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Abstract: With the northward subduction and final closure of the Neo-Tethyan oceanic crust, the
Indian and Eurasian plates finally collided together and underwent a strong collision orogenic event,
resulting in large-scale crust–mantle magmatic interactions. In order to clarify the controversies
about tectono-magmatic activities after the Indian–Eurasian continental collision, we report the
newly dated Eocene Qiongduojiang gabbro explored in the Tethyan–Himalaya belt, southern Tibet.
LA-ICP-MS zircon U-Pb dating shows that the crystallization age of the Qiongduojiang gabbro is
46.1 ± 1.7 Ma. The whole-rock major and trace elements, as well as Rb-Sr, Sm-Nd, and Pb isotopic
data results, show that the Qiongduojiang gabbro is apparently depleted in Nd isotopes, is enriched
in Pb isotopes, and has maintained a consistent 87Sr/86Sr(t) value. This paper argues that the E-
MORB-like Qiongduojiang gabbro originated from asthenosphere upwelling caused by slab breakoff
of the Neo-Tethyan oceanic plate. This event caused large-scale magmatic activities, a magmatic
mixing process between ancient crust and deep mantle, and wild distribution of Eocene Gangdese
plutons along the Yarlung–Tsangpo Suture Zone, and it rendered the subduction-modified Tibetan
lithosphere fertile from the Gangdese porphyry Cu deposits.

Keywords: Qiongduojiang gabbro; Eocene; Tethyan−Himalaya belt; Tibet; slab breakoff; porphyry
Cu deposits

1. Introduction

As the roof of the world, the Tibetan Plateau was formed by the northward-directed
subduction of the Neo-Tethyan oceanic slab beneath the Asian continent starting around the
Late Triassic–Early Jurassic [1–6] and subsequent Indian–Asian continental collision [7–11].
However, although tremendous efforts have been made to decipher the tectono-magmatic
evolution history along the Yarlung–Tsangpo Suture Zone (YTSZ), interpretations of ages
and corresponding geodynamic settings of magmatism in this area are still controversial.
For example, Zhou et al. [12] suggested that the Neo-Tethyan slab rollback, Neo-Tethyan
slab breakoff, and ongoing India–Asia collision occurred at approximately 69–53 Ma,
53–49 Ma, and 49–43 Ma, respectively, whereas Shui et al. [13] advocated that the Gangdese
belt may still have been an active continental margin until ca. 41 Ma, followed by the
Indian–Eurasian collision. One of the most popular models is that during 55–45 Ma, the
Neo-Tethyan slab breakoff caused an upwelling of the asthenospheric mantle, which offered
heat and material to form a magmatic flare-up event in the Gangdese belt [14–19]. Kohn
and Parkinson [20] suggested that the slab breakoff occurred at approximately 42 Ma,
which coincides with the termination of the Gangdese arc magmatism [21]. Gao et al. [10]
and Xu et al. [22] advocated that the slab breakoff formed intraplate-type mafic magmas in
the Lhasa terrane at 42–38 Ma.
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After the slab breakoff model was proposed by Davies and von Blanckenburg [23]
and von Blanckenburg and Davies [24], studies adopted this model to explain magmatic
flare-ups [25], exhumation of high-pressure metamorphic rocks [26], and rapid topographic
uplift [27]. Niu [28] argued that due to the big density difference between granitic gneisses
and mantle, exhumation of eclogite-facies continental crust may not necessarily be related to
slab breakoff. Freeburn et al. [29] modeled the collision of two continental plates following
a period of oceanic subduction, and the results show that asthenospheric melting triggered
by metamorphic water derived from the slab tip is short-lived and hard to recognize in the
geological record. Indeed, besides Ji et al. [30], who reported slab breakoff related oceanic
island basalt (OIB)-type Langshan gabbros from the Gyangze region of the eastern Tethys,
few studies have demonstrated asthenospheric-derived mafic rocks as a direct response to
the Neo-Tethyan slab breakoff in southern Tibet [22].

In this study, we found a gabbro outcrop in the Qiongduojiang area of the Tethys
belt. LA-ICP-MS zircon U-Pb dating; whole-rock geochemistry; and Rb-Sr, Sm-Nd, and
Pb isotopic analyses were used to: (1) precisely constrain the age of Qiongduojiang gab-
bro, (2) investigate its magma sources and coeval magmatism, (3) deduce the possible
geodynamic setting when Qiongduojiang gabbro formed, and (4) decipher the role of
magmas that the Qiongduojiang gabbro represented in the Gangdese porphyry Cu min-
eralization. The conclusion of this study combined with other geological evidence is able
to better unravel the tectono-magmatic evolution history and metallogenetic model of
southern Tibet.

