

42.30 40.22 39.19 49.52 41.70 42.38 50.02 38.77 42.49

TiO2 0.05 0.17 0.08 0.19 0.17 0.25 0.33 0.35 0.19
Al2O3 1.85 4.67 3.69 3.41 3.11 2.72 4.16 7.53 5.92
Fe2O3 9.02 9.99 10.39 7.59 7.22 10.00 9.73 9.15 11.09
MnO 0.15 0.14 0.14 0.19 0.10 0.20 0.19 0.09 0.15
MgO 36.63 33.50 33.59 33.13 33.50 33.21 30.73 27.79 28.76
CaO 0.27 1.60 0.73 0.24 0.35 0.66 3.07 1.04 2.49
Na2O 0.15 0.24 0.32 0.15 0.17 0.26 0.41 0.33 0.36
K2O 0.01 0.07 0.06 0.02 0.01 0.34 0.05 0.55 0.60
P2O5 0.02 0.03 0.02 0.01 0.02 0.04 0.02 0.03 0.02
LOI 11.15 10.26 12.89 6.20 15.13 10.89 1.31 15.76 8.18
Total 101.60 100.91 101.12 100.54 101.47 100.95 100.02 100.90 100.24

Cr (ppm) 4238 2243 2797 2916 1857 2968 3016 803.8 2085
Ni 1961 1340 1325 1179 1102 1602 735.9 512.7 1150
Co 141.7 112.4 114.1 53.90 59.71 108.4 64.64 65.48 109.4
V 33.49 54.25 35.90 60.17 32.09 58.79 119.3 47.51 67.62
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Table 1. Cont.

Sample# 20059 40114 50220 50180 50197 30361 40106 30327 50221

Sc 7.63 12.48 6.16 22.93 9.79 9.57 33.60 10.83 18.28
Li 2.71 9.31 5.27 2.19 6.74 42.85 1.59 22.98 7.13
Cs 0.06 0.17 0.02 0.07 0.05 0.14 0.03 14.46 0.15
Rb 0.43 2.25 1.81 0.78 0.30 5.57 0.92 80.36 7.33
Ba 40.57 70.72 25.36 13.30 37.17 104.2 21.75 630.8 287.7
Sr 10.89 86.98 80.16 6.10 12.30 157.9 21.04 57.36 239.3
Zr 0.77 3.50 1.26 0.76 1.00 2.37 4.50 22.68 4.59
Y 1.25 3.56 1.10 0.92 2.58 3.16 4.02 5.73 2.19
Nb 0.14 0.31 0.01 1.43 1.36 0.62 0.06 5.22 0.17
Ta 0.04 0.03 0.03 1.75 0.06 0.05 0.02 0.76 0.03
Hf 0.02 0.18 0.04 0.04 0.05 0.11 0.24 0.94 0.17
Th 0.14 0.23 0.19 0.30 2.94 0.43 0.18 19.10 0.23
U 0.09 0.13 0.03 0.07 0.09 0.08 0.02 0.09 0.04
La 1.18 1.69 1.09 0.41 14.65 1.27 1.21 48.28 2.01
Ce 2.24 4.77 2.45 0.70 27.24 3.35 2.74 95.34 3.43
Pr 0.25 0.59 0.25 0.10 2.38 0.43 0.32 7.51 0.37
Nd 1.04 2.84 0.99 0.39 8.22 2.27 1.53 23.57 1.46
Sm 0.22 0.68 0.20 0.08 1.10 0.64 0.44 3.10 0.30
Eu 0.05 0.25 0.10 0.04 0.20 0.22 0.17 0.70 0.19
Gd 0.25 0.83 0.27 0.10 1.25 0.80 0.64 3.40 0.41
Tb 0.03 0.13 0.04 0.02 0.13 0.12 0.11 0.34 0.07
Dy 0.22 0.80 0.25 0.16 0.66 0.73 0.78 1.58 0.41
Ho 0.05 0.16 0.05 0.04 0.12 0.14 0.17 0.27 0.10
Er 0.17 0.51 0.17 0.13 0.40 0.43 0.57 0.82 0.31
Tm 0.03 0.07 0.02 0.03 0.05 0.06 0.09 0.10 0.06
Yb 0.24 0.50 0.20 0.22 0.39 0.43 0.2 0.67 0.35
Lu 0.04 0.08 0.03 0.04 0.06 0.07 0.10 0.10 0.06

Ag (ppm) 0.78 0.39 0.18 0.36 0.24 0.28 0.47 0.53 0.38
Cu 36.13 45.71 27.51 37.11 682.53 53.16 39.10 27.48 56.67
Zn 75.97 67.71 83.11 88.04 57.98 72.01 62.42 77.80 78.57
Mo 0.06 0.41 0.18 0.13 0.04 0.08 0.60 0.03 0.24
Pb 0.72 1.22 0.97 0.65 1.27 0.73 1.61 2.08 1.34
Bi 0.08 <0.001 0.11 0.05 0.02 0.03 <0.001 0.07 5.11
Cd 0.02 0.03 0.03 0.03 0.06 0.03 0.05 0.02 0.05
As 0.53 0.32 0.21 0.04 0.30 0.22 0.05 0.60 0.32
Hg 0.59 0.36 4.42 0.08 0.10 0.46 0.40 0.10 0.21
W 8.38 5.22 69.93 1.65 1.07 6.44 7.97 1.36 4.61

Note. Harz—harzburgite; Srp Harz—serpentinized harzburgite; Lherz—lherzolite; Serp—serpentinite.

Table 2. Representative major and trace element compositions of pyroxenites.

Sample# 40090 40171 10030 10035 10038 70884 40129 30342

Rock type Ol-Web Ol-Web Web Web Cpxte Ol-Web Alt Cpxte Ol-Web
SiO2
(wt.%)

51.68 40.29 47.27 49.57 44.90 49.31 44.58 43.84

TiO2 0.29 0.15 0.37 0.48 0.72 0.34 0.28 0.25
Al2O3 3.36 6.29 5.48 4.53 7.85 4.32 18.30 5.44
Fe2O3 10.12 11.99 10.21 11.68 11.03 11.81 5.84 7.71
MnO 0.24 0.14 0.17 0.20 0.17 0.19 0.10 0.13
MgO 28.36 28.57 23.42 26.18 20.40 28.26 14.13 29.58
CaO 2.23 4.86 5.46 6.39 12.86 1.63 9.06 6.55
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Table 2. Cont.

Sample# 40090 40171 10030 10035 10038 70884 40129 30342

Na2O 0.25 0.26 0.75 0.51 0.74 0.44 4.10 0.47
K2O 0.07 0.40 0.10 0.07 0.06 0.15 0.32 0.08
P2O5 0.01 0.01 0.01 0.01 0.00 0.03 0.02 0.01
LOI 3.32 7.25 6.81 0.38 1.26 3.43 3.24 5.68
Total 99.94 100.20 100.06 100.00 100.00 99.92 99.96 99.87

Cr (ppm) 2209 1706 2578 2331 1409 2423 564.6 1837
Ni 970.9 3190 936.1 1074 830.4 795.8 284.3 1089
Co 64.42 125.0 66.97 77.0 51.97 74.73 31.67 60.14
V 98.80 42.77 127.6 161.2 216.3 95.97 59.18 72.51
Sc 33.15 12.18 33.30 41.46 54.99 28.57 16.54 19.91
Li 1.94 4.66 13.71 2.52 3.54 7.35 7.05 3.04
Cs 0.34 0.32 0.33 0.08 0.06 0.25 0.43 0.04
Rb 1.77 3.08 1.31 1.02 0.33 2.32 4.14 0.82
Ba 38.26 192.3 246.0 54.01 62.13 52.19 1059 37.24
Sr 18.09 169.6 441.6 73.73 267.6 70.40 1389 113.02
Zr 2.49 3.01 10.49 14.86 25.63 5.70 6.29 4.14
Y 3.95 3.03 6.13 8.44 14.80 3.78 4.85 8.39
Nb 0.40 0.07 0.14 0.19 0.12 0.40 0.14 0.65
Ta 0.03 0.04 0.15 0.09 0.10 0.20 0.06 0.10
Hf 0.16 0.16 0.44 0.65 1.18 0.18 0.32 0.25
Th 0.45 0.13 0.16 0.21 0.07 0.02 0.47 0.28
U 0.08 0.02 0.01 0.03 0.01 0.02 0.05 0.05
La 1.43 1.72 1.94 1.83 2.20 0.77 5.22 1.14
Ce 3.07 3.30 4.35 5.55 8.19 1.75 10.54 4.50
Pr 0.41 0.43 0.64 0.79 1.34 0.22 1.03 0.78
Nd 2.09 2.23 3.27 4.29 8.00 0.91 4.35 4.70
Sm 0.55 0.56 0.97 1.33 2.67 0.28 0.99 1.56
Eu 0.16 0.25 0.39 0.47 0.97 0.12 0.61 0.49
Gd 0.72 0.59 1.26 1.77 3.38 0.41 1.25 1.86
Tb 0.11 0.09 0.20 0.28 0.54 0.08 0.18 0.29
Dy 0.78 0.70 1.28 1.78 3.36 0.52 1.07 1.81
Ho 0.17 0.12 0.26 0.37 0.65 0.14 0.21 0.36
Er 0.52 0.33 079 1.099 1.86 0.42 0.61 1.06
Tm 0.08 0.04 0.11 0.16 0.25 0.08 0.08 0.15
Yb 0.54 0.30 0.75 1.02 1.57 0.48 0.52 0.99
Lu 0.09 0.05 0.12 0.15 0.21 0.09 0.08 0.14

Ag (ppm) 0.57 0.96 0.83 1.55 1.08 0.49 0.44 0.34
Cu 229.41 824.2 208.59 328.23 212.27 51.69 152.14 71.99
Zn 82.57 57.04 56.77 57.90 35.65 80.58 59.25 42.24
Mo 0.29 0.21 0.26 0.72 0.73 0.51 1.20 0.24
Pb 1.03 2.01 2.01 4.27 2.27 0.87 0.44 1.67
Bi <0.001 17.82 0.13 0.06 0.04 0.06 0.05 <0.001
Cd 0.06 0.09 0.08 0.12 0.15 0.08 0.09 0.09
As 0.10 <0.001 0.05 0.05 0.09 0.21 0.89 0.03
Hg 0.38 0.07 0.35 0.95 0.62 24.77 0.72 0.20
W 7.69 1.89 5.67 14.62 9.94 14.49 15.76 4.02

Note. Ol-Web—olivine websterite; Web—websterite; Cpxte—clinopyroxenite; Alt Cpxte—altered clinopyroxenite.

Table 3. Representative major and trace element compositions of gabbroic and ultramafic metasomatic
rocks.

Sample# 60568 60570 60585 10041 10039 30243 30299 30334

Rock type Gabbro Gabbro Gabbro Gabbro Metas Metas Metas Metas



Minerals 2023, 13, 878 9 of 40

Table 3. Cont.

