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Abstract: In ultrahigh-pressure (UHP) metamorphic rocks, rutile is an important accessory mineral.
Its high-pressure polymorph TiO2II can be a significant indicator of pressure in the diamond stability
field. In the present study, in situ high-pressure Raman spectroscopic measurements of natural rutile
in UHP eclogite from the main hole of the Chinese Continental Scientific Drilling Project (CCSD) have
been conducted up to ~16 GPa. Rutile and recovered TiO2II have also been analyzed via single-crystal
X-ray diffraction and FTIR spectroscopy. The results indicate that (1) the phase transition from rutile
to baddeleyite-type TiO2 terminates at about 16 GPa under compression at ambient temperature;
(2) the metastable TiO2II in the exhumated UHP rocks formed during deep continental subduction
can be characterized by a highly distorted octahedral site in the crystal structure. X-ray powder
diffraction analyses (with Cu Kα radiation) at ambient conditions are sufficient for identifying the
lamellae of TiO2II within natural rutile based on the angles (2θ) of two strong peaks at 25.5◦ and
31.5◦; (3) rutile and recovered TiO2II in the continental slabs can contain certain amounts of water
during deep subduction and exhumation. The estimated water contents of rutile in the present study
range from 1590 to 1780 ppm of H2O by weight. In the crystal structure of TiO2II, hydrogen can
be incorporated close to the long O-O edges (>2.5143 Å) of the TiO6 octahedra. Further studies on
the pressure–temperature stability of hydroxyls in rutile and TiO2II may help to understand the
transportation and release of water in subducted continental slabs.

Keywords: rutile; TiO2II; in situ high-pressure Raman spectroscopy; X-ray diffraction; FTIR
spectroscopy

1. Introduction

Rutile (ideal formula: TiO2) is an important accessory mineral in ultrahigh-pressure
metamorphic rocks formed during deep continental subduction [1,2]. According to previ-
ous investigations of water in nominally anhydrous minerals (NAMs), rutile can hold up
to 0.28 wt% of H2O in the form of structural OH [3,4]. Therefore, it is also expected to be a
potential host phase of water in subducting continental slabs.

Rutile has a tetragonal structure with space group of P42/mnm. It is made up of
only one octahedral site that is commonly occupied by Ti4+ (Figure 1). Previous in situ
X-ray diffraction experiments at ambient temperature at a pressure of up to 60 GPa [5,6]
showed that rutile begins to transform to its high-pressure polymorph with the monoclinic
baddeleyite (ZrO2) structure (space group P21/c) at about 12 GPa under compression.
Upon the release of pressure, baddeleyite-type TiO2 converts at 7 GPa into TiO2II (space
group Pbcn), which is another high-pressure polymorph of rutile with the orthorhombic
α-PbO2 structure (Figure 1) and is metastable at a normal pressure. The baddeleyite-
type TiO2 is 11.3(9)% denser than rutile and TiO2II is 2.1(3)% denser than rutile. The
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estimated zero-pressure bulk moduli are 230(20), 260(30), and 290(20) for rutile, TiO2II and
baddeleyite-type TiO2, respectively [6].
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Figure 1. Projection of crystal structures (consisting of TiO6 octahedra) of rutile and TiO2II based on
the single-crystal X-ray diffraction analyses in this study.

In situ high-pressure spectroscopic studies [7–9] indicated that the phase transition
from rutile to baddeleyite-type TiO2 begins at 13 GPa and terminates at 21 to 23 GPa at
room temperature. Upon decompression, the baddeleyite-type TiO2 to TiO2II transition
occurs around 7 GPa and terminates at about 5 GPa. In addition, previous investigations
of high-pressure and high-temperature phase equilibria of TiO2 showed that the phase
boundary between rutile and TiO2II changes from having a negative slope to having a
positive slope with increasing temperature at about 6 GPa and 850 ◦C [10]. Therefore,
in natural ultrahigh-pressure (UHP) metamorphic rocks, widely observed nano-crystal
lamellae of TiO2II within (or coexisting with) rutile can be a significant indicator of pressure
in the diamond stability field [11–13].