2. Geological Background

From north to south, the Tibet Plateau consists of Songpan–Ganzi terrane, Qiangtang
terrane, Lhasa terrane, and Himalayan terrane. They are separated by the Jinsha River
Suture Zone, the Bangong–Nujiang Suture Zone, and YTSZ, respectively [31]. Since the
Late Triassic, marine sedimentary sequences have been deposited, mainly including Trias-
sic, Jurassic, and Cretaceous argillaceous sandstone, sand shale, carbonaceous slate, and
marl [32,33]. A long and narrow ophiolitic mélange belt is distributed on the northern
margin of Tethys Himalaya. The main body of this mélange belt is bounded by the Yajiang
ophiolite belt to the south and the Qiongduojiang fault to the north. A large number of
residual oceanic crust materials are involved in the ophiolitic mélange belt. The main matrix
is Triassic deep-sea-debris sedimentary rocks. This mélange belt can represent the real
subducted oceanic crust of the Neo-Tethyan ocean. The deformation of Yajiang ophiolite is
weak, and the main body tilts to the south, which may represent a small forearc extensional
ocean basin formed in the process of ocean subduction. Since the Late Triassic, the Tethys
Himalayan belt has been in the passive continental margin of the northern margin of the
Indian terrane [31] (Figure 1).

The Tethys Himalayan belt is located south of the YTSZ and north of the high Hi-
malayan crystalline rock series. The Tethys Himalayan Sequence includes a southern zone
that consists of Palaeozoic to Eocene platform carbonates and terrigenous units [34,35], and
a northern zone that is dominated by a Mesozoic to Palaeocene outer shelf, continental
slope, and rise deposits [36]. Affected by the regional extension and detachment structure,
a metamorphic core complex belt exists that is composed of a series of plutonic intrusive
rocks and metamorphic sedimentary rocks. Large-scale Cambrian gneiss domes (such as
the Malashan, Peikuco, Lhagoi Kangri, Mabja–Sakya, Kampa, Kangmar, Ramba, and Yardoi
from west to east) and Cenozoic leucogranite are exposed in the core of the metamorphic
core complex [37].
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Figure 1. (a) Simple Geological Map of Gangdese–Himalaya [7]. (b) Simple Geological Map of the
Yalaxiangbo gneiss dome and the sampling location of Qiongduojiang gabbro, south Tibet [19]. YLD:
Yardoi lower detachment; YUD: Yardoi upper detachment.

The Yardoi dome is located 40 km to the south of the Gangdese Thrust and 100 km
to the north of the South Tibetan Detachment System (STDS). The crystalline basement
rocks of the Yardoi are amphibolite, garnet-bearing metapelite, garnet–graphite schist,
augen gneiss, and minor epidotite and pyroxenite [38]. Cenozoic granitic rocks of various
ages intrude into these basement rocks and Triassic sediment [19] (Figure 1b). Two-mica
granitic rocks with ages of ca. 44–43 Ma occur in the center of the YGD, Dala, and Quedang
area and have undergone minor shear, whereas sub-parallel meter-thick granitic dykes
(35.3 + 1.1 Ma) that intruded the garnet–graphite schist seem undeformed internally and
have intruded the high-grade metamorphic rocks and the two-mica granites [39]. Struc-
turally, the litho-tectonic units of dome mantle, rim, and covering sequences are separated
by the Yardoi lower detachment (YLD) and the Yardoi upper detachment (YUD), respec-
tively [37] (Figure 1b). Three stages of Kinematical activities have deformed the Yardoi
dome [37]. The S-C fabrics in the orthogneiss recorded a top-to-the-SSE shear (D1); S-C
fabrics in pelitic phyllite, asymmetric pressure shadows around garnet porphyroblasts,
asymmetric leucogranite pudding in the dome mantle, and asymmetric folds in pelitic
schist/phyllite indicated a top-to-the-NNW shear (D2); and mineral fibers and steps on
slickenside and normal faults or fractures offsetting earlier deformations represent top-
down-to-outward faulting (D3).

The Qiongduojiang gabbro samples collected in this study are located at the edge
of the Yardoi metamorphic core complex. The sampling coordinates are 92◦6.75′ E and
28◦52.35′ N (Figure 1b). This Gabbro dyke, with 2–3 m width and 50–70 m length, intrudes
into the Cambrian schist with NW trending. The Qiongduojiang gabbro consists of clinopy-
roxene (25%–30%), amphibole (30%–45%), plagioclase (5%–10%), biotite (15%–20%), and
quartz (1%–5%) (Figure 2). The accessory minerals are ilmenite, magnetite, and sphene.
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Weak carbonation and mylonite structures can be seen that is locally affected by later
tectonic activities.
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Figure 2. (a) Outcrop and (b) hand sample photographs; (c,d) micrographs under cross-polarized
light of the Qiongduojiang gabbro. Abbreviation: Hbl = Hornblende, Cpx = Clinopyroxene,
Pl = Plagioclase, Qz = Quartz, Bt = Biotite.