Sample# 60568 60570 60585 10041 10039 30243 30299 30334

SiO2
(wt.%)

49.31 48.90 50.06 51.00 46.71 38.74 42.58 29.67

TiO2 0.27 0.23 0.22 0.09 0.32 0.92 4.59 0.08
Al2O3 20.75 21.85 21.82 24.89 16.22 10.94 11.52 2.16
Fe2O3 4.96 4.84 4.91 2.50 6.84 8.09 11.64 12.52
MnO 0.10 0.09 0.09 0.04 0.10 0.16 0.07 0.34
MgO 8.50 8.49 7.97 6.56 14.56 24.47 15.56 28.98
CaO 10.80 10.44 9.67 8.09 8.84 2.77 2.35 7.32
Na2O 3.58 3.58 3.30 4.24 2.33 0.95 2.23 0.29
K2O 0.84 0.47 0.35 0.24 0.17 0.69 3.41 0.12
P2O5 0.00 0.01 0.01 0.00 0.01 1.21 0.07 0.01
LOI 0.80 1.04 1.49 2.11 3.96 11.57 6.31 20.67
Total 99.91 99.93 99.88 99.93 100.08 100.53 100.16 102.15

Cr (ppm) 328.4 279.0 169.8 135.6 255.9 120.9 167.0 3656
Ni 103.2 83.43 85.92 93.78 287.9 479.8 275.9 1942
Co 21.77 20.51 20.03 15.53 42.57 51.54 66.21 132.8
V 53.02 54.80 50.15 5.58 105.81 43.13 343.3 54.98
Sc 15.20 17.03 16.60 1.23 28.03 5.27 31.21 5.51
Li ND ND ND 3.09 4.54 49.54 18.15 2.80
Cs 0.29 0.41 0.08 0.08 0.07 0.99 2.46 0.01
Rb 7.05 6.05 1.06 1.38 0.70 26.37 80.46 0.85
Ba 409.3 441.0 104.96 494.1 249.7 1228 7769 293.3
Sr 1004 894.6 812.2 1435 1044 225.6 197.2 1313
Zr 4.43 5.86 3.02 1.27 7.26 8.57 11.28 0.18
Y 3.55 3.76 3.54 0.51 5.57 42.06 33.61 3.73
Nb 0.22 0.25 0.08 0.05 0.19 8.78 2.83 0.03
Ta 0.20 0.16 0.08 0.06 0.11 0.37 0.27 0.01
Hf 0.16 0.22 0.11 0.04 0.33 0.42 0.96 0.01
Th 0.07 0.33 0.19 0.07 0.53 74.53 0.10 0.11
U 0.05 0.07 0.02 0.02 0.02 1.25 0.87 0.09
La 2.00 2.91 2.31 1.18 5.44 505.74 6.09 2.25
Ce 3.98 5.32 4.26 3.08 11.16 978.22 21.15 5.94
Pr 0.50 0.58 0.53 0.29 1.15 83.05 3.20 0.69
Nd 2.066 2.35 2.19 1.16 4.89 272.81 17.99 3.13
Sm 0.49 0.58 0.57 0.19 1.13 32.00 5.89 0.72
Eu 0.40 0.47 0.43 0.39 0.58 5.89 12.59 0.24
Gd 0.56 0.68 0.55 0.20 1.41 35.08 7.44 0.87
Tb 0.10 0.10 0.10 0.02 0.20 2.89 1.17 0.12
Dy 0.59 0.63 0.61 0.12 1.23 11.61 7.35 0.76
Ho 0.13 0.15 0.14 0.02 0.24 1.77 1.46 0.16
Er 0.32 0.39 0.31 0.06 0.70 5.32 4.07 0.51
Tm 0.05 0.06 0.05 0.01 0.09 0.49 0.55 0.07
Yb 0.33 0.32 0.28 0.06 0.60 2.91 3.47 0.54
Lu 0.06 0.06 0.06 0.01 0.08 0.38 0.50 0.09

Ag (ppm) 0.45 0.13 0.46 1.02 0.42 0.60 0.31 0.37
Cu 42.96 34.81 38.44 167.17 124.56 37.16 65.89 243.06
Zn 60.52 86.25 19.51 16.78 40.55 83.99 350.88 61.34
Mo 0.50 0.51 0.47 1.65 0.59 0.05 0.40 0.18
Pb 5.70 4.93 2.73 3.38 2.15 7.54 4.71 2.35
Bi 0.03 0.01 0.04 <0.001 <0.001 0.09 0.03 0.09
Cd 0.12 0.06 0.05 0.04 0.06 0.04 0.02 0.09
As 0.47 0.74 0.48 3.44 7.10 2.85 0.55 1.25
Hg ND ND ND 1.11 0.41 0.09 0.72 4.91
W 11.93 14.39 17.73 22.82 7.03 1.37 14.58 74.75

Note. Metas—metasomatic rocks, ND—not detected.
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Table 4. Representative major and trace element compositions of later-stage dikes and veins.

Sample# 20078 * 30359 50219 * 20062 * 20061 * 30306 * 50218

Rock type Bas And Bas And Bas And Gab-Di Gab-Di Andesite Rhyolite
SiO2 (wt.%) 54.32 54.55 54.56 55.86 57.18 58.72 80.92
TiO2 0.03 0.36 0.12 0.41 0.09 0.22 0.04
Al2O3 13.59 16.29 17.62 17.40 18.56 16.81 6.71
Fe2O3 0.66 2.43 1.70 1.29 1.70 0.10 2.05
MnO 0.02 0.04 0.05 0.03 0.04 0.00 0.04
MgO 2.31 5.03 5.22 9.89 7.57 3.06 4.18
CaO 8.36 5.87 3.48 0.88 0.53 2.26 1.18
Na2O 15.88 6.28 13.22 10.70 11.94 14.27 3.02
K2O 3.48 4.33 0.10 0.43 0.17 2.02 0.27
P2O5 0.00 0.31 0.08 0.18 0.05 0.07 0.01
LOI 1.53 4.65 4.32 3.21 2.53 2.34 1.71
Total 100.08 100.14 100.47 100.28 100.35 99.87 100.13

Cr (ppm) 89.21 107.1 145.4 105.2 107.6 113.6 293.1
Ni 55.12 75.57 62.26 81.39 64.96 33.96 54.74
Co 7.60 12.00 8.51 9.08 9.78 16.71 18.07
V 3.42 16.36 5.08 8.51 28.97 8.07 12.05
Sc 1.04 1.92 3.69 1.46 3.44 1.41 5.89
Li 0.46 2.44 1.24 1.46 1.94 4.39 0.97
Cs 0.02 0.14 0.02 0.03 0.07 0.72 0.10
Rb 16.36 30.71 0.51 2.64 1.57 33.25 9.12
Ba 1523 5876 47.05 297.2 145.6 3242 57.24
Sr 215.1 894.8 484.9 357.0 303.0 2714 197.3
Zr 1.05 2.46 2.56 3.22 1.97 5.90 0.8
Y 0.61 12.18 15.35 13.09 4.47 5.56 2.77
Nb 0.25 3.83 5.18 8.38 1.38 4.42 1.49
Ta 0.04 0.13 0.24 0.33 0.11 0.24 0.05
Hf 0.03 0.18 0.18 0.19 0.08 0.22 0.08
Th 0.23 30.39 20.54 22.98 8.24 8.20 0.26
U 0.10 0.33 1.36 0.32 0.11 0.57 0.19
La 2.04 240.1 129.2 250.5 145.6 58.15 1.27
Ce 3.54 443.9 222.3 452.6 172.9 95.35 2.30
Pr 0.30 35.75 22.14 35.81 93.31 7.45 0.27
Nd 1.01 112.7 75.70 111.7 40.03 25.54 1.12
Sm 0.19 11.94 10.09 12.49 3.98 3.40 0.30
Eu 0.60 2.26 1.64 3.27 0.90 1.60 0.12
Gd 0.21 13.17 7.89 13.93 4.52 3.63 0.43
Tb 0.02 1.02 0.76 1.12 0.34 0.30 0.07
Dy 0.13 3.77 4.13 3.99 1.23 1.42 0.51
Ho 0.02 0.54 0.59 0.57 0.18 0.24 0.11
Er 0.07 1.70 1.57 1.69 0.64 0.74 0.38
Tm 0.01 0.14 0.16 0.14 0.07 0.08 0.07
Yb 0.06 0.81 1.15 0.83 0.54 0.49 0.56
Lu 0.01 0.11 0.17 0.10 0.08 0.07 0.10

Ag (ppm) 0.48 0.43 0.80 0.41 0.35 2.95 0.49
Cu 14.92 21.94 19.86 23.27 10.26 38.71 23.02
Zn 52.86 212.02 10.36 15.64 16.78 145.9 22.20
Mo 0.26 0.85 0.53 0.28 0.57 0.74 2.17
Pb 21.96 20.62 3.17 3.79 3.39 14.13 1.87
Bi <0.001 <0.001 0.01 <0.001 0.01 0.09 0.08
Cd 0.03 0.04 0.02 0.04 0.04 0.05 0.02
As 0.37 1.32 1.43 0.93 0.29 0.25 0.10
Hg 0.88 0.52 0.47 0.76 0.43 1.08 2.70
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Table 4. Cont.

Sample# 20078 * 30359 50219 * 20062 * 20061 * 30306 * 50218

W 17.04 11.87 9.65 15.84 8.63 28.77 57.03

Sr/Y 325.6 73.5 31.6 27.3 67.8 488.2 71.2
La/Yb 34.0 296.4 112.4 301.8 175.5 118.7 2.27

Note. *—Partially albitized. Bas And—basaltic andesite; Gab-Di—gabbro-diorite.

4.1. Petrology and Geochemistry of Magmatic and Metasomatic Rocks
4.1.1. Magmatic Rocks

Magmatic rocks in the Ildeus complex include ultramafic rocks ranging from dunite,
plagioclase-bearing dunite, harzburgite and lherzolite to olivine websterite, websterite,
wehrlite and clinopyroxenite along with petrographically diverse gabbroic rocks (norite,
gabbro-norite, gabbro-anorthosite). Ultramafic rocks form the central core of the Ildeus
intrusion and are typically rimmed by marginal gabbro-norite (e.g., hole ILN-001 in
Figure 1C). Norite and gabbro-anorthosite frequently form thick (up to 50 m) horizons
within the ultramafic sequence (e.g., hole ILN-006 in Figure 1C), resulting in a large-scale
zoning somewhat similar to the subduction-related Ural-Alaskan dunite-pyroxenite-gabbro
complexes (cf., Figure 2 in [88], also [89]). Both dunite/peridotite and websterite/wehrlite
units are commonly impregnated by clinopyroxenitic dikes, dikelets and veins. Later-stage
clinopyroxenites are, in turn, cross-cut by veins (typically under 5 m, on average 1–2 m
thick) and veinlets (1 to 10–30 cm thick) composed of felsic sub-volcanic rocks.

The least metasomatized ultramafic rocks exhibit typical cumulate textures composed
primarily of olivine and orthopyroxene with intercumulus plagioclase, amphibole, clinopy-
roxene and minor biotite (Figure 4). Accessory minerals such as Fe-Mg-Cr-Al spinel, Ti-V-
and Cr-magnetite, ilmenite, rutile, zircon, baddeleyite and apatite are commonly observed
as inclusions in both cumulus and intercumulus minerals (Figure 5). Mineral abbreviations
in all figures and tables follow the nomenclature of [90]. Dunites in the Ildeus complex
are typical olivine-rich ortho-, meso- and adcumulates (Figure 4A,B) with plagioclase
and amphibole as principal intercumulus phases (Figure 4C,D). Accessory intercumulus
minerals include euhedral (primary magmatic) magnetite and cerussite (Figure 5B). Cumu-
late olivine frequently contains Cr-Mg-Al spinel and Mg-orthopyroxene inclusions, while
rims of larger zoned olivine grains are occasionally “peppered” with microinclusions of
Ti-V-bearing magnetite and clinopyroxene. Lherzolitic varieties are characterized by a hy-
pidiomorphic to poikilitic texture composed of olivine, orthopyroxene and oxide inclusions
in earlier-generation clinopy-roxenes and olivines. Rare wehrlites (forming lenses and
horizons up to 10 m thick) display equigranular to weakly porphyritic textures composed
of large diopside crystals typically carrying microinclusions of native metals, metal alloys,
barite, Fe-Ti oxides and apatite [69,70]. Olivine-rich cumulates also contain disseminated
magmatic pentlandite (Figure 4A), chalcopyrite (Figure 4B) and pyrrhotite along with
secondary Ni-bearing pyrite, galena, sphalerite, heazlewoodite and digenite [69].

Ol-poor parts of the Ildeus ultramafic sequence are dominated by olivine websterite,
websterite and clinopyroxenite (Figure 1C) with meso- and adcumulate textures (Figure 4E).
Intercumulus phases in olivine websterites are olivine and orthopyroxene of the later
generations as well as amphibole, while in olivine-free websterite and clinopyroxenite, in-
tercumulus is dominated by clinopyroxene and orthopyroxene with minor plagioclase and
biotite. Ortho- and clinopyroxenites typically have a granular texture with orthopyroxene
or clinopyroxene as the principal, and plagioclase, biotite, Fe-Ti-oxides, apatite and zircon
as the minor and accessory mineral phases [69].
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Figure 5. Back-scattered electron (BSE) images of accessory minerals in plutonic rocks from the Ildeus
mafic–ultramafic complex. (A) Baddeleyite inclusion in cumulate olivine. (B) Interstitial euhedral
cerussite in association with intercumulus magnetite and olivine. (C) Zircon in cumulate orthopy-
roxene. (D) Cl-apatite and magnetite inclusions in orthopyroxene. (E) Composite ilmenite-rutile
inclusion in late-magmatic amphibole. (F). Xenotime and titanite inclusions in metasomatic albite. Ol—
olivine, Opx—orthopyroxene, Amp—amphibole, Ab—albite, Bdy—baddeleyite, Mag—magnetite,
Cer—cerussite, Zrn—zircon, Cl-Ap—Cl-bearing apatite, Ilm—ilmenite, Rt—rutile, Xtm—xenotime.
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Gabbroic rocks appear to be petrographically diverse. Gabbro-anorthosites form
thick (first tens of meters), locally almost purely anorthositic layers characterized by a
coarse- to medium-grained hypidiomorphic, occasionally poikilitic, texture (Figure 4F)
composed of Ca-rich and Ca-Na-plagioclase with minor ortho- and clinopyroxene, biotite
and amphibole. Gabbro-norites and norites display hypidiomorphic/granular to poikilitic
textures with variable amounts of orthopyroxene, clinopyroxene and plagioclase, minor
olivine (in olivine gabbro and norite), amphibole and biotite, and accessory Ti-magnetite,
ilmenite, titanite, rutile, zircon, Cl-apatite and (La-Ce-Nd)- and Y-bearing silicates and
phosphates (allanite, monazite and xenotime).

