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Abstract: Marine–continental transitional shale is one of the most promising targets for shale gas
exploration in the Lower Yangtze region. To investigate the sedimentary environments and the
regularity of the enrichment of the Longtan shale, multiple techniques including core and thin-section
observations, geochemical and elemental analyses, X-ray diffraction, scanning electron microscopy
(SEM), and low-pressure nitrogen adsorption (LPNA) were used to analyze the sedimentology, min-
eralogy, and pore structure of the Longtan shale. The core descriptions and thin-section observations
showed that the Longtan shale was deposited in marine–delta transitional environments including
delta-front, shore swamp, mixed tidal flat and shallow shelf environments. The Sr/Cu, V/Cr, CIA, EF
(Mo), EF (U), and other major and trace element results indicated warm and moist climates and water-
reducing conditions in the Longtan period. Both the climate and water conditions were favorable
for organic matter production and preservation. The geochemical results showed that the Longtan
shale was in the overmature stage (Ro values ranging from 2.4% to 3.57%) and that the average
total organic carbon (TOC) content was 5.76%. The pore system of the Longtan shale consisted of
inorganic pores with a small number of organic pores and microfractures. The porosity and specific
surface area were mainly affected by the TOC and clay mineral contents. An effective combination
of brittle mineral particles, organic matter, and clay minerals provided the necessary conditions for
pore preservation. The organic pores, intergranular pores in clay minerals, and brittle mineral pores
formed the main network system for the Longtan shale. In summary, the lithological combinations,
organic geochemistry, and pore structure system were all affected by the sedimentary environments.

Keywords: sedimentary facies; pore system; Longtan Formation; southeast Sichuan Basin

1. Introduction

In recent years, great success has been achieved in marine shale gas exploration in
China [1–3]. However, except for marine shale, there is great potential for shale gas or shale
oil exploration in marine–continental transitional shale and continental shale [4,5]. Among
these, continental–marine transitional shale gas represents large resources of approximately
19.8 × 1012 m3, accounting for 25% of China’s total shale gas resources [1,6]. Recently,
new drilling wells in the Bohai Bay Basin, Sichuan Basin, Ordos Basin, and Qaidam Basin
have proven that marine–continental transitional shale gas is becoming increasingly im-
portant [7]. Marine–continental transitional shale is mainly present in the upper Paleozoic
strata and is mainly recognized in the Carboniferous–Permian system, which includes the
Benxi Formation, Taiyuan Formation, Shanxi Formation, and Lower Shihezi Formation [8].
The Shanxi and Taiyuan shale formations are often associated with coal, tight sandstone,
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limestone, etc. The shale of the Permian Longtan Formation in southern China is a promis-
ing target for future shale gas exploitation. Previous research predicted that the potential
exploration area, which has a good continuity of shale thickness and a wide distribution,
is more than 30 × 104 km2 [9]. In addition, several wells drilled in marine–continental
transitional shale in Permian strata have been tested successfully, and good test production
has been suggested. For example, the test production for Well Eye 1 in the shale section of
the Permian Taiyuan Formation in the northwest Ordos Basin is 1.95 × 104 m3/d. Another
five wells drilled for the Shanxi Formation in the Daning Jixian area yielded industrial gas
flow with a maximum open flow greater than 1.0 × 104 m3/d [10]. The test production
of fracturing in three horizontal wells in the Permian Shanxi Formation shale section in
the Yanchuan area to the southeast of the basin was (2.0–5.3) × 104 m3/d. The recent
exploration of marine–continental transitional shale gas in China has gained great success,
and several wells have been drilled in the Longtan Formation (or Wujiaping Formation)
in the Sichuan Basin and its periphery (such as Well LY 3, Well DY1, and Well DS1). The
testing productions of these wells ranged from 3.02–35.85 × 104 m3/day. In addition, in the
Qinshui Basin the wells drilled for Permian shale gas showed a large gas content ranging
from 0.79 m3/t to 4.03 m3/t for Well Shizhuangbei 306 and Well Wuyuan 01 [2–10]. All of
the above drilling results show great potential for future marine–continental transitional
shale gas exploration in the Ordos Basin and Sichuan Basin [11]. However, some basic
geologic problems such as the sedimentary environments have not been solved, and the
regularity of the enrichment of the Longtan shale is still unknown.