3. Analysis Methods

Zircon minerals are separated by Langfang Chengxin Geological Service Company,
Hebei, China. The selected zircon minerals were placed in the epoxy resin mount and
then polished. After cathodoluminescence (CL) photographic analysis, overgrowth rims
of zircon without inclusions and cracks were selected for U-Pb dating. Zircon age was
determined via laser ablation inductively coupled plasma mass spectrometry in the lab-
oratory of China University of Geosciences (Beijing). In the experiment, He gas is used
as the carrier gas of a denuded material. Laser ablation conditions were 4 J/cm2 of laser
energy, 8 Hz of ablation frequency, and 33 µm of spot diameter. Zircon 91500 and NIST
SRM612 were used as external standards. The error of single test data and the weighted
average error of 206Pb/238U age are 1σ. Details of the analytical processes were described
by [40]. Data processing was conducted by the software of ICPMSDataCal [40] and plotted
by Isoplot 3.0 [41]. The test results are listed in Table 1.
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Table 1. LA-ICP-MS zircon U-Pb ages of Qiongduojiang gabbro in Tethys–Himalayan.

Measure
Point Th U Th/U

The Isotopic Ratio (The Error 1σ) Age (Ma)
207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/235U 1σ 206Pb/238U 1σ

1 278.2 1080.6 0.3 0.1802 0.0057 12.6853 0.3962 0.4964 0.0075 2656.6 29.5 2598.7 32.5
2 1963.7 1626.8 1.2 0.0491 0.0084 0.0483 0.0063 0.0075 0.0004 48.0 6.1 48.6 2.2
3 2631.3 3077.9 0.9 0.0464 0.0022 0.2160 0.0099 0.0327 0.0005 198.6 8.3 207.4 3.4
4 1802.8 2890.0 0.6 0.0503 0.0022 0.2391 0.0101 0.0336 0.0006 217.7 8.3 212.9 3.8
5 663.9 1602.4 0.4 0.1479 0.0052 8.3161 0.2749 0.3964 0.0067 2266.1 30 2152.5 30.9
6 329.9 1342.1 0.2 0.1771 0.0057 12.7239 0.3921 0.5077 0.0081 2659.4 29.1 2646.6 34.7
7 198.6 1131.0 0.2 0.0611 0.0027 0.8035 0.0361 0.0930 0.0016 598.8 20.3 573.3 9.4
8 21.4 706.2 0.0 0.2271 0.0072 17.3452 0.5434 0.5429 0.0083 2954.1 30.1 2795.4 34.7
9 306.3 904.8 0.3 0.2095 0.0163 15.6004 2.8089 0.5328 0.0693 2852.6 171.8 2753.3 291.3
10 476.5 578.7 0.8 0.2673 0.0168 18.9546 1.1611 0.5715 0.0431 3039.5 59.1 2914.2 176.6
11 1367.8 4088.1 0.3 0.0558 0.0029 0.2773 0.0134 0.0358 0.0007 248.5 10.7 226.9 4.2
12 4822.7 6806.0 0.7 0.0575 0.0022 0.5873 0.0218 0.0734 0.0012 469.1 13.9 456.4 7.4
13 683.7 2959.0 0.2 0.0561 0.0025 0.6357 0.0286 0.0811 0.0016 499.6 17.7 502.8 9.3
14 15,353.7 5441.5 2.8 0.0472 0.0020 0.1206 0.0052 0.0184 0.0003 115.6 4.7 117.3 2.0
15 323.0 447.7 0.7 0.0703 0.0037 1.6114 0.0867 0.1643 0.0033 974.6 33.7 980.8 18.5
16 589.9 1480.9 0.4 0.0572 0.0028 0.5637 0.0275 0.0711 0.0016 453.9 17.8 442.7 9.3
17 1000.3 2131.9 0.5 0.0562 0.0022 0.7486 0.0295 0.0952 0.0014 567.4 17.2 586.1 8.0
18 242.2 1922.9 0.1 0.0571 0.0035 0.7760 0.0423 0.0980 0.0016 583.2 24.2 602.9 9.3
19 2494.9 2792.3 0.9 0.0531 0.0023 0.5112 0.0212 0.0690 0.0011 419.2 14.3 430.0 6.4
20 583.9 3154.5 0.2 0.0567 0.0025 0.8452 0.0362 0.1070 0.0019 622.0 19.9 655.0 11.2
21 69,303.4 10,385.0 6.7 0.0507 0.0032 0.0489 0.0031 0.0069 0.0002 48.5 3.0 44.5 1.3
22 77,796.0 19,327.5 4.0 0.0461 0.0070 0.0502 0.0100 0.0076 0.0006 49.7 9.7 48.7 4.0
23 95,789.1 16,794.2 5.7 0.0431 0.0061 0.0485 0.0027 0.0073 0.0004 48.1 2.7 47.1 2.2
24 6686.4 7056.0 0.9 0.0549 0.0076 0.0534 0.0051 0.0075 0.00047 52.8 4.9 47.9 3.0
25 13,178.3 4284.1 3.1 0.0561 0.0088 0.0565 0.0087 0.0079 0.0009 55.8 8.3 50.7 5.8
26 16,812.6 6073.9 2.8 0.0537 0.0074 0.0490 0.0052 0.0069 0.0004 48.6 5.0 44.5 2.2
27 31,242.0 12,358.4 2.5 0.0495 0.0027 0.1096 0.0056 0.0162 0.0004 105.6 5.1 103.7 2.8