Silicate mineral compositions in Ildeus cumulates show systematic variations from
ultramafic to gabbroic lithologies. Olivines in dunites and peridotites have Mg/(Mg + Fe)
in the range of ~88–90, while olivine compositions in websterites, wehrlites and pyroxenites
are distinctly more ferrous (Fo 84–89) [69]. A decrease in olivine Fo-content is accompa-
nied by a gradual decrease in Ni and increase in MnO content in olivine and the onset of
plagioclase and amphibole crystallization in the intercumulus matrix of dunites and peri-
dotites [69]. Minor components (CaO, Al2O3, TiO2 and, in most cases, Cr2O3) in olivines
from the Ildeus mafic–ultramafic complex are present only in almost negligible amounts
(0.00–0.01 wt.%; Table 1 in [69]). Orthopyroxenes in peridotites are bronzites and enstatites
with relatively high Al and Ti concentrations, while clinopyroxenes are mostly diopsides
with elevated Al2O3 and Na2O contents [69]. Late-magmatic (both in the intercumulus and
partial rimming and replacing of pyroxenes) amphibole exhibits variable Al2O3 contents
(4–12 wt.%). Intercumulus plagioclase in dunite and peridotite is bytownite and labradorite,
while plagioclase compositions in gabbro and gabbro-anorthosite correspond to labradorite,
andesine and oligoclase [69].

Major element variations in dunites, peridotites, websterites, pyroxenites and gabbros
from the Ildeus complex suggest their derivation from a common picritic or Mg-rich
basaltic magma through polybaric fractionation of olivine, orthopyroxene, clinopyroxene,
plagioclase and amphibole [69,70,83]. Ildeus plutonic rocks are generally MgO-enriched
and follow a calc-alkaline (low Fe/Mg) differentiation trend [91] on the AFM diagram
and, with the exception of gabbro-anorthosites and intermediate to felsic veins, dikes
and dikelets (compositions with high total alkali contents in Figure 6A), plot into the
field [92] of arc-related cumulate plutonic rocks (Figure 6A). The trace element distribution
in mafic–ultramafic rocks from the Ildeus intrusion normalized to the primitive mantle [93]
show their general enrichment in large-ion lithophile elements (LILEs), such as Ba, Sr and
Rb and light rare-earth elements (La and Ce) coupled with the pronounced depletion in
high-field-strength elements (HFSEs), such as Nb, Ta, Zr and Hf, a feature characteristic of
subduction-related magmatic rocks [94,95].
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Figure 6. Major and trace element variations in plutonic and metasomatic rocks from the Ildeus
mafic–ultramafic complex. (A) A (Na2O + K2O)—F (total Fe)—M (MgO) discrimination diagram.
Arc-related cumulate and non-cumulate compositional fields are from [92]. (B–E) Primitive mantle-
normalized incompatible element patterns for magmatic and metasomatic rocks from the Ildeus
complex. Normalizing values from [93]. (F) Sr/Y versus Y (ppm) discrimination diagram for
felsic veins and dikes. Compositional fields for adakites and arc rocks and adakite/normal arc
discrimination line are from [64].

4.1.2. Metasomatic Rocks

Metasomatic rocks in the Ildeus magmatic–hydrothermal system can be sub-divided
into two groups on the basis of their principal mineral assemblages: (1) ultramafic meta-
somes composed mainly of talc, chlorite and serpentine with variable amounts of carbonate
and (2 quartz-rich metasomes with minor amounts of albite, orthoclase, adularia, bi-
otite, chlorite, calcite, sericite and muscovite. Textures of metasomatic rocks range from
relic porphyroclastic (Figure 7C,E,F) to glomeroblastic and crystalloblastic with some
relics of igneous mineralogy still recognizable in thin sections (Figure 7B,D). Dunite and
harzburgite protoliths within ultramafic metasomes are frequently completely serpen-
tinized with typical mesh and hourglass textures (Figure 7A). Carbonates frequently form
ultrathin (0.05–0.5 mm) discordant veinlets cross-cutting the serpentine-talc (±chlorite)
matrix (Figure 7A).

Ultramafic metasomes in the Ildeus complex display substantial scatter in the con-
centrations of many chemical components (Table 3) including such refractory metals as
Cr (120–3655 ppm) and Ni (93–1942 ppm), large-ion lithophile elements Rb (0.7–80 ppm),
Sr (97–1435 ppm) and Ba (293–7769 ppm), as well as high-field strength elements Nb
(0.05–8.78 ppm) and Th (0.07–74.53 ppm). Metasomatic rocks also exhibit substantial vari-
ations in SiO2 (29.67–51.00 wt.%), TiO2 (0.08–4.59 wt.%), Al2O3 (2.16 -24.89 wt.%), MgO
(6.56–28.98 wt.%), K2O (0.12–3.41 wt.%) and P2O5 (0.01–1.21 wt.%) (Table 3). The observed
major and trace element variations in ultramafic metasomes within the Ildeus complex
appear to be linked to changes in modal contents of principal metasomatic mineral phases,
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such as talc, serpentine, chlorite, potassic feldspar, albite, Ti-magnetite, ilmenite, rutile and
apatite [69,83]. Exceptionally high Rb (80.46 ppm) and Ba (7769 ppm) concentrations in
some samples (e.g., sample 30299 in Table 3) appear to be related to the presence of modal
mica (both biotite and muscovite), Ba-rich (up to 3 wt.% based on SEM-EDS determinations)
potassic feldspar and barite in these metasomatic rocks from the Ildeus complex.
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Figure 7. Petrography of ultramafic metasomes in the Ildeus plutonic complex. (A) Crystalloblastic,
predominantly serpentine-talc metasome with later-stage carbonate veinlets. (B) Glomeroblastic talc-
chlorite-carbonate metasome with relic clinopyroxene and biotite crystals. (C) Porphyroclastic talc-
dominated metasome with relic intercumulus plagioclase. (D) Glomeroblastic talc-carbonate-chlorite
metasome with relic hypidiomorphic clino- and orthopyroxene crystals. (E) Porphyroclastic talc-
carbonate-chlorite metasome with relic orthopyroxene and intergranular pentlandite mineralization.
(F) Olivine-clinopyroxene adcumulate with some cumulate iron-magnesian silicates replaced with
fine-grained talc-carbonate-chlorite aggregate. All photos are taken in cross-polarized light, scale bar
is 20 microns. Mineral abbreviations: Ol—olivine, Cpx—clinopyroxene, Opx—orthopyroxene, Bt—
biotite, Pl—plagioclase, Srp—serpentine, Tlc—talc, Cb—carbonate, Chl—chlorite, Pn—pentlandite.

4.2. Metal Assemblages in Plutonic and Metasomatic Rocks

Plutonic and metasomatic rocks from the Ildeus mafic–ultramafic complex are char-
acterized by diverse associations of native metals, metal alloys, sulfides, sulfates, sul-
fasalts and halides. Some examples of these metal assemblages were previously described
in [69,70]. Below, we present new extended data set for metal assemblages from the Ildeus
mafic–ultramafic complex.

4.2.1. Native Metals and Alloys

Siderophile metals in peridotites and pyroxenites from the Ildeus complex are rep-
resented by euhedral to subhedral inclusions of platinum with minor iron and copper
in cumulate-textured clinopyroxene (Figure 8A), orthopyroxene (Figure 8B) and olivine
(Figure 8C). The euhedral grain of Fe-Pt alloy in Figure 8B is almost completely enclosed in
magmatic orthopyroxene, suggesting magmatic origin for the platinum alloy.
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Figure 8. BSE images of siderophile metals and alloys in primary magmatic minerals. (A) Euhe-
dral Fe-bearing platinum crystal included in clinopyroxene. (B) Fe-bearing platinum inclusion in
orthopyroxene. (C) Fe-Cu-Pt alloy included in olivine. (D) Native tungsten inclusion in orthopy-
roxene. (E) Native tungsten inclusion in olivine. (F) Co-Ti-W inclusion in olivine. Ol—olivine,
Opx—orthopyroxene, Cpx—clinopyroxene, Spl—spinel. Insets here and in Figures 9–18 display
tabulated element contents in mas.%, and arrows depict exact positions of the SEM-EDS analyses.

Cumulate-textured magmatic minerals, such as olivine, carry inclusions of native tung-
sten (Figure 8E) and Co-Ti-W alloy (Figure 8F). A subhedral particle of native tungsten was
also observed in the intersticial space between the Cr-Fe-Mg-Al spinel and orthopyroxene
crystals in the least altered harzburgitic cumulate (Figure 8F).

Another siderophile metal common to the Ildeus ultramafic system is gold, which occurs
as a native element (Figure 9) and as an alloy with copper and silver (Figure 10). Native
gold forms lumpy microinclusions (typically about 1–3 microns in size) in cumulate-textured
clinopyroxene (in association with magnetite; Figure 9A) and orthopyroxene (Figure 9B), as
well as serpentine replacing some larger grains of cumulate olivine (Figure 9C). Gold–silver
alloys have been observed in cumulate olivine (Figure 9D) and orthopyroxene partially re-
placed with chlorite (Figure 9E), as well as in secondary chlorite in ultramafic metasome
(Figure 9F). Some Ag-Au alloys in partially (Figure 9E) or completely (Figure 9F) altered ultra-
mafic rocks display a vuggy appearance possibly due to the deposition from and interaction
with later-stage hydrothermal fluids.

Gold also commonly forms ternary Cu-Ag-Au alloys observed as microinclusions in
cumulate olivine (Figure 10A) and orthopyroxene (Figure 10C). Cu-Ag-Au alloy included
in magmatic olivine contains minor chlorine and is texturally closely associated with
non-stoichiometric silver chloride (Figure 10A). Another Cu-Ag-Au particle was observed
in the fracture within the larger clinopyroxene crystal and can be possibly of the later-
stage magmatic or metasomatic origin. Copper–silver–gold alloys also frequently occur in
secondary silicate minerals in both partially altered plutonic rocks and ultramafic meta-
somes as inclusions in serpentine (Figure 10D), albite (Figure 10E) and Ba-rich orthoclase
(Figure 10F).
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Figure 9. BSE images of native gold and silver–gold alloys. (A) Interstitial gold inclusion associated
with olivine, clinopyroxene and magnetite. (B) Gold inclusion in orthopyroxene. (C) Gold inclusion in
serpentine. (D–F) Silver–gold alloy inclusions in (D) olivine, (E) partially chloritized orthopyroxene
(with minor chlorine) and (F) chlorite. Ol—olivine, Opx—orthopyroxene, Srp—serpentine, Chl—
chlorite, Mag—magnetite.
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Figure 10. BSE images of copper–silver–gold alloys. (A) Cu-Ag-Au (with minor Cl) inclusion
in olivine in association with silver chloride. (B) Cu-Ag-Au inclusion inside a fracture within
larger clinopyroxene grain. (C) Cu-Ag-Au inclusion in orthopyroxene.. (D) Cu-Ag-Au inclusion in
serpentine. (E) Ag-Au inclusion in albite. (F) Interstitial Cu-Ag-Au inclusion between two grains
of Ba-rich orthoclase. Ol—olivine, Cpx—clinopyroxene, Opx—orthopyroxene, Srp—serpentine,
Ab—albite, Ba-Or—Ba-rich orthoclase.

Magmatic (cumulate), late-magmatic (interstitial) and metasomatic silicate minerals
also frequently contain cupriferous silver particles, which is the most frequent metal alloy
phase in the Ildeus mafic–ultramafic complex by modal abundance (Figure 11).