To better understand the high-pressure behavior and crystal structure of rutile and its
high-pressure polymorphs in continental slabs during ultra-deep subduction and exhuma-
tion, in situ high-pressure Raman spectroscopic measurements of rutile in UHP eclogite
collected from continental subduction environment have been conducted up to ~16 GPa
in the present work. Natural rutile and recovered TiO2II have also been analyzed via
single-crystal X-ray diffraction and FTIR spectroscopy.

2. Sample Description and Experimental Methods

Natural rutile (Ti0.988Fe0.011O2) was collected from an UHP eclogite (no. B132R114P1a)
in the main hole of the Chinese Continental Scientific Drilling Project (CCSD) in a supracrustal
rock slab, which was subducted to a depth of over 100 km and then exhumed to the surface
during continental collisional orogeny [14,15]. The eclogite is composed of fresh medium-
grained garnet, omphacite, phengite, and minor rutile (Figure 2) and has experienced peak
metamorphic P-T conditions greater than 3 GPa and 700 ◦C [15].

In situ high-pressure Raman spectroscopic measurements were conducted using a
symmetric-type diamond anvil cell (DAC) with a pair of type IIa diamond anvils (culet of
~0.3 mm in diameter). A rhenium gasket was pre-indented to have a thickness of ~60 µm,
and a hole of a diameter of ~0.15 mm was drilled as the sample chamber. A rutile sample
with the size of 40 × 40 × 30 µm was selected and loaded into the sample chamber together
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with two ruby spheres. Argon (Ar) was loaded as a pressure-transmitting medium. The
potential pressure gradients are estimated to be lower than 0.2 GPa at pressures up to
20 GPa [16]. Raman spectra were collected with a HORIBA LabRAM HR Evolution laser
Raman spectrometer at Institute of Geology, Chinese Academy of Geological Sciences,
in the wavenumber range of 100 to 1200 cm−1 (spectral resolution of 1 cm−1), using
10 accumulations and a 5 s exposure time with a 20× microscope objective. All spectra
were excited by a 532 nm solid-state laser at a power of 100 mW. Pressure was calculated
from the shift of the ruby R1 luminescent line [17]. The frequencies (cm−1) of the bands
in the spectra from in situ high-pressure Raman spectroscopic measurements are listed
in Table 1.
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Figure 2. Micro-photographs of eclogite (no. B132R114P1a) from the main hole of the Chinese
Continental Scientific Drilling Project. Abbreviations: Rt = rutile, Phn = Phengite, Grt = Garnet,
Omp = Omphacite.

Table 1. Frequencies (cm−1) of the bands in the spectra from in situ high-pressure Raman spectro-
scopic measurements.

Pressure
(GPa) Phase 1 (Rutile)

2.2 232.80 452.85 614.03 - - - - - - - - -
4.1 239.46 459.78 620.86 - - - - - - - - -
7.5 248.66 469.17 633.03 - - - - - - - - -
8.2 251.21 473.11 638.38 - - - - - - - - -
9.7 253.77 477.56 644.70 - - - - - - - - -

10.8 - 481.55 648.59 - - - - - - - - -
Phase 2

12.4 - - - 449.38 485.44 598.69 654.41 - - - - -
13.2 - - - 453.34 487.90 599.17 657.32 - - - - -
13.8 179.33 320.30 382.16 457.30 489.38 603.04 658.92 - - - - -
14.1 182.43 321.81 381.16 460.76 490.36 604.49 660.23 - - - - -
14.6 181.91 322.32 381.16 464.72 489.87 603.62 659.26 - - - - -

Phase 3 (baddeleyite-type TiO2)

16.0 159.17 221.01 264.99 323.33 351.05 408.63 439.47 492.33 634.01 660.71 702.25 833.26
15.2 159.69 221.53 267.02 325.86 351.55 407.64 438.97 492.33 630.60 658.77 698.88 833.26
14.7 159.17 220.50 263.46 324.85 349.54 406.14 437.98 491.84 630.11 659.74 697.43 830.90
14.0 154.51 218.96 262.95 324.34 349.04 402.65 436.94 490.86 628.17 658.29 696.47 830.43
13.6 152.44 217.43 261.42 324.34 347.03 402.15 436.00 490.86 627.19 657.80 697.43 830.90
13.0 151.92 217.94 262.95 329.89 347.03 399.66 435.00 489.87 626.22 654.90 695.51 828.54
10.5 142.58 209.72 258.87 320.80 346.02 390.17 430.53 486.92 602.37 650.53 690.20 822.88