The whole-rock major and trace elements were analyzed by Analytical Laboratory
Beijing Research Institute of Uranium Geology (ALBRIUG). Rock samples were first pul-
verized to powder to pass through 200 mesh (75 µm) prior to mineral analysis and element
distributions. Then, the powdered samples were dried at 105 ◦C for 2 h. The major elements
were analyzed via XRF (Philips PW2404) on fused glass beads with an excitation condition
of 50 kV/50 mA and a 30 mm diameter of viewed light beam. Gravimetry was used to
measure the loss on ignition when the samples were heated to a temperature of 1100 ◦C.
For trace element analysis, 50 mg of sample powder was dissolved in distilled HNO3 + HF
and then ultrasonically stirred. Thereafter, the solutions were evaporated to dryness, and
the residue was dissolved with HNO3 + HF. Subsequently, the solutions were heated at
130 ◦C for 3 h, and the solutions were diluted to 50 mL by using ultrapure H2O. Those
solutions were analyzed by Element XR inductively coupled plasma mass spectrometry
(Element XR/ICP-MS). The analysis accuracy is better than 5% for major elements and
5%–10% for trace elements. The whole-rock geochemical data are listed in Table 2. The
Rb-Sr, Sm-Nd, and Pb isotopes of the whole rock were also completed by ALBRIUG. The
samples were ground to 200 mesh and reduced to 10 g. The samples were analyzed in
the oven and dried at 80 ◦C for 3 h. The samples were dissolved with hydrofluoric acid
and perchloric acid. Rb and Sr were separated and purified via the cation resin exchange
method. The isotopic compositions of Rb and Sr were analyzed via thermoelectric ion mass
spectrometer MAT261. The Nd isotope ratio mass spectrometry analysis is completed by
the thermal ionization mass spectrometer Triton. The mass fractionation generated in the
mass spectrometry analysis is corrected by the power law with n(146Nd)/n(144Nd) = 0.7219.
The Sm and Nd contents are calculated by the isotope dilution formula. The whole analy-
sis process is monitored by GBW04419 (143Nd/144Nd = 0.512722 ± 0.000006) and JNdi-1
(143Nd/144Nd = 0.512115 ± 0.000005) reference materials, respectively. The determination
of the Pb isotope ratio was completed on a MAT-261 thermoelectric ion mass spectrometer.
Lead isotopes were measured by using silica gel emitters and rhenium metal strips.
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Table 2. Major and trace element and Sr-Nd-Pb isotopic compositions of Qiongduojiang gabbro in
Tethys–Himalayan.

Sample 12FW58 12FW61 12FW63 13JT04 13JT05 13JT06 G1603H1 G1603H2 G1603H3 G1603H4

SiO2 43.92 46.37 42.25 42.66 44.49 44.56 47.81 47.91 47.22 48.02
TiO2 3.09 2.99 3.56 2.97 2.85 3.02 1.48 1.46 1.45 1.43

Al2O3 12.97 16.96 16.22 14.41 14.19 14.58 13.82 14.32 13.57 13.98
TFeO 11.42 9.92 11.11 9.98 8.35 8.76 13.28 12.7 12.54 12.6
MnO 0.19 0.13 0.13 0.15 0.13 0.13 0.17 0.16 0.17 0.17
MgO 9.70 4.03 6.61 7.03 7.36 7.34 7.56 6.97 7.04 6.85
CaO 8.50 6.25 6.77 7.78 11.09 10.79 9.38 9.36 10.07 9.70

Na2O 2.95 5.88 3.56 4.03 3.67 3.71 2.82 3.13 2.64 2.64
K2O 0.08 0.33 0.78 0.15 0.17 0.25 0.09 0.09 0.09 0.10
P2O5 0.61 0.72 0.42 0.49 0.35 0.44 0.13 0.14 0.13 0.15
LOI 6.21 6.59 8.65 9.26 5.92 4.93 3.39 3.72 5.06 4.31
Total 99.64 100.17 100.06 98.91 98.57 98.51 99.93 99.96 99.98 99.95