Cu-Ag alloy is observed intergrown with intercumulus olivine along the contact with
the larger cumulus olivine grain (Figure 11A). Inclusions of cupriferous silver in cumulate
orthopyroxene (Figure 11B) and intercumulus plagioclase (Figure 11C) as well as late-stage
magmatic or metasomatic biotite (Figure 11D) are also quite common. A single grain of
Cu-Ag alloy in association with magnetite and ilmenite is included in hydrothermal Fe-rich
chlorite (Figure 11E). Secondary-textured potassic feldspar occasionally contains minute
particles of anhedral cupriferous silver (Figure 11F).
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orthoclase. Ol—olivine, Cpx—clinopyroxene, Opx—orthopyroxene, Srp—serpentine, Ab—albite, 
Ba-Or—Ba-rich orthoclase. 
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plagioclase (Pl), (D) biotite (Bt), (E) chlorite (Chl) in association with magnetite (Mag) and ilmenite 
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Figure 11. BSE images of Cu-Ag alloy inclusions in (A) olivine (Ol), (B) orthopyroxene (Opx),
(C) plagioclase (Pl), (D) biotite (Bt), (E) chlorite (Chl) in association with magnetite (Mag) and
ilmenite (Ilm), and (F) orthoclase (Or).

Refractory metals in Ildeus plutonic rocks are associated with binary and ternary alloys
and minerals of chalcophile elements (Figure 12). Olivine and orthopyroxene in ultramafic
cumulates contain nickel–copper (Figure 12A), copper–zinc (Figure 12B,C), copper–zinc–
silver (Figure 12D) and lead–tin (with minor chlorine) inclusions (Figure 12E). We have also
previously reported the occurrence of natural bronze and brass along with Cu-Ag-Sn-Zn
and Zn-Cu-Ag alloys in Ildeus ultramafic rocks [69]. Secondary orthoclase and chlorite also
contain minute cassiterite inclusions of (Figure 12F; [69]).
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Figure 12. BSE images of alloys and minerals of chalcophile metals. (A) Inclusion of Ni-Cu alloy
in orthopyroxene. (B,C) Inclusions of Zn-Cu alloy (natural brass) in olivine (B) and orthopyroxene
in association with minute olivine inclusion (C). (D) Zinc–copper–silver alloy intergrown with
orthopyroxene and olivine. (E) Chlorine-bearing lead–tin inclusion in olivine. (F) Inclusion of
cassiterite in orthoclase. Ol—olivine, Opx—orthopyroxene, Or—orthoclase, Cst—cassiterite.

4.2.2. Halides

Halides of chalcophile elements (Cu, Ag, Bi, Te) occur as microinclusions in rock-
forming silicate minerals in the Ildeus mafic–ultramafic complex (Figure 13).
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tween orthoclase and biotite. (H) Inclusions of silver chloride in association with magnetite in Cr-
rich chlorite. (I) Inclusion of copper–silver chloride in serpentine. Ol—olivine, Opx—orthopyrox-
ene, Cpx—clinopyroxene, Bt—biotite, Or—orthoclase, Mag—magnetite, Cr-Chl—Cr-rich chlorite, 
Srp—serpentine. 
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Figure 13. BSE images of halides of chalcophile elements. (A,B) Inclusions of silver chloride in
(A) olivine and (B) orthopyroxene. (C,D) Inclusions of silver iodide in (C) olivine and (D) or-
thopyroxene (with minor Te). (E) Inclusions of silver chloride in clinopyroxene. (F) Inclusion of
bismuth chloride in orthopyroxene. (G) Interstitial subhedral grain of copper–silver chloride at
the contact between orthoclase and biotite. (H) Inclusions of silver chloride in association with
magnetite in Cr-rich chlorite. (I) Inclusion of copper–silver chloride in serpentine. Ol—olivine, Opx—
orthopyroxene, Cpx—clinopyroxene, Bt—biotite, Or—orthoclase, Mag—magnetite, Cr-Chl—Cr-rich
chlorite, Srp—serpentine.

Non-stoichiometric silver chloride is included in cumulate olivine (Figure 13A), or-
thopyroxene (Figure 13B) and clinopyroxene (Figure 13E) of clear magmatic textural origin.
Silver iodide (iodargyrite) occurs in the core of the cumulate olivine (Figure 13C) and,
with minor Te, in the core-to-rim zone of a cumulate orthopyroxene (Figure 13D). A single
inclusion of non-stoichiometric bismuth chloride was found in fine-grained intercumulus
orthopyroxene (Figure 13F). Non-stoichiometric copper–chlorine–silver compound was
observed intergrown with secondary potassic feldspar and biotite (Figure 13G) and serpen-
tine (Figure 13I). Another non-stoichiometric silver chloride particle occurs together with
magnetite in hydrothermal chrome-rich chlorite grain (Figure 13H).

4.2.3. Sulfides, Sulfates, Sulfosalts

Both cumulate magmatic and secondary hydrothermal silicate minerals are associ-
ated with a compositionally wide range of sulfide, sulfate and sulfosalt microinclusions
(Figures 14–18). Primary Ni-Co-Cu sulfides in the Ildeus complex include pentlandite,
Co-pentlandite, pyrrhotite, chalcopyrite and bornite [69,96]. Co-pentlandite frequently
forms cores of composite inclusions rimmed by magnetite in olivine (Figure 14A). Pent-
landite occurs as inclusions in cumulate olivine and pyroxene, and intercumulus amphibole
(Figure 14B). It also forms discrete interstitial grains between cumulate olivines (Figure 4A)
and intercumulus grains in association with interstitial amphibole, calcic plagioclase and
biotite [69,96].
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sions enclosed in a cumulate orthopyroxene crystal. (F) Inclusion of Ni-bearing pyrrhotite in am-
phibole. (G,H) Inclusions of chalcopyrite in amphibole (G) and chlorite (H). (I) Inclusion of chalco-
cite in albite. Ol—olivine, Opx—orthopyroxene, Amp—amphibole, Chl—chlorite, Ab—albite, 
Mag—magnetite, Co-Pn—Co-pentlandite, Pn—pentlandite, Mlr—millerite, Hlz—heazlewoodite, 
Po—pyrrhotite, Ni-Po—Ni-bearing pyrrhotite, Ccp—chalcopyrite, Cct—chalcocite. 
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cates such as serpentine (Figure 15A) and orthoclase (Figure 15B). Amphibole contains 
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and Zn, Cu and Fe (Figure 15D). In addition, Cu-bearing galena is observed as anhedral 
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Figure 14. BSE images of Ni-Co-Cu sulfides. (A) Zoned Co-pentlandite (core)—magnetite (rim)
inclusion in olivine. (B) Pentlandite inclusion in amphibole. (C) Millerite inclusion in olivine.
(D) Heazlewoodite inclusion in chlorite. (E) Large (1 mm) grain of pyrrhotite with olivine microin-
clusions enclosed in a cumulate orthopyroxene crystal. (F) Inclusion of Ni-bearing pyrrhotite in
amphibole. (G,H) Inclusions of chalcopyrite in amphibole (G) and chlorite (H). (I) Inclusion of
chalcocite in albite. Ol—olivine, Opx—orthopyroxene, Amp—amphibole, Chl—chlorite, Ab—albite,
Mag—magnetite, Co-Pn—Co-pentlandite, Pn—pentlandite, Mlr—millerite, Hlz—heazlewoodite,
Po—pyrrhotite, Ni-Po—Ni-bearing pyrrhotite, Ccp—chalcopyrite, Cct—chalcocite.

Other Ni-sulfides comprise minute inclusions of millerite in cumulate olivine (Figure 14C)
and heazlewoodite in hydrothermal chlorite (Figure 14D). Large pyrrhotite grains in cumulate
orthopyroxene contain fine inclusions of equigranular olivine, indicating that some Fe-Ni
sulfides were part of the early fractionating magmatic assemblage (Figure 14E). Some inter-
cumulus amphiboles contain Ni-bearing (1–3 wt.%) pyrrhotite (Figure 14F). Chalcopyrite
(occasionally with bornite [69,83]) is frequently included in interstitial amphibole (Figure 14G)
and secondary chlorite (Figure 14H). Another (in addition to digenite [69]) hydrothermal cop-
per sulfide is represented by elongated chalcocite inclusions in secondary albite (Figure 14I).

Galena forms euhedral to subhedral inclusions in hydrothermal rock-forming silicates
such as serpentine (Figure 15A) and orthoclase (Figure 15B). Amphibole contains inclusions
of lead sulfide with minor Ni and Fe (intergrown with sphalerite; Figure 15D) and Zn,
Cu and Fe (Figure 15D). In addition, Cu-bearing galena is observed as anhedral equant
inclusions in chlorite (Figure 15E) and orthoclase (Figure 15F).

In addition to galena and sphalerite, both magmatic and metasomatic minerals in the
Ildeus complex contain diverse composite sulfides of nickel, iron, copper, zinc and lead
(Figure 16). Magmatic olivine in ultramafic cumulate contains elongated tabular grains of
Fe-Ni-Zn-sulfide (Figure 16A). Cumulate orthopyroxene contains a minute (~2 µm) inclu-
sion of Cu-Fe-bearing sphalerite (Figure 16B). One lath of interstitial late-magmatic biotite
associated with intercumulus orthopyroxene carries several anhedral equant inclusions of
composite Ni-Fe-Zn and Co-Ni-Fe-Zn sulfides (Figure 16C). Ba-rich metasomatic orthoclase
contains a zoned inclusion composed of Ni-Zn-Fe-Cu sulfide and Fe-Cu-Zn-bearing galena
(Figure 16D). Microinclusions of Fe-As-Cu-bearing galena are also present in secondary
albite (Figure 16E) and Ba-rich orthoclase (Figure 16F).
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sulfide in chlorite. (F) Inclusion of copper-bearing lead sulfide in orthoclase. Srp—serpentine, Or—
orthoclase, Amp—amphibole, Sp—sphalerite, Chl—chlorite. 
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Figure 16. BSE images of composite sulfides of chalcophile and siderophile metals. (A) Euhedral 
inclusion of Ni-Fe-Zn sulfide in olivine. (B) Inclusion of Cu-Fe-bearing sphalerite in orthopyroxene. 
(C) Inclusions of Ni-Fe-bearing and Co-Ni-Fe-bearing sphalerite along with composite Co-Zn-Fe-Ni 
sulfide in biotite in contact with orthopyroxene. (D) Inclusions of Ni-Zn-Fe-Cu and Fe-Cu-Zn-Pb 
composite sulfides in Ba-rich orthoclase. (E) Inclusion of Fe-As-bearing galena in albite. (F) Inclusion 
of As-Fe-Cu-Pb-bearing galena in Ba-rich orthoclase. Ol—olivine, Opx—orthopyroxene, Opx—or-
thopyroxene, Bt—biotite, Ba-Or—Ba-rich orthoclase, Ab—albite. 

Figure 15. BSE images of galena and composite lead sulfides. (A,B) Galena inclusions in (A) serpen-
tine and (B) orthoclase. (C) Intergrowth of Ni-Fe-Pb sulfide with sphalerite included in amphibole.
(D) Inclusion of composite Zn-Cu-Fe-Pb sulfide in amphibole. (E) Inclusions of composite Cu-Fe-
Pb sulfide in chlorite. (F) Inclusion of copper-bearing lead sulfide in orthoclase. Srp—serpentine,
Or—orthoclase, Amp—amphibole, Sp—sphalerite, Chl—chlorite.
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Figure 16. BSE images of composite sulfides of chalcophile and siderophile metals. (A) Euhedral
inclusion of Ni-Fe-Zn sulfide in olivine. (B) Inclusion of Cu-Fe-bearing sphalerite in orthopyroxene.
(C) Inclusions of Ni-Fe-bearing and Co-Ni-Fe-bearing sphalerite along with composite Co-Zn-Fe-Ni
sulfide in biotite in contact with orthopyroxene. (D) Inclusions of Ni-Zn-Fe-Cu and Fe-Cu-Zn-Pb
composite sulfides in Ba-rich orthoclase. (E) Inclusion of Fe-As-bearing galena in albite. (F) Inclusion
of As-Fe-Cu-Pb-bearing galena in Ba-rich orthoclase. Ol—olivine, Opx—orthopyroxene, Opx—
orthopyroxene, Bt—biotite, Ba-Or—Ba-rich orthoclase, Ab—albite.