Phase 4

8.2 142.58 180.88 252.23 289.40 315.75 378.15 449.38 478.54 573.97 614.03 640.33 -
7.1 128.56 183.46 253.25 289.91 314.74 374.15 439.96 471.14 569.11 605.46 623.06 -

Phase 5 (TiO2II)

5.0 178.82 288.89 318.28 374.65 439.47 555.97 592.40 624.76 - - - -
0.0 174.17 287.37 315.75 365.12 431.03 538.90 575.91 612.22 - - - -
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Single crystals of natural rutile (about 60 × 40 × 30 µm in size) and recovered TiO2II
(about 40 × 40 × 30 µm in size) (Figure 3) were mounted on glass fibers for single-crystal
X-ray diffraction measurements, respectively. Intensity data were collected with a Bruker
D8 Venture diffractometer at Center for High Pressure Science and Technology Advanced
Research, Beijing, using APEX4 software. An X-ray (λ = 0.71073 Å) was conducted with
a IµS 3.0 generator using a rotating Mo anode. Crystal structures were refined from the
intensity data via SHELXL-2018 [18] in the package WINGX [19]. The refinements were
based on the scattering factors and absorption coefficients for Ti4+ and O2− from the
International Tables for Crystallography, Volume C [20]. The refined unit cell parameters
and atom positions of rutile and TiO2II are given in Table S1. We calculated X-ray powder
diffraction patterns for the Cu Kα radiation (λ = 1.5405 Å) of rutile and TiO2II from the
crystal structure data collected via single-crystal X-ray diffraction, using the program
CrystalDiffract. These are compared in Figure 4.

Unpolarized infrared spectra of three natural rutile samples and recovered TiO2II
were collected at ambient conditions in the wavenumber range of 3000 to 3800 cm−1,
using a Bruker INVENIO-R FTIR spectrometer with a 15× objective on the HYPERION
1000 microscope at Institute of Geology and Geophysics, Chinese Academy of Sciences.
Each spectrum was accumulated over 128 scans with a 2 cm−1 resolution. The calculation of
the water contents referred to [21], using Lambert–Beer’s Law in the form c = a/ε, wherein
the absorption coefficient a = A/t, and where c is the water concentration (mol·L−1), ε is
the integrated molar absorption coefficient (L·mol−1·cm−1), A is the measured absorbance,
and t is the thickness (cm) of the measured crystal plate. The unpolarized absorbance of
randomly oriented grains in this study is estimated to be one-third of the sum of the three
principal absorbances [22].
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3. Result and Discussion
3.1. In Situ High-Pressure Raman Spectroscopy

Under ambient condition, as shown in Figure 5, the Raman spectrum of rutile in this
study exhibits seven bands at 135, 235, 325, 360, 445, 610 and 830 cm−1. The broad band at
235 cm−1 is ascribed to multi-phonon scattering, which indicates the disordered crystal
structure of rutile at 1 atm [1,8,23]. The two strong bands at 445 and 610 cm−1 are attributed
to the O-Ti-O bending vibration and asymmetric Ti-O stretching vibration, respectively.
The two weak bands at 135 and 830 cm−1 are due to the rotation of the TiO6 octahedra and
symmetric Ti-O stretching vibration, respectively [1,7,9,24].