V 206.0 151.0 294.0 275.0 298.0 314.0 291.0 279.0 288.0 298.0
Cr 222.0 3.0 10.0 40.0 220.0 210.0 257.0 200.0 217.0 146.0
Co 47.0 27.0 48.0 36.0 35.0 38.0 52.9 49.5 51.6 53.6
Ni 172.0 9.0 45.0 45.0 69.0 73.0 58.2 54.3 55.5 49.7
Ga 21.0 22.0 20.0 20.0 18.0 19.0 21.0 20.4 20.3 21.7
Rb 4.2 12.0 28.0 3.6 4.3 6.2 1.3 0.9 1.0 1.1
Sr 582.0 697.0 389.0 635.0 843.0 592.0 323.0 353.0 337.0 358.0
Y 30.9 34.3 24.4 26.4 24.8 27.5 21.1 20.8 21.2 22.1
Zr 289.0 224.0 170.0 172.0 157.0 171.0 11.7 11.6 11.5 17.0
Nb 70.0 87.0 52.0 47.0 36.0 39.0 9.4 9.1 9.8 9.9
Cs 1.8 0.5 0.8 0.8 0.6 0.6 1.0 1.2 0.7 0.8
Ba 453.0 556.0 326.0 284.0 739.0 1450.0 6.6 6.2 5.4 7.0
La 43.3 41.1 25.8 27.2 21.8 25.0 8.2 8.0 8.0 8.6
Ce 87.2 81.0 49.7 55.6 45.2 51.5 17.1 16.5 17.0 17.8
Pr 10.8 9.9 6.2 6.8 5.7 6.3 2.4 2.3 2.3 2.5
Nd 43.1 39.7 25.0 29.5 25.4 29.6 11.4 10.8 11.2 11.7
Sm 9.1 8.9 5.8 6.6 6.0 7.0 3.1 3.0 3.0 3.2
Eu 3.0 2.7 2.0 2.4 2.2 2.5 1.1 1.1 1.0 1.1
Gd 8.1 8.2 5.6 6.8 6.5 7.3 3.2 3.2 3.3 3.5
Tb 1.2 1.2 0.9 1.0 1.0 1.1 0.7 0.7 0.7 0.7
Dy 6.2 6.7 4.8 5.5 5.4 5.8 4.0 4.1 4.2 4.3
Ho 1.1 1.3 0.9 1.0 1.0 1.0 0.8 0.8 0.8 0.8
Er 2.7 3.1 2.3 2.7 2.5 2.7 2.1 2.1 2.0 2.1
Tm 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
Yb 2.2 2.6 1.9 1.9 1.7 1.9 1.8 1.9 1.9 2.0
Lu 0.3 0.4 0.3 0.3 0.2 0.3 0.2 0.2 0.2 0.3
Hf 6.4 4.4 3.8 4.4 4.4 4.7 0.6 0.6 0.6 0.7
Ta 4.4 4.8 3.0 2.5 1.9 2.2 0.6 0.6 0.6 0.6
Pb 3.1 2.4 2.4 1.8 1.4 1.6 5.7 6.0 5.6 6.1
Th 5.9 5.7 3.8 3.5 2.8 3.2 0.7 0.7 0.7 0.8
U 1.5 1.3 0.9 0.9 0.7 0.8 0.1 0.1 0.1 0.1

87Sr/86Sr 0.706739 0.706738 0.706719 0.707161 0.707302 0.707120 0.705702 0.705698 0.705661 0.705749
2SE 0.000014 0.000013 0.000014 0.000013 0.000014 0.000014 0.000016 0.000013 0.000014 0.000016

87Sr/86Sr(t) 0.706726 0.706705 0.706584 0.707151 0.707293 0.707101 0.705696 0.705508 0.705656 0.705744
143Nd/144Nd 0.512878 0.512896 0.512917 0.512918 0.512935 0.512937 0.512808 0.513133 0.512795 0.512801

2SE 0.000003 0.000004 0.000004 0.000004 0.000003 0.000004 0.000007 0.000014 0.000012 0.000011
εNd(0) 4.7 5.0 5.4 5.5 5.8 5.8 3.3 9.7 3.1 3.2
εNd(t) 5.1 5.4 5.8 5.8 6.1 6.1 3.5 9.8 3.2 3.3
fSm/Nd −0.35 −0.31 −0.29 −0.31 −0.27 −0.28 −0.20 −0.19 −0.2 −0.2

(206Pb/204Pb)t 18.52 18.52 18.53 18.52
(207Pb/204Pb)t 15.64 15.65 15.65 15.65
(208Pb/204Pb)t 38.99 39.00 39.03 38.99

Note: 12FW58-13JT06 Date from [30]; LOI: loss on ignition.

4. Results

The CL image shows that zircon from the Qiongduojiang gabbro has obvious oscil-
latory zoning characteristics, indicating the origin of magmatic zircon. Most zircons are
about 100–150 µm long with length–width ratios of 1:1–2:1. The 206Pb/238U age results of
27 zircons are listed in Table 1, ranging from 48.0 to 2852.6 Ma, in which 7 zircons have
the weighted average age of 46.1 ± 1.7 Ma (MSWD = 0.81) (Figure 3), and their Th/U
ratios are between 0.9 and 6.7 (Table 1), which indicates that they are typical magmatic
zircons [42]. Therefore, this weighted-average age can represent the crystallization age of
the Qiongduojiang gabbro.
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Figure 3. 207Pb/235U vs. 206Pb/238U ratios of all analyzed zircons (a) and zircons with Concordia
ages (b) for the Qiongduojiang gabbro in Tethys–Himalayan.