Copper–silver sulfides are other common sulfides of chalcophile metals observed in
both primary- and secondary-textured silicates in the Ildeus plutonic suite (Figure 17).
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Figure 17. BSE images of silver and copper sulfides and sulfosalts. (A,B) Inclusions of non-stoichio-
metric copper–silver sulfide in olivine. (C) Inclusion of Cu-Ag-Se-Sb-sulfosalt in olivine. (D) Inclu-
sion of Cu-Ag-Pb sulfide in amphibole. (E,F) Inclusion of silver sulfide in amphibole (E) and ortho-
clase (F). Ol—olivine, Amp—amphibole, Mag—magnetite, Or—orthoclase. 

Copper-bearing silver sulfide forms distinct botryoidal aggregates included in cumu-
late olivine (Figure 17A,B). A single cumulate olivine crystal also contains an euhedral 
inclusion of Cu-Ag-Se-Sb sulfosalt (Figure 17C). Intercumulus amphibole carries equant, 
almost spherical inclusions (~2 µm in size) of Cu-Ag-Pb sulfide and non-stoichiometric 
acanthite (Figure 17D,E). A similar acanthite grain is also included in secondary potassic 
feldspar (Figure 17F). 

Sulfides and sulfosalts of siderophile and chalcophile metals are frequently associ-
ated with barite in Ildeus plutonic rocks. Euhedral barite forms microinclusions in cumu-
late olivine (Figure 18A) and orthopyroxene (Figure 18B). In both cases, barite is almost 
completely enclosed by host magmatic silicates, suggesting a high-temperature origin for 
at least some early barite grains. Barite occurs as rims on magnetite crystals in intercumu-
lus orthopyroxene (Figure 18C). It is also frequently included in secondary hydrothermal 
silicates such as serpentine (Figure 18D) and epidote together with feldspar inclusions 
(Figure 18E), or occurs as an interstitial phase together with pyrite along the contact be-
tween plagioclase and Ba-rich potassic feldspar crystals (Figure 18F). 

 
Figure 18. BSE images of barite (Brt) microinclusions. (A,B) Barite inclusions in olivine (A) and or-
thopyroxene (B). (C) Zoned barite-magnetite inclusions in orthopyroxene. (D) Barite inclusion in 
orthopyroxene. (E) Barite inclusion in epidote in association with plagioclase. (F) Barite inclusions 
in association with pyrite in plagioclase and Ba-rich orthoclase. Ol—olivine, Opx—orthopyroxene, 

Figure 17. BSE images of silver and copper sulfides and sulfosalts. (A,B) Inclusions of non-
stoichiometric copper–silver sulfide in olivine. (C) Inclusion of Cu-Ag-Se-Sb-sulfosalt in olivine.
(D) Inclusion of Cu-Ag-Pb sulfide in amphibole. (E,F) Inclusion of silver sulfide in amphibole (E) and
orthoclase (F). Ol—olivine, Amp—amphibole, Mag—magnetite, Or—orthoclase.

Copper-bearing silver sulfide forms distinct botryoidal aggregates included in cumu-
late olivine (Figure 17A,B). A single cumulate olivine crystal also contains an euhedral
inclusion of Cu-Ag-Se-Sb sulfosalt (Figure 17C). Intercumulus amphibole carries equant,
almost spherical inclusions (~2 µm in size) of Cu-Ag-Pb sulfide and non-stoichiometric
acanthite (Figure 17D,E). A similar acanthite grain is also included in secondary potassic
feldspar (Figure 17F).

Sulfides and sulfosalts of siderophile and chalcophile metals are frequently associated
with barite in Ildeus plutonic rocks. Euhedral barite forms microinclusions in cumulate
olivine (Figure 18A) and orthopyroxene (Figure 18B). In both cases, barite is almost com-
pletely enclosed by host magmatic silicates, suggesting a high-temperature origin for at
least some early barite grains. Barite occurs as rims on magnetite crystals in intercumulus or-
thopyroxene (Figure 18C). It is also frequently included in secondary hydrothermal silicates
such as serpentine (Figure 18D) and epidote together with feldspar inclusions (Figure 18E),
or occurs as an interstitial phase together with pyrite along the contact between plagioclase
and Ba-rich potassic feldspar crystals (Figure 18F).
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Figure 18. BSE images of barite (Brt) microinclusions. (A,B) Barite inclusions in olivine (A) and
orthopyroxene (B). (C) Zoned barite-magnetite inclusions in orthopyroxene. (D) Barite inclusion in
orthopyroxene. (E) Barite inclusion in epidote in association with plagioclase. (F) Barite inclusions in
association with pyrite in plagioclase and Ba-rich orthoclase. Ol—olivine, Opx—orthopyroxene, Mag—
magnetite, Srp—serpentine, Ep—epidote, Pl—plagioclase, Ba-Or—Ba-rich orthoclase, Py—pyrite.
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4.3. Geochemistry of Noble Metals

Platinum-group element (PGE) and Au concentrations and some inter-element ratios
in the Ildeus complex are listed in Table 5. All plutonic and metasomatic rocks display
wide variations in bulk PGE and Au contents as well as in Pt/Ir, Pd/Ir and Au/Ir ratios.

Table 5. Concentrations of platinum-group elements and gold in representative plutonic and metaso-
matic rocks from the Ildeus mafic–ultramafic complex.

Ir (ppb) Ru (ppb) Rh (ppb) Pt (ppb) Pd (ppb) Au (ppb) Pt/Ir Pd/Ir Au/Ir

Dunite and peridotite
0.68 0.50 0.43 0.85 1.76 4.87 1.25 2.59 7.16
0.51 1.02 0.48 192.38 1.39 9.57 377.2 2.73 18.8
0.69 0.39 0.36 5.14 1.36 39.31 7.45 1.97 56.9
0.35 0.22 0.19 242.26 73.95 16.50 692.2 211.3 47.1
0.18 0.33 0.45 11.00 12.44 2.40 61.1 69.1 13.3
0.53 1.05 0.30 12.89 3.32 8.47 24.3 6.26 16.0
0.96 1.14 0.30 9.24 0.18 11.49 9.63 0.19 11.9
0.88 1.89 0.64 17.15 0.23 28.74 19.5 0.26 32.7
0.30 1.54 0.59 2.39 1.98 47.37 7.97 6.60 157.9
0.03 0.75 0.14 1.24 3.47 14.03 41.3 115.7 467.7
0.30 1.33 0.80 2.71 8.79 7.20 9.03 29.3 24.0
0.13 1.11 0.61 22.43 10.81 53.43 172.5 83.2 411.0
0.24 0.63 0.71 1.87 14.83 33.33 7.79 61.8 138.9
0.65 0.45 0.48 4.35 6.53 3.92 6.69 10.1 6.03

Websterite and clinopyroxenite
0.39 0.42 0.42 6.08 3.29 9.72 15.6 8.44 24.9
0.20 0.87 0.89 2.42 1.79 140.85 12.1 8.95 704.3
0.55 0.75 0.30 3.62 1.23 190.40 6.58 2.24 346.2
0.22 0.72 0.21 2.61 0.54 48.49 11.9 2.45 220.4
0.16 0.55 0.31 1.86 7.09 144.80 11.6 44.3 905.0
0.48 0.71 0.27 2.61 2.07 62.18 5.44 4.31 129.5
0.36 0.99 0.49 3.23 4.77 5.17 8.97 13.3 14.4
0.11 1.27 0.39 2.03 3.50 45.21 18.5 31.8 411.0

Gabbro
0.13 0.40 0.24 2.65 0.08 8.30 20.4 0.64 63.8
0.30 0.52 0.22 2.06 0.42 16.83 6.87 1.40 56.1
0.02 0.66 1.80 27.02 34.24 8.65 1351 1712 432.5
0.05 0.33 0.12 2.56 4.89 9.37 51.2 97.8 187.4

Ultramafic metasome
0.59 0.53 0.50 18.79 1.33 21.63 31.8 2.25 36.7
1.21 0.84 0.81 14.19 6.94 13.64 11.7 5.74 11.3
0.29 0.48 0.40 8.30 1.73 12.12 28.6 5.97 41.8
0.33 0.66 0.46 3.80 2.98 13.44 11.5 9.03 40.7
0.43 0.45 1.31 17.64 11.09 10.87 41.0 25.8 25.3
1.03 2.34 1.14 192.12 15.68 10.54 186.5 15.2 10.2
1.57 4.00 2.50 43.63 22.44 25.44 27.8 14.3 16.2
0.25 0.63 0.26 4.30 0.69 7.07 17.2 2.76 28.3
0.59 0.66 0.35 2.22 0.24 773.72 3.76 0.41 1311
0.86 0.39 0.24 2.69 3.38 102.53 3.13 3.93 119.2
0.75 1.26 0.68 2.08 4.09 77.27 2.77 5.45 103.0
1.39 3.60 1.28 16.44 10.41 132.57 11.8 7.49 95.4
1.41 10.15 2.36 21.11 7.20 149.60 15.0 5.11 106.1

Adakitic veins and dikelets
0.24 0.30 0.56 1.25 3.45 48.06 5.21 14.4 200.3
0.94 0.62 0.21 1.05 1.00 32.17 1.12 1.06 34.2
0.39 0.59 0.41 1.10 2.49 75.38 2.82 6.38 193.3
4.26 0.04 1.10 1.10 13.90 6.25 0.26 3.26 1.47
0.46 0.28 0.57 1.90 7.48 9.01 4.13 16.3 19.6
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For example, Pt contents in Ildeus rocks range from 0.85 to 242 ppb, Pd—from 0.18 to
74 ppb, and Au—from 2.4 to 773 ppb. Some olivine websterites from the Ildeus complex
are extraordinarily enriched in gold and contain up to 596 ppm Au [70]. Concentrations
of Pd-group elements (Pd, Pt) in the Ildeus complex with few exceptions substantially
exceed Ir-group (Ir and Ru) metal contents (Pt/Ir = 1.25–692; Pd/Ir = 1.97–211). Gold is also
typically enriched compared to refractory Ir-group PGEs (Au/Ir = 1.47–468) and also shows
variable compositional relationships with the Pd-group metals (Table 5). Adakites display
relatively narrow variations in Pd-group PGE contents (Pt = 1.1–1.9 ppb; Pd = 1.0–13.9 ppb)
in comparison with mafic and ultramafic rocks, while Au concentrations in adakites range
substantially from 6.25 to 75.38 ppb (Table 5).

Variations in chondrite-normalized noble metals in Ildeus plutonic and metasomatic
rocks are summarized in Figure 19. Average compositions of the upper continental
crust [97], pelagic clay [98], arc basalt [43], island arc mantle [3], primitive mantle [93] along
with the compositional field for the Ural-Alaskan-type mafic–ultramafic complexes [99],
are shown for comparative purposes. Average compositions of principal lithologies from
the Ildeus complex plot into the field of Ural-Alaskan-type mafic–ultramafic complexes
and display well-defined Pt- and Au-enriched chondrite-normalized noble metal patterns
(Figure 19). Gold enrichments, somewhat similar to the Ildeus rocks, are also observed
in arc basalts and mantle wedge peridotites (Figure 19), indicating that this might be
a geochemical feature characteristic of subduction zone environments in general [2–4].
Later-stage adakites display PGE-Au patterns almost identical to ultramafic melasomes
and gabbro (Figure 19), which may reflect certain broad similarities in the geochemical
processes involved in their formation.
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Figure 19. Distribution of PGE and Au in plutonic and metasomatic rocks as well as late-stage adakite
veins and dikes compared with the average upper crust [97], pelagic clay [98], Ural-Alaskan-type
mafic–ultramafic complexes [99], arc basalt [43], primitive mantle [93] and island-arc mantle [3]. All
samples are normalized to chondrite [93].

5. Discussion
5.1. Ildeus Mafic–Ultramafic Complex as a Plutonic Root System of Mesozoic Magmatic Arc

The Ildeus mafic–ultramafic complex was emplaced into the predominantly mafic Pre-
cambrian crust (amphibolites, mafic gneisses and two-pyroxene crystalline schists) beneath
the Mesozoic (Triassic) mature magmatic arc or active continental margin [69,70,81–83].
This Mesozoic magmatic arc records a northward subduction of the Mongol–Okhotsk
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oceanic basin under the southern edge of the Precambrian Aldan shield [81,82,100]. Arc-
type magmatism persisted over the course of at least 100 Ma in the Triassic and Early
Jurassic [69] before the collision between the Amur superterrane (North Amur craton)
and Siberian craton and the final closure of the Mongol–Okhotsk ocean in the Middle to
Late Jurassic [80,81]. The Jurassic collision event was followed by an Early Cretaceous
extension marked by adakite and high-Nb lamprophyre dikes in the Stanovoy suture
zone [69] and prolific alkaline magmatism in the South Aldan region [101–103]. The Middle
to Late Jurassic collision and localized Early Cretaceous post-collision rifting resulted in the
remobilization of some Triassic–Early Jurassic magmatic complexes and their emplacement
in the uppermost crust followed by the re-working of mafic and ultramafic rocks by crustal
hydrothermal fluids [69].