The Sichuan Basin evolved from a cratonic basin to a foreland basin via a complex
structural progression from the Paleozoic to the Mesozoic to the Cenozoic and became a
basin with complex marine and continental facies [12]. The source rocks of the Longtan
Formation are widely developed in the Sichuan Basin and are mainly distributed in the
eastern, southeastern, and southwestern Sichuan Basin [5,13]. At present, a large number
of wells drilled in the upper Permian Longtan Formation in the Sichuan Basin and the
surrounding area have shown great gas-bearing properties [3,4]. The sedimentary envi-
ronment transitional characteristics of the Longtan Formation in the Sichuan Basin are
outstanding. From southwest to northeast, the facies transition from continental to marine
facies. This results in the large complexity of the shale in the Permian Longtan Formation
marine–continental transitional facies in the Sichuan Basin [14]. Multiple lithologies have
been recorded in the Longtan Formation, including coal, sandstone, limestone, and shale.
Compared with the Longmaxi Formation marine shale, the types and contents of organic
matter in the Longtan Formation marine–continental transitional shale are different, and
the quality of shale reservoirs in the Longtan shale varies frequently in different areas of the
Sichuan Basin [15]. Although marine–continental transitional shale has recently received
increased attention in China, research on the pore structure of different shales from diverse
sedimentary environments is still lacking. The combined lithological characteristics of
different shales in the Longtan Formation strata play a key role in oil and gas accumulation,
storage, and migration. However, the differences in shale reservoir quality in different
lithological combinations are rarely studied.

At present, research on marine–continental transitional shale gas mainly focuses on the
basic geologic characteristics, distribution, and evaluation of the resource potential of shale;
while research on the classification, characterization, and systematic evaluation of sedi-
mentary environments and different lithological combinations is still lacking [1,5,14,16,17].
Studies on the influence of shale reservoirs in diverse sedimentary environments in the
Permian Longtan Formation in the southeast Sichuan Basin are still lacking. In this study,
we conducted a series of techniques on the Longtan shale that included geochemical and el-
emental analyses, X-ray diffraction, scanning electron microscopy (SEM), and low–pressure
nitrogen adsorption (LPNA). Geochemical and elemental analyses and X-ray diffraction
could be used for analyzing sedimentary environments and sedimentary facies. SEM
could be conducted to qualitatively observe the spatial distribution of pores and microfrac-
tures [18–20]. With these techniques, the lithological combinations and pore structures of
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the Longtan Formation in different sedimentary environments were compared, and the
reservoir qualities of different kinds of lithological combinations in different sedimentary
environments were discussed. This study could offer some clues for the future exploration
of marine–continental transitional shale.

2. Geological Background and Experiments

The Sichuan Basin is one of most important petroliferous basins for unconventional
oil and gas exploration [3,5]. Most areas of the Sichuan Basin were uplifted out of the
ocean during the Dongwu Movement at the end of the middle Permian [15,19]. The
Emeishan basalt eruption during this time resulted in complex geomorphological features
and sedimentary environments in the late Permian [19,21]. In the late Permian, due
to the variation in the tectonic movement, Emeishan basalt eruption, and sedimentary
environments, the sedimentary facies of the Sichuan Basin varied greatly from southwest
to northeast. The southwestern Sichuan Basin is mainly covered by Emeishan basalt from
Yunnan to Chengdu; then, to the northeast of the basin, the area gradually turns into
a transitional depositional environment in which fine-grained sediments such as shale,
silts, and coals were deposited, and the sedimentary facies transition to shore swamps
and mixed tidal flats. In Chongqing and its northern part, the strata are mainly a set of
carbonate sediments deposited in a marine environment in the northern and eastern parts
of the basin, and sedimentary facies transition to shallow-water and deep-water shelf
facies (Figure 1). The study area was located in the southeastern part of the basin and has
experienced multiple complex tectonic movements, which created a high steep fold belt in
the eastern Sichuan Basin and a low gentle fold belt in the southern Sichuan Basin [22,23].
The study area contained most of the strata from the Sinian to the Quaternary, in which the
Longtan Formation widely contains a set of coal-bearing rocks with thicknesses of 20–120 m.
The Longtan Formation has parallel unconformable contact with the underlying Maokou
Formation [24]. The sedimentary environments change frequently from the southeastern
area to the northwestern area. The thickness and lithological combinations also vary greatly
in different areas (Figure 1).
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The samples in this study were taken from cored Wells LY 3 and CLD 1 in the south-
eastern Sichuan Basin. Thirty samples were collected to complete the X-ray diffraction, total
organic carbon (TOC), and pore structure characterization tests. Among them, 10 samples
were used for major and trace element analyses. The qualitative mineral compositional
analysis was conducted with an X’Pert Powder X-ray diffractometer. During the test, the
sample was diffracted when exposed to X-rays. The X-ray diffraction data of the sample
were compared with the standard X-ray spectrogram of the mineral to qualitatively analyze
the whole-rock mineral composition and clay mineral composition. The FE-SEM test was
completed with a ZEISS Sigma300 FE-SEM. During these experiments, the sample was
polished by focusing the electron beam. A detector was used to collect the secondary
electrons that were excited on the surface of the rock sample, and the scanned image that
was synchronized with the electron beam was displayed to observe and analyze the pore
morphology and sample surface morphology of different samples. The nitrogen adsorption
test was completed with an ASAP 2460 fully automatic specific surface and pore size
analyzer. During the test, gas was injected into the sample under isothermal conditions; the
adsorption amount of gas on the medium surface under different pressures was recorded;
and the specific surface area, pore volume, pore size distribution, and other characteristics
of the sample were calculated using different theoretical models. An AXios mAX X-ray
fluorescence spectrometer and an inductively coupled plasma mass spectrometer with a
measurement accuracy better than 3% were used to determine the contents of major, trace,
and rare earth elements.