The results of whole-rock major and trace elements and Rb-Sr, Sm-Nd, and Pb isotopes
of Qiongduojiang gabbro are listed in Table 2. For comparison, the data of Langshan gabbro
published by [30] are also listed in Table 2. The analysis results show that the SiO2 content
of Qiongduojiang gabbro is 47.2–48.0 wt.%, the TiO2 content is 1.4–1.5 wt.%, and the MgO
content is 6.9–7.6 wt.% (Figure 4). The calculated Mg# value (Mg-number = Mg/(Mg + Fe),
in molecular) is 49.5–50.6. The Qiongduojiang gabbro is characterized by high Ni and Cr
contents (49.7–58.2 ppm and 146–257 ppm, respectively), high light rare earth elements, and
low heavy rare earth elements (LaN/YbN = 5.1–5.5), which is similar to E-MORB (Figure 5a).
In the primitive-mantle-normalized spider diagram (Figure 5b), the Qiongduojiang gabbro
is rich in Nb and Ta and is characterized by a loss of large ion lithophile elements (i.e., Rb
and Ba). The trace element characteristics of Qiongduojiang gabbro are obviously different
from Gangdese arc magmatic rocks but are close to typical E-MORB basic rocks (Figure 5b).
The above geochemical characteristics are different from the geochemical composition
of Eocene basic magmatic rocks in Langshan, Tethys Himalayan belt, which have been
reported by [30]. The Langshan gabbro shows high Ti (TiO2 = 3.08–3.89 wt.%) and high
LaN/YbN (15.8–24.6) ratios with typical OIB characteristics.

The calculated 87Sr/86Sr(t) isotope ratio of Qiongduojiang gabbro is 0.705508–0.705744.
The value of 143Nd/144Nd is 0.512795–0.513133, with a calculated εNd(t) value of 3.2–9.8.
The initial 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios corrected by crystallization
age are 18.52–18.53, 15.64–15.65, and 38.99–39.03, respectively. It shows the characteristics
of high radiogenic Pb isotopic composition.
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Qiongduojiang gabbro.
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Figure 5. (a) Chondrite-normalized rare earth element (REE) patterns and (b) primitive-mantle-
normalized spider diagrams of the Qiongduojiang gabbro; OIB, N-MORB, E-MORB, Chondrite,
and primitive-mantle-normalization standard values are from [45]. Data of Langshan mafic rocks
from [30].
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5. Discussion
5.1. Geochronology of the Qiongduojiang Gabbro and Coeval Magmatism along YTSZ

The newly obtained zircon U-Pb age of the Qiongduojiang gabbro was ca. 46 Ma. On
the north side of YTSZ, coeval magmatism is represented mainly by Linzizong volcanic
rocks and their intrusive counterparts [8,15–17,21,46]. The Linzizong volcanic successions
consist of Dianzhong and Nianbo formations (69–50 Ma), as well as the Pana Formation
(50–43 Ma). They are all characterized by the enrichment of LILE and depletion of HFSE.
Fairly intense magmatic activities occurred at ca. 50 Ma, and heterogeneous intrusive rocks
were derived from the asthenospheric mantle, mantle wedge, metasomatized lithospheric
mantle, basaltic lower crust, and basement of the Lhasa terrane [16]. For example, in the
Quxu batholith, Ma et al. [47] reported ca. 48 Ma Napuri adakitic rocks formed by lower
crustal melting, whereas Wang et al. [48] obtained ages of ca. 51 Ma for the gabbronorites,
quartz diorites, and tonalites, which are derived from mixing of the asthenospheric mantle
and juvenile lower crust. Zhou et al. [12] summarized that during ca. 53–49 Ma, the
Linzizong volcanic rocks and coeval plutons have comparable compositions to arc rocks
but show significant input of asthenospheric mantle with εNd(t) values up to +9.8 and
zircon εHf(t) values up to +15.1 [8,15]. In the Yangbajiang area, the ~50 Ma shoshonitic and
ultrapotassic rocks are related to a mantle source previously metasomatized by fluids from
the oceanic crust and later re-fertilized by sediment-derived melts [49]. Wang et al. [50]
identified two episodes of Eocene mafic magmatism in the Quxu area; the early suite
of gabbro (ca. 53 Ma) shows typical arc features and was derived from partial melting
of lithospheric mantle metasomatized by fluids. However, the later suite of hornblende
gabbro (ca. 48 Ma) has mixture characteristics of the asthenospheric mantle and enriched
lithospheric mantle metasomatized by subducted sediment melts. These mafic rocks may
indicate that in the southern Lhasa terrane, mafic magmatic “flare-up” events progressively
propagated eastward from 56 to 50 Ma. Zhou et al. [12] summarized that during the
53–49 Ma, the most voluminous magmatism in the Gangdese belt shows a thermal anomaly
(up to 980 ◦C, Ti-in-zircon temperature), which is attributed to asthenospheric mantle
upwelling. Shu et al. [51] supported this conclusion with their work on the Ringqênzê
plutonic complex.