In the Raman spectra collected in the in situ high-pressure experiment (Figure 6
and Table 1), three strong bands at 235, 445, and 610 cm−1 can be observed, while the
bands initially located at 135, 325, 360, and 830 cm−1 can hardly be detected due to their
relatively low intensity. At elevated pressures up to 10.8 GPa, the bands at 445 and
610 cm−1 linearly shift to higher frequencies without discontinuity (Figure 7a), indicating
the continuous and steady compression of the TiO6 octahedra. In accordance with previous
observations [7,8], the intensity of the 235 cm−1 band decreases with increasing pressure
(Figure 6a). This decrease can be explained by the increased ordering of the crystal structure
under compression [8]. At pressures above 13.2 GPa, a number of new, sharp bands
instantaneously appear in the spectrum (Figure 6a), implying the beginning of the rutile-to-
baddeleyite-type TiO2 transition. At about 16 GPa, the Raman spectrum displays 12 bands
at 159, 221, 264, 323, 350, 408, 440, 492, 634, 660, 702, and 833 cm−1 (Figure 6a and Table 1).
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These bands are consistent with the previously reported vibrational modes of baddeleyite-
type TiO2 [7,9,25], indicating the termination of the transition.
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As shown in Figures 6b and 7b, Raman bands of baddeleyite-type TiO2 linearly shift to
lower frequencies with decreasing pressure down to 10 GPa without notable discontinuity
and band broadening, revealing that the crystal structure of baddeleyite-type TiO2 is still
stable during decompression. In addition, there is no observable increase or decrease in the
intensities of the bands upon the release of pressure. In the pressure range of about 9 to
6 GPa, the bands exhibit a highly non-linear shift with an abrupt change in frequency due
to the phase transition from baddeleyite-type TiO2 to TiO2II. The intensities of the bands
change anomalously with the appearance of a number of new bands (Figures 6 and 7). In
accordance with the reported vibrational modes of TiO2II [7–9], the Raman spectrum shows
eight bands at 178, 288, 318, 374, 440, 555, 592, and 624 cm−1 at about 5 GPa (Figure 6b
and Table 1), demonstrating the termination of the phase transformation. All these bands
are still visible in the Raman spectrum of the recovered TiO2II at 1 atm. However, the two
strong bands at about 178 and 440 cm−1 decrease in intensity after the pressure is released,
implying that their intensities can be pressure-dependent (Figure 6b).

The present work shows that the pressure interval (13 to 16 GPa) of the rutile to
baddeleyite-type TiO2 transition at ambient temperature is significantly narrower than that
(12 to 21 GPa) reported in previous studies [7,9]. In addition, a transition in rutile can also
be observed to begin at about 7 GPa [8], implying a wider pressure interval. Therefore,
more work is needed to determine the potential influence of kinetic factors (such as minor
impurities, grain size, pressure medium and length of time under pressure) on this phase
transition. In addition, at room temperature, the transformation may reflect a slow rate
of abrupt transition [8]. Further high-pressure and high-temperature experiments are
expected to reveal the equilibrium phase boundary among these rutile polymorphs.

3.2. Single-Crystal X-ray Diffraction Analyses

According to single-crystal X-ray diffraction measurements in this study (Table 2),
the average Ti-O distance of the octahedral site (1.9574 Å) in recovered TiO2II is similar
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to that in rutile (1.9599 Å), whereas TiO2II has smaller TiO6 octahedra, compared to rutile
(Figure 8). As shown in Figure 8 and Table 2, the central Ti4+ in the octahedral site in rutile
is bonded to four oxygens at an identical distance (1.9467 Å), which is slightly shorter than
the lengths of other two Ti-O bonds (1.9863 Å). However, in the crystal structure of TiO2II,
two Ti-O bonds (2.0368 Å) are much longer than the other two (1.8874 Å) in a plane. As
a result, the estimated mean octahedral quadratic elongation [26] and octahedral angle
variance of the octahedral site in TiO2II are significantly larger than those in rutile (Figure 8
and Table 2), indicating that the recovered TiO2II has more distorted TiO6 octahedra than
rutile does under ambient conditions [27]. As shown in Figure 4, X-ray powder diffraction
analyses (with Cu Kα radiation) are expected to identify the lamellae of TiO2II within
natural rutile under ambient conditions based on the angles (2θ) of two strong peaks at
25.5◦ and 31.5◦.

Table 2. Site geometry and occupancy parameters for rutile and TiO2II.