An Ildeus plutonic suite was produced through crystal fractionation of olivine, clinopy-
roxene, orthopyroxene and Cr-Al-spinel in a lower- to mid-crustal igneous plumbing system
beneath the mature Mesozoic magmatic arc [69,70]. The mineralogy and textures of Ildeus
mafic–ultramafic rocks are similar to typical arc cumulates [92,104,105] as well as experimen-
tal products of magmatic differentiation of primitive convergent zone magmas [106,107].
The late-stage crystallization of plagioclase and Al-rich amphibole in the Ildeus plutonic se-
quence is also characteristic of the polybaric fractionation of water-saturated mafic magmas
fractionated in sub-arc crustal conditions [92,108]. Pressure estimates for Ildeus plutonic
rocks based on various Al-in-hornblende barometers correspond to approximate sub-arc
depths of 15–25 km (~4–6 kbars), which is consistent with general geologic observations as
well as structural data [69].

Major oxide variations in plutonic rocks from the Ildeus complex indicate that they
generally follow island arc tholeiite and calc-alkaline differentiation trends (Figure 6A). The
presence of well-defined HFSE (Nb, Ta, Hf, Zr) depletions coupled with variable but gener-
ally high concentrations of LILE (Cs, Rb, Ba, Sr) and LREE in ultramafic and mafic plutonic
rocks as well as ultramafic metasomes (Figure 6) suggest their derivation from HFSE-
depleted hydrous mafic magma in the mature arc geodynamic context [69,70,83]. Geologic
and structural data coupled with petrologic reconstructions support the interpretation of
the Ildeus complex as a plutonic root system of the Mesozoic Stanovoy arc comparable in
many aspects to subduction-related mafic–ultramafic intrusions in Phanerozoic orogenic
belts [89,96,104].

5.2. Magmatic to Hydrothermal Evolution of Metals in the Ildeus Complex

Metal assemblages hosted in high- and low-temperature rock-forming minerals in
plutonic and metasomatic rocks appear to reflect three principal stages of crustal evolution
of the Ildeus mafic–ultramafic complex.

Olivine and pyroxene in ultramafic cumulates frequently contain (Table 6) microinclu-
sions of high-temperature refractory metals (W, Pt, Au) and their alloys (Fe-W, Ti-Co-W,
F-Pt, Ni-Rh-Pt, Pd-Pt, etc.), suggesting early magmatic origin for siderophile metals in the
Ildeus complex [69,70]. High-temperature siderophile metals are frequently associated
with Ni-Co-Cu-Fe sulfides (pentlandite, Co-pentlandite, pyrrhotite, Ni-pyrrhotite, bornite,
chalcopyrite), which occur either as interstitial phases or inclu-sions in Mg-rich olivine
and Mg-pyroxenes (Figure 14A,C,E). Magmatic silicates also contain microinclusions of
Cu-Ag-Au, Ni-Cu-Zn-Ag-Au and Sn-Zn-Cu-Ag alloys and native Zn, Bi and Pb [69,70,96],
suggesting either the enrichment of parental Ildeus melt in these elements or the existence
of favorable crustal conditions, which facilitated the precipitation of siderophile and chal-
cophile metals. Phase equilibria in systems Ti-Co-W and Cu-Ag-Au indicate the formation
of some alloys included in olivine and pyroxenes in the temperature range of 800–1200 ◦C,
which is generally comparable with the temperature range for the fractional crystallization
of a typical calc-alkaline igneous suite [106,107]. The droplet-like appearance of some
Ni-Co-Cu sulfides also suggests that liquid immiscibility may have played a certain role
during early stages of the Ildeus magma evolution [69,70,96]. Early-magmatic-stage metals,
alloys and sulfides are also associated with barite, silver halides (non-stoichiometric chlo-
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rargyrite and iodargyrite; Figure 13A–E), Pb-Sn chloride and Cl-apatite (Table 6), indicating
the involvement of Cl-S-rich fluids [69,96].

Table 6. Metal and mineral assemblages in magmatic and metasomatic rocks from the Ildeus mafic-
ultramafic complex.

Stages of Evolution

Metal and Mineral Assemblages

Native Metals Alloys
Sulfides, Sulfosalts,

Halides, Sulfates,
Tellurides

Associated Minerals

Early magmatic stage W, Pt, Zn, Bi, Pb, Au

Fe-W, Ti-Co-W, Fe-Pt,
Cu-Pt, Ni-Rh-Pt, Pd-Pt,
Ni-Cu, Cu-Zn, Cu-Ag,
Sn-Zn-Cu, Zn-Cu-Ag,

Cu-Ag, Cu-Ag-Au,
Cu-Ag-Au-Zn-Ni

Pn, Co-Pn, Po, Mlr, Ccp,
Bn, Cu-Ag-S,

Fe-Ni-Co-Zn-S, Ag2S,
Brt, Pb-Sn-Cl, AgCl,

AgI

Ol, Mg-Opx (1), Cpx,
Mg-Fe-Cr-Al Spl, Mag,

Ilm, Ttn, Rt, Cl-Ap

Late magmatic stage Au
Cu-Ag, Pb-Sb,

Ni-Ag-Zn-Cu-Au,
Zn-Cu-Au, Cu-Sn

Pn, Po, Ni-Po, Bn, Mlr,
Co-Ni-Sp, Co-Ni-Zn-S,

Ag2S, Cu-Ag-Pb-S,
Ni-Gn, Sp, Brt

Fe-Opx (2), Amp (3), Bt,
Pl, Mag, Ilm, Ttn, Ap,
Bdy, Zrn, Qz, Cer, Aln,

Dol

Metasomatic-
hydrothermal

stage
Ag, Zn, Ni, Au Cu-Ag-Au, Ag-Au,

Cu-Ag, Cu-Zn

Pn, Ccp, Cct, Dg, Hzl,
Py, Brt, Cst, Cu-Ag-S,

Ag2S, Gn, Cu-Gn,
Sb-Pb-Cl, Ag-Cl-S,

Cu-Ag-Cl, AgCl, Bi-Cl,
Cu-Sb-Ag-Se-S,
Cu-Pb-Fe-As-S,

Pb-As-S, Cu-Pb-As-S,
Ag2S, Fe-Cu-Zn-Pb-S,

Ni-Zn-Fe-Cu-S,
Cu-Ag-Pb-Se-Te

Tlc, Chl, Srp, Tr, Cb, Ep,
Ab, Or, Ba-Or, Qz, Mag,
Rt, Ttn, Aln, Mnz, Xtm

This table includes data from [69,70]. (1) Mg-rich orthopyroxene (enstatite/bronzite). (2) Fe-rich orthopyrox-
ene (hypersthene). (3) Al-rich (5–12 wt.% Al2O3) pargasitic hornblende [69]. Mineral abbreviations: Ab—
albite, Aln—allanite, Amp—amphibole, Ap—apatite, Cl-Ap—Cl-rich apatite, Ba-Or—Ba-rich orthoclase, Bdy—
baddeleyite, Bn—bornite, Bt—biotite, Cb—carbonates, Ccp—chalcopyrite, Cct—chalcocite, Cer—cerussite, Cpx—
clinopyroxene, Cst—cassiterite, Dg—digenite, Dol—dolomite, Ep—epidote, Gn—galena, Cu-Gn—Cu-bearing
galena, Ni-Gn—Ni-bearing galena, Hzl—heazlewoodite, Ilm—ilmenite, Mag—magnetite, Mlr—millerite, Mnz—
monazite, Ol—olivine, Opx—orthopyroxene, Or—orthoclase, Pl—plagioclase, Pn—pentlandite, Co-Pn—Co-rich
pentlandite, Po—pyrrhotite, Ni-Po—Ni-bearing pyrrhotite, Py—pyrite, Rt—rutile, Sp—sphalerite, Co-Ni-Sp—Co-
and Ni-bearing sphalerite, Spl—spinel, Tr—tremolite, Ttn—titanite, Xtm—xenotime, Zrn—zircon.

Late-stage magmatic evolution of the Ildeus complex was dominated by the crystal-
lization of intercumulus plagioclase and amphibole along with Fe-rich pyroxenes followed
by partial replacement of early-stage Mg-rich silicates by amphibole, biotite and Cr-rich
chlorite [69]. Later-stage amphibole, Ca-Na plagioclase and Fe-rich orthopyroxene contain
microinclusions of native gold, cupriferous silver, Ni-Ag-Zn-Cu-Au, Cu-Sn and Pb-Sb
alloys, along with pentlandite, millerite, Ni-pyrrhotite, chalcopyrite, bornite, sphalerite
(with minor Co and Ni), galena (with minor Ni and Cu), Cu-Ag-sulfide and barite (Table 6).
Textural evidence suggests that some Ni-Co-Cu sulfides could represent relic magmatic
phases preserved during the late-stage replacement of high-temperature silicates by meta-
somatic amphibole, biotite and chlorite (Figure 14B,F–H). The presence of minor Co and
Ni in sphalerite and Ni and Cu in galena (Figures 15C–F and 16A–D) probably reflects the
perseverance of refractory metals in late- to post-magmatic metasomatic reactions [109,110].
Besides galena and sphalerite, late-stage magmatic metal assemblages include Ag and Cu-
Ag-Pb sulfides and sulfosalts (Figure 17), indicating a high activity of volatile chalcophile
elements (Pb, Zn and Ag) during the final stages of evolution of the Ildeus magmatic
system. This is consistent with high concentrations of these metals in melt inclusions and
volcanic gases in modern volcanic arcs [111–113].
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Metal assemblages generated during early and late magmatic differentiation in the
Ildeus arc root plutonic complex were further upgraded during prolonged (millions of
years [69,83]) and complicated metasomatic processes linked to the late subduction and
collision processes at the Stanovoy convergent plate margin [69,70,83,96]. Metasomatic
reactions involving the replacement of magmatic olivine + pyroxene + amphibole with
serpentine, chlorite, talc, tremolite and carbonate resulted in the formation of new metal
associations as well as partial preservation of relic native Zn, Ni, Ag [69,70,96] and Au
(Figure 9C) along with Sn-Pb (Figure 12E), Cu-Ag (Figure 11E,F), Cu-Ag-Au (Figure 10D,F)
and Ag-Au (Figure 10E) alloys (Table 6). The abundance of Au-bearing alloys in metaso-
matic rocks is consistent with the strong bulk gold enrichment observed in some ultramafic
metasome samples (Figure 19). Primary Ni-Co-Cu sulfides were upgraded and supple-
mented with secondary digenite and heazlewoodite (Figure 14D), chalcocite (Figure 14I),
galena (Figure 15A,B), acanthite (Figure 17E,F), composite Cu-Pb-Fe (Figure 15E) and Cu-
Zn-Pb-Fe (Figure 16D) sulfides, as well as Pb-Fe-Cu sulfosalts (Figure 16E,F; Table 6). Sec-
ondary native metals, alloys, sulfides and sulfosalts are associated with non-stoichiometric
Cu-Ag-chlorides (Figure 13G–I), barite (Figure 18D–F) and pyrite (Figure 18F). The associa-
tion of Cu-Ag-halides (common minerals in volcanic fumaroles [114]), Cu-Pb-arsenides and
Cu-Ag-Pb tellurides [69] with barite and pyrite in both ultramafic and quartz-rich meta-
somes in the Ildeus complex suggest the involvement of oxidized H-S-Cl fluid typical of
some subduction and post-subduction epithermal environments [115]. These fluid-induced
metasomatic reactions most probably took place during final emplacement of the Ildeus
intrusion under shallow upper crustal conditions beneath the collision-related Stanovoy
suture [69,70,83,96].