On the south side of YTSZ, Pullen et al. [18] reported a zircon U-Pb age of 43.9 Ma for
a granite pluton in the Xiao Gurla Range. Ding [49] found that an undeformed leucogranite
that intrudes into pelitic schist in the core of the Niuku anticline has a crystallization age of
ca. 45 Ma and is a result of crustal anatexis and exhumation in the northern Tethys. Strongly
deformed porphyritic two-mica granite gneiss dykes at the Ramba dome were derived
mainly from the partial melting of mafic material in the lower crust at ca. 44 Ma [52]. The
Dala and Quedang granites near the Yalaxiangbo dome were found to have zircon U-Pb
ages ranging from 46 to 44 Ma [53]. Ji et al. [30] identified the Langshan gabbro with a
titanite U-Pb age of ca. 45 Ma as the first evidence for partial melting of the asthenosphere
in the Ramba dome area. Zeng et al. [19] suggested that the ca. 44–42 Ma high Sr/Y granitic
rocks in the Yardoi dome, Dala, and Quetang areas were due to the partial melting of the
amphibolite dominant source. These granites are related to crustal thickening and led to
the formation of high-density eclogitic rocks beneath the Tethyan Himalaya.

In general, during ca. 45–50 Ma, voluminous volcanic rocks and their intrusive coun-
terparts were distributed on both sides of YTSZ, representing intense tectono-magmatic
activities that occurred during the Eocene in this area. Significant mantle contributions
(material and heat) evolved during this magmatic flare-up.

5.2. Characteristics of Magma Sources

Before using the whole-rock geochemical data for discussion, the impact of hydrother-
mal alteration on elements, especially easily migrated elements, must be evaluated. The
whole-rock loss on ignition (LOI) of Qiongduojiang gabbro ranges from 3.39 wt% to
5.06 wt%, indicating that these samples were altered to some degree. This may explain
the decoupling of the Sr and Nd isotopic composition of the Qiongduojiang gabbro, since
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Sr is more easily modified by alteration. However, the LOI does not correlate with major
elements or mobile trace elements (K, Rb, Sr, and Ba) (not shown). Our petrography study
shows that in the Qiongduojiang gabbro samples, the later hydrothermal alteration is
mainly filled carbonate veinlets, rather than the metasomatic alteration of feldspar and fer-
romagnetic minerals. Therefore, the influence of hydrothermal alteration on the whole-rock
geochemical data is very limited.

During the upward migration of mafic magmas, crustal contamination might in-
evitably occur, and its geochemical composition will gradually evolve into the crustal
composition. Inherited zircons in the Qiongduojiang gabbro (Table 1) indicate that crustal
contamination also occurred. The degree of crustal contamination can be judged by using
the geochemical indexes of different elements of the crust and mantle. For example, the
radius of U ions is large and tends to be enriched in the crust, Nb is a typical lithophile
element, and their different element behaviors in the crust (Nb/U ratio) can be used as
an indicator of the degree of crustal contamination. In addition, with the increase in the
degree of crustal contamination, the isotopic ratio of basic magma will evolve towards
the crust. Therefore, the degree of contamination can also be judged by using SiO2 and
Nd homotopy mapping. The Qiongduojiang gabbro shows high Nb/U ratios (72–84) and
Nb/La ratios greater than 1. These data do not indicate obvious crustal contamination. On
the other hand, the SiO2 and εNd(t) isotopes of Qiongduojiang gabbro do not show negative
correlations, indicating that the crustal contamination degree of the Qiongduojiang gabbro
is not significant.

The major and trace element composition of the Qiongduojiang gabbro shows a
typical MORB-like characteristic. For example, it is characterized by a lower TiO2 content
(1.43 to 1.48 wt.%) than the oceanic island basalt and a low TFeO/MgO ratio (1.76 to 1.84)
(Figure 4h; [44]). The V content of the Qiongduojiang gabbro ranges from 279 to 298 ppm
with Ti/V ratios between 20 and 50 [54]. Both the REE distribution pattern and primitive-
mantle-normalized spider diagram of the Qiongduojiang gabbro are broadly parallel to
the enriched MORB (E-MORB), with lower Rb and Ba contents. In the Ta/Yb versus
Th/Yb diagram (Figure 6a; [55]), all the Qiongduojiang gabbro plots are in the MORB-OIB
array and close to the E-MORB. Since basalt with a large crustal component plots mainly
above the MORB-OIB array due to the selective addition of Th, crustal contamination in
Qiongduojiang gabbro is negligible. The Nb/Yb ratio of Qiongduojiang gabbro is higher
than 1.45, and the TiO2/Yb ratio is lower than OIB, indicating shallower melting than
OIB (Figure 6b; [55]). Hawkesworth et al. [56] suggested that mantle metasomatized by
subduction-related fluids contains high Ba, whereas mantle with slab components with
high Th contents. The Qiongduojiang gabbro has a Th/Nb of 0.076 to 0.083 and a Ba/Th of
7.34 to 8.95, which is close to the E-MORB composition without visible fluid/melt-related
enrichment [50].