Rutile TiO2II

Average bond length 1.9599 Average bond length 1.9574
Octahedral volume 9.9127 Octahedral volume 9.7171

Octahedral angle variance 29.4997 Octahedral angle variance 66.5861
Mean octahedral quadratic

elongation 1.0085 Mean octahedral quadratic
elongation 1.0203

<Ti-O> (2) 1.9863 <Ti-O> (2) 1.8874
<Ti-O> (4) 1.9467 <Ti-O> (2) 1.9481

<O-O> edge 2.7812 <Ti-O> (2) 2.0368
<O-O> edge (shared edge) 2.5284 <O-O> edge 2.8360

<O-O> edge 2.9607 <O-O> edge 2.8873
<O-O> distance 3.8934 <O-O> edge 2.9488
<O-O> distance 3.9726 <O-O> edge 2.7310

Occupancy 1 <O-O> edge (shared edge) 2.5143
<O-O> edge 2.7168
<O-O> edge 2.6509

<O-O> distance 3.8317
Occupancy 1

Note: the bond length and atom distance are measured in Å.
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3.3. FTIR Spectroscopy

The representative mid-infrared spectrum of natural rutile in this study displays three
absorption bands at 3280, 3295, and 3320 cm−1 in the wavenumber range of 3000 to 3800 cm−1

(Figure 9a). All these bands are ascribed to the O-H stretching vibration [2–4]. The main O-H
band at 3280 cm−1 can be observed in the infrared spectra of both natural and synthetic
rutile [1,2,4,28]. This band is attributed to H incorporated close to the shared O-O edge (the
shortest edge of the TiO6 octahedron) and is not associated with any substitutional defects
in the crystal structure [29,30]. However, the two weak O-H bands at 3320 and 3295 cm−1

are, respectively, related to Ti3+ and Fe3+ impurities at the octahedral site [2,29,31]. The
water contents of three rutile samples are estimated to be 1590, 1620, and 1780 ppm of H2O
by weight, respectively. The maximum water content of rutile generally increases with
increasing inferred temperature and pressure [3]. Therefore, rutile from the UHP eclogite in
this study has a relatively high water solubility compared to that of other crustal rocks. For
instance, the maximum reported water concentration of rutile in pegmatite is only 820 ppm
of H2O by weight [3,21].
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In the IR spectrum of recovered TiO2II under ambient conditions, seven bands at 3286,
3312, 3354, 3434, 3510, 3555, and 3745 cm−1 can be observed (Figure 9b). All these bands
are consistent with the reported bands of TiO2II in the range of 3000 to 3800 cm−1 [7],
implying that TiO2II in the continental slabs can also contain certain amounts of water.
The bands at 3354, 3434, 3510, 3555, and 3745 cm−1 are probably associated with longer
O-O edges or O-O distances (>2.5143 Å) (Table 2), indicating the relatively weak effects
of hydrogen bonding (O-H···O) on O-H stretching [32–34]. Since the broad bands around
3400 to 3450 cm−1 can also be due to liquid water (or sub-microscopic fluid inclusions)
in NAMs [3], the possibility that water molecules are taken up by TiO2II after a phase
transition occurs cannot be excluded. Since several hundred parts per million of water
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in NAMs can trigger original partial melting of HP and UHP rocks [35], further studies
on the pressure–temperature stability of hydroxyls in rutile and TiO2II may also help
to understand the transportation and release of water in continental slabs during deep
subduction and exhumation.

4. Conclusions

(1) In situ high-pressure Raman spectroscopic measurements of natural rutile in
an UHP eclogite indicate that the phase transition from rutile to baddeleyite-type TiO2
terminates at about 16 GPa under compression at ambient temperature. The estimated
pressure interval (13 to 16 GPa) of the transition is significantly narrower than that (12 to
21 GPa) reported in previous studies. Kinetic factors are expected to have influences on
this transition at room temperature.

(2) According to single-crystal X-ray diffraction analyses, in the exhumated UHP rocks
formed during deep continental subduction, the metastable TiO2II can be characterized
by highly distorted octahedra in the crystal structure. Under ambient conditions, X-ray
powder diffraction analyses (with Cu Kα radiation) are sufficient to identify the lamellae of
TiO2II within natural rutile based on the angles (2θ) of two strong peaks at 25.5◦ and 31.5◦

(3) Infrared spectroscopic investigations demonstrate that rutile and recovered TiO2II
in the continental slabs can contain certain amounts of water during deep subduction and
exhumation. The estimated water contents of rutile in this study range from 1590–1780 ppm
H2O by weight. The bands with high frequencies (>3350 cm−1) in the IR spectrum of
recovered TiO2II are probably attributed to H incorporated close to the long O-O edges
(>2.5143 Å) of the TiO6 octahedra.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/min13050703/s1. Table S1: Unit-cell and atom position parameters
for rutile and TiO2II.
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