Our mineralogical and micro-metallogenic observations presented in this section and
summarized in Table 6 suggest that refractory metal assemblages, such as PGE alloys,
W and its alloys, CuAg-Au alloys and primary Ni-Co-Cu sulfides, crystallized from hy-
drous mafic melts sourced in the metal-rich mantle wedge above the Mesozoic Stanovoy
subduction zone. The existence of metal-rich mantle wedge sources in arcs has been
previously proposed on the basis of geochemical and mineralogical data [2–4,8,68]. The
occurrence of halide inclusions in olivine, orthopyroxene and clinopyroxene in association
with Cl-apatite suggests the formation of an early magmatic native metal-alloy–sulfide
assemblage in the Ildeus complex under H-S-Cl-fluid-saturated conditions at the base of the
Mesozoic Stanovoy arc [69,96]. Early magmatic metal assemblage (native Ag, Au, Zn, Ni
metals [69,96], Cu-Ag-Au and Cu-Zn alloys) was further upgraded during late-magmatic
and metasomatic stages through the addition of secondary Ni-Cu (heazlewoodite, digenite,
chalcocite), Cu-Ag, Ag (acanthite), Fe-Cu-Zn-Pb-S and Ni-Zn-Fe-Cu sulfides as well as
various Cu-Pb-Sb-Ag sulfosalts (Table 6). The association of secondary non-stoichiometric
Cu-Ag, Ag and Bi chlorides (Figure 13G–I) and Ag-Cl-S with abundant barite inclusions in
orthoclase, chlorite, albite and serpentine indicates the high activity of oxidized (sulfate S)
H-S-Cl fluids during the final stages of Ildeus system evolution in the upper crust.

5.3. Geochemical Constraints on Fluid-Induced Metal Transport at Arc Plutonic Roots

The abundance and distribution of W, Mo, Cu and their isotopes in igneous rocks have
been previously successfully used to reconstruct fluid regimes and redox conditions facili-
tating metal cycling in the crust–mantle system at convergent plate boundaries [116–123].
Figure 20 summarizes the distribution of siderophile (W, Mo) and chalcophile (Cu, Zn, As,
Ag, Cd, Hg, Pb, Bi) elements in plutonic and metasomatic rocks from the Ildeus complex
along with the later-stage felsic dikes. Average compositions of oceanic (abyssal) and
supra-subduction peridotite, arc websterite and gabbro, pelagic clay, arc volcanic rocks
(Nicaragua, Cascades, Kuriles, Kamchatka and Japan) as well basaltic glass from Hawaii
and composite hydrothermal fluid are shown for comparison. Plutonic rocks from the
Ildeus complex are characterized by fractionated siderophile and chalcophile element
patterns normalized to the average upper continental crust (Figure 20A–E). Ultramafic–
mafic rocks, ultramafic metasomes and later-stage felsic dikes share prominent As-Cd-Pb
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depletions and Ag-W-Hg enrichments, although some distinctions exist between various
magmatic and metasomatic lithologies. Dunites/peridotites and websterites/pyroxenites
are enriched in Bi in comparison with the upper continental crust, while the latter dis-
play more prominent enrichments in Ag and W (Figure 20B). Ultramafic cumulates are
quite compositionally different (prominent Cu-Ag-W-Hg-Bi enrichments and As-Pb de-
pletions) from abyssal peridotites and similar to the supra-subduction ultramafic rocks
(Figure 20A). Ildeus websterites and gabbros are enriched in all elements from Ag to Bi
with respect to websterite and gabbro from Kurile and the Papua New Guinea arc basement
(Figure 20B,C; [124]). UCC-normalized patterns for ultramafic metasome from the Ildeus
complex resemble quite remarkably the reconstructed hydrothermal fluid composition
(Figure 20D). Finally, later-stage adakitic dikes display negative As and positive Ag anoma-
lies (Figure 20E) similar to modern arc lavas (Figure 20F) at the same time, drastically
differing from them in behavior of such elements as W and Pb. In general, ultramafic rocks
from the Ildeus complex display low Zn, As, Mo, Cd and Pb contents and are enriched in
Ag, W and Hg with respect to the average upper continental crust. Gabbroic rocks have Ni,
Co, Cu, Zn and Cd concentrations similar to the continental crust and are slightly depleted
in As and Pb and enriched in Ag and W. Felsic dikes share some characteristics with arc
magmas, but are distinctly enriched in Ag and W, which can be either a magma source
signature, or a result of intra-channel hybridization by ultramafic wall-rock. Some felsic
dikelets show petrographic evidence for such hybridization including the incorporation of
resorbed ultramafic mineral phases and micro-xenoliths [96]. The general enrichment of
Ildeus rocks in Ag and W (Figure 20) as well as PGE and Au (Figure 19) is consistent with
mineralogical data, e.g., presence of native W, Pt, Ag, Au metals and W-Fe-Co-Ti, Ag-Au,
Cu-Ag-Au and PGE alloys in both plutonic and metasomatic lithologies (Table 6).
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modern lavas from volcanic arcs and oceanic islands (F). Data for comparison: variably serpentinized
oceanic peridotites (Ag, As, Pb, Cd, Cu and Zn from [120]; Hg and Bi from [121]; Mo from [122]; W
from [123]); supra-subduction zone (SSZ) peridotite, arc websterite and arc gabbro from [124]; pelagic
clay sediment [98]; hypothetical hydrothermal fluid (Zn, Pb, W from [125]; Mo, Cu, As from [126];
Hg from [127]; Ag from [128]); oceanic basalt glasses from the Kilauea Iki lava lake [129]; arc volcanic
rocks from the Andes [130], Masaya volcano, Nicaragua [116], Mt. St. Helens, Cascades [116]; Alaid
volcano, Kuriles [116], Tolbachik volcano, Kamchatka [116], Setouchi high-Mg andesite (HMA) from
SW Japan [119]. Normalized values for the upper continental crust are from [97].

Variations in Cu and Ag in the Ildeus complex appear to further emphasize the im-
portance of the fluid-controlled behavior of certain chalcophile elements in the Mesozoic
Stanovoy subduction zone. Most Ildeus plutonic rocks display very low Cu/Ag ratios (<500)
that plot between the Cu/Ag ratio in the average bulk continental crust (Cu/Ag = 482) and
in reconstructed composite hydrothermal fluid (Cu/Ag = 93) (Figure 21a).
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roots as MSS preferentially retains Cu, relative to Ag, thus severely affecting the resultant 
Cu/Ag ratio [131]. This is confirmed by the Cu/Ag-Cu systematics, where all Ildeus sam-
ples plot at very low Cu/Ag values below the differentiation trends for back-arc and vol-
canic arc magmas involving MSS fractionation (Figure 21b). 

The Cu/Ag-Cu systematics in Ildeus plutonic rocks compared to back-arc and vol-
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Figure 21. Variation in Cu/Ag ratio versus MgO (wt.%) (a) and Cu (ppm) (b) in plutonic and
metasomatic rocks and felsic dikes from the Ildeus mafic–ultramafic complex compared with other
subduction-related rocks (arc volcanics and back-arc magmas) and average Cu/Ag values for mean
mantle [131–133], ocean island basalt (OIB) source [129], pelagic sediment [98], bulk continental
crust [97] and hydrothermal fluid [126,128]. Grey-shaded field for back-arc magmas on (b) is
from [133]. Data for arc volcanics are from [130]. Solid lines A, B and C show modeled fractionation
trends of sulfide-saturated magmas [133]: (A) monosulfide solid solution (MSS)-silicate melt with
DCu of 400 and DAg of 40; (B) MSS-silicate melt with DCu of 480 and DAg of 192 (equivalent to 80%
MSS + 20% coexisting sulfide liquid); (C) sulfide melt–silicate melt with DCu of 900 and DAg of 800.
Details of used models and partition coefficients can be found in [131].
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Since Cu/Ag is only little affected during the melt–peridotite interaction and sulfide-
involved fractionation of mantle-derived primary magmas, the very low and reasonably
constant Cu/Ag ratio in Ildeus rocks, which is so dramatically different from mantle values
of >2000 (mean mantle Cu/Ag = 3500; [93]), suggest a hydrothermal fluid-controlled crustal
environment for their formation (Figure 21a). Based on the co-variation in Cu/Ag ratio
and MgO (wt.%), we can also rule out any substantial involvement for the monosulfide
solid solution (MSS) in the fractionation of Ildeus primary melt at the arc plutonic roots as
MSS preferentially retains Cu, relative to Ag, thus severely affecting the resultant Cu/Ag
ratio [131]. This is confirmed by the Cu/Ag-Cu systematics, where all Ildeus samples plot
at very low Cu/Ag values below the differentiation trends for back-arc and volcanic arc
magmas involving MSS fractionation (Figure 21b).

The Cu/Ag-Cu systematics in Ildeus plutonic rocks compared to back-arc and volcanic
arc magmas (Figure 21b) show that Ildeus rocks plot at the low-Cu/Ag end of differentiation
trends of subduction-zone magmas relatively close to the composite hydrothermal fluid
(Cu/Ag = 93; Cu = 16.7 ppm). Broad variations in Cu content of Ildeus plutonic and
metasomatic rocks as well as the later-stage felsic dikes (Cu = 10–860 ppm) suggest the
accumulation of Cu-sulfides during both magmatic differentiation in the lower sub-arc
crust and metasomatic reactions in the collision-related upper crust. This is supported by
the presence of primary chalcopyrite and bornite in high-temperature (Figure 14G; [69])
and secondary chalcopyrite, digenite and chalcocite in low-temperature (Figure 14H,I; [69])
rock-forming silicates (Table 6). Since Cu and Ag contents in Ildeus plutonic rocks do not
show any significant systematic variations with fractional crystallization indices such as
MgO (Figure 21a), we assume that the Cu/Ag ratio in the Ildeus system is to a significant
extent controlled by the sulfur-saturated hydrothermal fluid enriched in certain siderophile
(W, Pt, Au) and chalcophile (Cu, Ag) metals. We also propose that during later-stage
metasomatism, the chalcophile element signature of a possible mantle source was altered
by metasomatic reactions with a high fluid/rock ratio. Consequently, the original metal
characteristics of Ildeus primary melt can be reconstructed only with the assistance of micro-
metallogenic studies of metal inclusions in host high-temperature silicate minerals. In
addition, the interaction between Ildeus plutonic rocks and slab melts can also substantially
lower Cu/Ag ratios of the former, as slab melts (e.g., lavas from the submarine Piip volcano
in the western Aleutian arc) are characterized by low Cu concentrations of 10–30 ppm and
Cu/Ag values of 200–460 compared with the bulk continental crust [134].

Behavior of ore metals in the Ildeus plutonic system can be further evaluated using
relationships of volatile siderophile element tungsten with some incompatible high-field
strength elements such as Ta, Th and U (Figure 22). Tungsten is highly incompatible in
magmatic processes (even in comparison with Th, U and Ta) and consequently enriched
in the continental crust (~1 ppm; [97]) relative to the mantle (~12 ppb; [135]). It was also
originally deemed to be immobile in subduction zones [116], but recent high-precision
analysis of bulk tungsten concentrations and its isotopes in various arc-related rocks indi-
cate that W (along with Mo) can be mobilized by subduction fluids, although to a different
degree [117,118,136]. It is important to emphasize that W/Th, W/Ta and, to a lesser ex-
tent, W/U ratios are sensitive indicators of the amount of fluid phase, since W always
strongly partitions into the fluid independently of f O2 and salinity [136]. Tungsten is also
enriched relative to Th, U and Ta in altered mafic oceanic crust and variably serpentinized
abyssal peridotites, suggesting strong W concentration during seafloor serpentinization
and late-stage oxidative seawater alteration [123]. Peridotite hybridization by silicic sedi-
ment melts is also capable of producing high W/HFSE ratios in mantle sources of some arc
magmas [117,119].

Plutonic and metasomatic rocks from the Ildeus complex display elevated W concentra-
tions with W/U, W/Th and W/Ta ratios ten to hundred times higher than the mean mantle
value (Figure 22). W/U ratios in most peridotites, pyroxenites, ultramafic metasomes
and felsic dikes cluster around average hydrothermal fluid values of W/U = 113; [137]),
substantially above (>10) W/U values for the primitive mantle (W/U = 0.62 ± 0.19; [138])
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and bulk silicate earth (BSE; W/U = 0.65 ± 0.45; [139]). Ultramafic metasomes display the
largest range of W/U ratios (1–1140; Figure 22a), possibly due to the diverse W behavior
under hydrothermal conditions. Reifenröther et al. [123] suggested that W is enriched dur-
ing serpentinization and seawater interaction, but depleted in silicic metasomatic reactions
involving the formation of talc. This is consistent with our petrographic observations, as
the sample with a W/U ratio of 1.1 contains a substantial amount of talc.
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Figure 22. MgO (wt.%) versus W/U (a), W/Th (b) and W/Ta (c) in plutonic and metasomatic rocks
and felsic dikes from the Ildeus complex. Average W-U-Th-Ta ratios in the mean mantle (W/U = 0.65;
W/Th = 1.54; W/Ta = 113) are from [138,139]; pelagic sediment (W/U = 1.54; W/Th = 0.31; W/Ta = 4)
from [98]; hydrothermal fluid (W/U = 113; W/Th = 47; W/Ta = 15) from [137].