The Qiongduojiang gabbro has 87Sr/86Sr(t) ratios of 0.7055 to 0.7057 and Nd isotope
(εNd(t) values of 3.2–9.8) (Figure 6c), which are similar to Neo-Tethyan ophiolite [57–60].
The 206Pb/204Pb(t), 207Pb/204Pb(t), and 208Pb/204Pb(t) ratios of Qiongduojiang gabbro are
approximately 18.52, 15.65, and 39.00, respectively. These lead isotopic compositions are
consistent with those of Eocene mafic rock and shoshonite in south Tibet, which have
been interpreted as the products of enriched mantle [61]. In summary, both the major and
trace elements, as well as Sr-Nd-Pb isotopic compositions of the Qiongduojiang gabbro,
indicate that it was derived from an enriched mantle source. Similar E-MORB-like basaltic
lavas have also been reported in the Purang massif in the Tethys Himalaya [62]. In the
Yalaxiangbo area, these E-MORB-like magmas are products of the N-MORB mantle mixed
with OIB-like magmas [63].
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5.3. Tectonic Setting

Guillot et al. [64] noticed temperature increases during the retrogressive evolution of
the Tso Morari eclogites in the northwest Himalayas. Extensively crustal melting formed
the magmatic flare-up in the southern Lhasa block (ca. 55–45 Ma) [15,17], OIB-type gabbro
in the Tethys [30], and Mid-Eocene granites in the northern Himalayan Gneiss Domes [19].
Studies about the Cenozoic convergence rate between India and Eurasia show two signifi-
cant decelerations [65–67]. The second deceleration is due to the Neo-Tethyan oceanic slab
breakoff, which lost the slab pull at ca. 45 Ma. Consequently, the speed decreased from
8–10 cm/yr to 4–6 cm/yr) and remained nearly constant rate after that [66,67].

In the early Eocene, major topographic uplift was identified in southern Tibet. Large
volumes of early Eocene sediments were deposited in the Bangladesh basin [68]. The
ultra-high pressure (UHP) rocks from the Western Himalayas were reported with ages ca.
45–55 Ma [20]. The UHP eclogite in the Kaghan Valley recorded a very rapid exhumation
rate from ∼100 to ∼35 km during ca. 46 to 44 Ma [69]. Based on paleomagnetic recon-
structions and tomographical characters, Negredo et al. [70] suggested that the Indian slab
breakoff occurred at ca. 44–48 Ma after the initial Indian–Eurasian continental collision.

The evidence mentioned above includes asthenosphere upwelling, crustal uplift, and
deceleration of convergence between the Indian and Eurasian plates all supporting a slab
breakoff that happened in South Tibet during the middle Eocene (Figure 7). The ca. 46 Ma
Qiongduojiang gabbro was formed during the slab breakoff. Upwelling asthenosphere
offered the heat to partially melt the lithospheric mantle metasomatized by OIB-like com-
ponents in the Yalaxiangbo area [71].
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5.4. Implication of Metallogenesis

The Eocene Neo-Tethyan oceanic slab breakoff triggered the asthenosphere upwelling
and contributed to the modification, remelting, and mixing of the upper continental crustal
materials to form fertile porphyritic intrusions and associated mineralization. Similar to
the Yulong porphyry copper belt, ore-related porphyries were formed by partial melting of
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phlogopite-bearing amphibolite or amphibolite eclogite and are related to the enrichment
mantle, which was altered by older subducted slab-derived fluid [72]. In the Gangdese belt,
Zhao et al. [73] used a Nd-Hf isotopic mixing model to reveal a higher influx of mantle
material into the fertile magma source during this interval and related ore deposits [74–76].

The Gangdese porphyry copper deposits are generally associated with the Miocene
calc-alkaline to high-K calc-alkaline granitoids, which have similar isotopic composition
and inherited ages to those of Paleocene–Eocene arc rocks, indicating that the lower crust
source of the metallogenic Miocene magmas is composed predominantly of the Paleocene–
Eocene arc rocks [76,77]. During the Paleocene–Eocene slab rollback and slab breakoff
processes, the chalcophile (such as Cu) and siderophile metals (such as Mo and Au) were left
as residues in deep crustal arc cumulate zones and/or metasomatized mantle lithosphere,
rendering the subduction-modified Tibetan lithosphere fertile [78]. This conclusion is
supported by the recently discovered Paleocene–Eocene lower crustal hornblendite, which
has sulfides with high Cu contents of up to 1000 ppm [79]. Thus, the Qiongduojiang gabbro
represents the Eocene upwelling asthenosphere playing a vital role in the formation of
porphyry copper deposits in Tibet.

6. Conclusions

(1) The crystallization age of the Qiongduojiang gabbro is constrained to 46.1 + 1.7 Ma,
representing large-scale asthenosphere upwelling during the middle Eocene.

(2) Unlike the coeval Langshan gabbro, the Qiongduojiang gabbro shows typical E-
MORB-like characteristics, indicating the heterogeneous composition of the mantle.
The Qiongduojiang gabbro is direct evidence of slab breakoff, which induced linear
magmatic activities along the YTSZ, the convergence deceleration of Indian and
Eurasian plates, and the uplift of ultrahigh-pressure rocks.

(3) Eocene upwelling asthenosphere played a critical role in the Cu pre-enrichment
in the Gangdese arc root and the consequent formation of the Miocene porphyry
Cu deposits.
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