Although several peridotites and ultramafic metasomes from the Ildeus complex have
W/Th and W/Ta ratios similar to or even below typical mantle values (W/Th = 0.19;
W/Ta = 0.2) [93,129], most ultramafic rocks are grouped (W/Th = 4–368; W/Ta = 5–820)
around W/HFSE ratios characteristic of hydrothermal fluids, e.g., W/Th of ~47 and W/Ta
of ~15 (Figure 22b and c, respectively). The difference between the mantle and pelagic
sediment (potential contaminant of mantle sources and primitive subduction-related melts)
W-Th-Ta signature and the Ildeus complex is so significant that, in our opinion, it can only be
attributed to extensive fluid–rock interactions during emplacement of the Ildeus intrusion
in the uppermost crust beneath the Stanovoy suture [69]. Intense metasomatism with a
high fluid/rock ratio is characteristic of subduction zone environments in general [140,141].
Additional metasomatic changes can be linked to the post-collisional adakitic dikes, which
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display W/Th and W/Ta ratios intermediate between the hydrothermal fluid and pelagic
sediment values (Figure 22b,c). The presence of native tungsten and tungsten alloys in
high-temperature minerals of the Ildeus intrusion potentially signal that primary Ildeus
melt carried a considerable amount of this siderophile metal, which was introduced into its
hypothetical mantle wedge source by pelagic sediment-derived fluids. This appears to be
a generally plausible mechanism for W enrichment in sub-arc mantle sources as pelagic
clays contain an average of 4 ppm of tungsten [98] compared to the available W estimates
of 10 ± 3 ppb [138] and 13 ± 10 ppb for the primitive mantle and 3.0 ± 2.3 ppb for the
depleted MORB mantle [139]. This is also consistent with the presence of native W and
Mn-W alloys in mantle wedge peridotite xenoliths from the Avachinsky volcano in the
Kamchatka arc [68].

5.4. Two-Stage Model for Magmatic–Hydrothermal Metal Transport at Arc Plutonic Roots

The geochemical and mineralogical data presented above allow us to link some
siderophile and chalcophile element enrichments in the Ildeus complex to different stages
of fluid–melt and fluid–rock interactions in the evolving plutonic plumbing system beneath
the Mesozoic Stanovoy convergent margin.

Petrologic and geochemical reconstructions [69,70,83,96] indicate that Ildeus ultramafic–
mafic cumulates were produced through polybaric fractionation of the mantle-derived
mafic melt at the base of the Mesozoic continental arc. The crystallization of intercumulus
amphibole, occurrence of equant olivine inclusions in pyrrhotite (Figure 14E) along with
the presence of Cu-Ag-Pb-Sn halides (in addition to NaCl in and KCl microinclusions in
olivine and amphibole [69]) in magmatic-textured silicates (Figure 13) suggest the formation
of Ildeus ultramafic cumulates in the presence of high-temperature H-S-Cl fluid. Based
on the early precipitation of base metal sulfides, magmatic fluid was enriched in sulfide
over sulfate sulfur and, therefore, relatively unoxidized [33]. Although some early olivine
and orthopyroxene contain minute inclusions of barite (Figure 18A–C), this most probably
had an overall negligible effect on the redox conditions in the Ildeus melt-fluid system
as even sulfate-saturated basaltic magmas are characterized by an oxygen fugacity below
+ 2 ∆QFM [142]. A reduced fluid characteristic during Ildeus magmatic differentiation
is also implied by the presence of native siderophile (W, Pt, Au) and chalcophile (Bi, Zn,
Cu [69,96]) metals and their alloys (W-Fe, W-Co-Ti, Cu-Ag-Au, etc.) in high-temperature
silicate minerals (Figures 8–12). These metallic phases are comparable to Cu-Ni-Co-Fe
metal assemblages formed in some Alpine peridotites and ophiolitic chromitites under
highly reducing conditions (f O2 values of 4 log units or more below QFM) in the presence
of CH4-H2-bearing saline aqueous fluids [143,144]. This is consistent with experimentally
determined intrinsic oxygen fugacity values of −2 to −4 ∆QFM for platinum and PGE alloys
in layered mafic–ultramafic intrusions [145,146]. Berdnikov et al. [70,147] proposed on the
basis of phase equilibria that Cu-Ag-Au alloys in igneous systems are formed under strongly
reduced conditions below the QFM buffer. The geochemical enrichment of Ildeus ultramafic
cumulates in W, Pt, Au and Ag relative to the upper continental crust combined with metal
inclusions in high-temperature minerals imply that reduced high-temperature fluids were
enriched in some siderophile (W, Pt, Au) and chalcophile (Cu, Zn, Ag, Bi) elements most
probably inherited from their sub-arc mantle sources.

Mantle-wedge-derived peridotite xenoliths from arc volcanoes are enriched in PGE
and Au compared to depleted MORB mantle and contain micro-inclusions of native Fe, Pt,
Au, Cu, Zn, Pb and Bi along with Cu-Ag-Au and Cu-Sn-Zn alloys hosted in primary olivine
and orthopyroxene [2–4,68]. Petrologic reconstructions suggest that metals were introduced
into the sub-arc mantle wedge by slab-derived fluids under relatively low-oxygen-fugacity
conditions (−2 to +1 ∆QFM; [68]). Reduced H-S-Cl fluid sourced from subducted serpenti-
nite through buffering mineral reactions along the slab–mantle interface [148,149] fluxes the
overlying mantle wedge with sulfur and halogens (Cl, Br, I) [36,37,150] as well as volatile
siderophile (W, Mo) and chalcophile (Cu, Zn, Pb, Bi) elements. Saline aqueous fluids will
also mobilize and transport noble metals [23,26,35–37,151] into the mantle wedge peridotite
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to create a metal-rich sub-arc mantle source represented, for example, by veined peridotite
xenoliths from Kamchatka and some Melanesian volcanic arcs [2–4,68]. Fluid-fluxed melt-
ing of the metal-rich mantle source generates reduced early-arc and fore-arc melts [152,153],
which will produce upon differentiation arc root plutonic suites similar in mineralogy and
metal tenor to the IIdeus ultramafic complex. Slab- and sediment-derived melts are also
enriched in some siderophile and chalcophile elements [64,117,119,134] possibly contribut-
ing to the W and Ag anomalies in plutonic arc root systems (Figure 20) as suggested by
Cu-Ag and W-U-Th-Ta systems (Figures 21 and 22, respectively). Geochemical data from
the Cyprus and Papua New Guinea boninites indicate that metalliferous sediments in the
subducted slab contribute substantial amounts of W, Mo and Zn to slab-derived fluids,
which can be further incorporated into the mantle sources of arc magmas [154].

Metal endowment created at the Triassic arc plutonic roots during magmatic differen-
tiation of the primary Ildeus melt was further upgraded through hydrothermal fluid–rock
interactions within the upper crust of the Cretaceous Stanovoy collided margin [69,70,96].
Tectonic exhumation of the Ildeus core plutonic complex within the attenuated crust was
accompanied by intense circulation of oxidized aqueous solutions rich in chlorine and
sulfate ions. This is consistent with the common presence of Cu-Ag-chlorides (Figure 13G–I)
and barite (Figure 18D–F) in metasomatic minerals such as chlorite, orthoclase, epidote
and serpentine (Table 6). It is important to emphasize that Cu-Ag-Cl compounds are
typically found in low-temperature volcanic gas emissions and mineralizing epithermal
environments [96,114,128,155,156], associated with oxidizing fumarolic vents [157,158].
The presence of interstitial non-stoichiometric bismuth chloride (Figure 13F) with a melting
temperature of 234 ◦C [96] suggests temperatures above 200 ◦C for the later-stage meta-
somatic fluids, which is consistent with experimental data for Bi-chloride complexes in
low-temperature hydrothermal solutions [159]. The abundance of barite in metasomatic
minerals (Figure 18D–F; Table 6; [69,96]) and the widespread replacement of primary sul-
fides and barite by magnetite (Figures 14A and 18C) attest to the general oxidized nature
(possibly several log units above the QFM buffer) of late-stage fluids in the Ildeus sys-
tem [69,70,83,96]. This is consistent with the prevailing oxidizing nature of arc volcanic
gases and shallow, low-temperature solutions beneath arc volcanoes [9,113,158,160].

The distribution of chalcophile and siderophile elements in ultramafic metasomes
from the Ildeus arc root system demonstrates their enrichment in Cu, Zn, Ag, W and Hg
and depletion in As, Mo, Cd and Pb, similar to the distribution of these metals in some
shallow, low-temperature hydrothermal fluids (Figure 20D). Metasomatic samples from the
Ildeus complex display very low Cu/Ag ratios (typically under 500) and highly variable Cu
contents resulting from a dynamically changing rock/fluid ratio during shallow hydrother-
mal reactions. This is consistent with the sporadic formation of copper-rich secondary
phases, such as digenite and chalcocite (Figure 14I) in some Ildeus metasomes [69,96].
Ultramafic metasomes display variable, but generally high W contents (1.37–74.75 ppm;
Table 3) and, with an exception of sample 30243 (Table 3), high W/U, W/Th and W/Ta
ratios (Figure 22). This is consistent with the elevated tungsten mobility in low-temperature
(200–350 ◦C) hydrothermal fluids [161,162] possibly enhanced by the presence of chloride
complexes [163–165]. These shallow hydrothermal fluids were enriched in gold (Figure 19),
copper and silver (Figure 20D) as demonstrated by the presence of native Au (Figure 9C)
along with Au-Ag (Figure 9E,F) and Cu-Ag (Figure 11D–F) alloys in secondary silicates
within the Ildeus plutonic system. The appearance of telluride minerals in hydrothermal
assemblages [69,96] suggests that the later-stage hydrothermal reactions occurred within
the shallow oxidized epithermal environment in the attenuated crust beneath the Mesozoic
Stanovoy collided margin.

6. Conclusions

1. The Ildeus complex was formed through the fractionation of olivine, orthopyroxene,
clinopyroxene and spinel from hydrous HFSE-depleted mafic melt within a plutonic
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root system of the Mesozoic Stanovoy continental margin. Later-stage interstitial
plagioclase and amphibole crystallized from an evolved residual melt.

2. The Ildeus complex was subjected to large-scale metasomatism resulting in the for-
mation of ultramafic (talc-chlorite-serpentine) and quartz-rich metasomes. Some of
the quartz-rich metasomatic zones with quartz-carbonate-adularia veins are spatially
associated with later-stage adakitic veins and dikes.

3. Ultramafic cumulates contain magmatic base metal sulfides (pentlandite, Co-pentlandite,
pyrrhotite, chalcopyrite, composite Ni-Co-Cu-Zn-Fe sulfides), siderophile native metals
(W, Pt, Au), W-Co-Ti, Fe-Cu-Pt, Ni-Cu-Zn-Ag alloys in association with Ag-chloride,
Ag-iodide and Cu-Ag-sulfide. Ildeus metasomes include heazlewoodite, digenite, chal-
cocite, relic pentlandite and Ni-pyrrhotite, galena, sphalerite, pyrite, acanthite, composite
Cu-Zn-Pb-As sulfides, sulfosalts, Pb-Ag-tellurides along with Cu-Ag-chloride and abun-
dant barite.

4. High-temperature metal assemblages were formed during the polybaric magmatic
differentiation of mafic melt in the presence of reduced H-S-Cl-rich fluids. This metal-
rich melt was sourced in a depleted sub-arc mantle wedge fertilized by slab/sediment-
derived fluids or melts enriched in W, Pt, Au, Ag, Cu and Zn. Metal assemblages
hosted in secondary silicates were formed in the presence of oxidized low-P-T fluids
enriched in chlorine, sulfate and Pb, Zn, Sb, Sn, Au, Ag, Se and Te.

5. A two-stage model of metal transport in subduction zones is proposed, which involves
the magmatic fractionation of high-temperature siderophile and chalcophile metals
and their alloys from fertile mantle-wedge-derived reduced melts followed by the
large-scale resuscitation and metal upgrade of the plutonic root system in the shallow
oxidized epithermal environments of the subduction/collision-related upper crust.
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