3. Results
3.1. Thin-Section Observations

Several outcrops (Xinwen, Xinqiao, and Tianfu) and 46 drill cores from LY 3 and CLD
1 were employed to describe the sedimentary facies of the Permian Longtan Formation
in the southeastern Sichuan Basin. All types of evidence, including the color, grain size,
main minerals, sedimentary structures, presence and type of clasts and bioclasts, diagenetic
features, and deformation features, were used to analyze the facies types and distributions
of the Longtan shale in the study area.

The Longtan Formation in the southeast Sichuan Basin is a set of coal-bearing shales
deposited in marine–continental transitional sedimentary environments. The lithology was
dominated by bioclastic shale and shale mixed with limestone or siltstone (Figure 2a). Thin
coal seams were occasionally observed; plant fossils were abundant (Figure 2b), and cross-
bedding and parallel bedding were present (Figure 2c). Tidal flat facies were mainly present
in the gentle slope zone and were often combined with shallow shelf facies. The lithology
was dominated by shale, siltstone interbedding, or silty shale (Figure 2d). Vein bedding,
wavy bedding, and sand–mud interbedding contained siderite nodules (Figure 2e,f); and
sand flat, mixed flat, and mud flat deposits were present. The swamp facies formed in a silty,
muddy, low-energy coastal environment. The lithology was dominated by shale with thick
coal seams (Figure 2g,h). Pyrite nodules, siderite strips, and some siderite nodules were
present and had horizontal bedding and minor cross-bedding (Figure 2i), which indicated
a sedimentary environment with low energy. The water in the sedimentary environment
was relatively deep, the climate was warm and suitable, and common biological fossils
were preserved.

3.2. Petrology and Characteristics of Different Lithological Combinations

The lithology of the Longtan Formation is complex, and the lithology identified in the
thin sections was mainly gray–black and black shale with thin coal seams and carbonaceous
shale [10]. There were many shale layers and interlayers, including limestone, marlstone,
silty fine sandstone, and coal seams (Figure 3).
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The mineral compositions of 30 samples from Well LY 3 and Well CLD 1 Longtan
Formation in the study area were tested by using whole-rock X-ray diffraction and clay
mineral technology. The mineral composition was dominated by clay minerals with an
average content of 52.00%. The average content of calcite, dolomite, and other carbonate
rocks was approximately 21.00%; and the average content of quartz, feldspar, and other
clastic minerals was approximately 18.83%. According to the relationship of different
lithological combinations, the lithological combination of the Longtan Formation in cored
Wells LY 3 and CLD 1 in the southeastern Sichuan Basin could be divided into three types:
thick shale mixed with limestone or siltstone; thick carbonaceous shale; and interbedded
shale, siltstone, and limestone. The medium-thick shale mixed with limestone or siltstone
was mainly distributed in Well LY 3 in the upper Longtan Formation, and thin coal seams
were occasionally visible due to the influence of water recession and water inflow. The
mineral composition was mainly carbonate and clay minerals with average contents of
39.57% and 32.43%, respectively; and the average content of quartz, feldspar, and other
clastic minerals was 20.14%. The thick shale or carbonaceous shale was mainly distributed
in the middle Longtan Formation, which has relatively thick coal seams. Due to the mainly
shallow shelf sediment and the relatively deep water body, the average content of clay
minerals was 68.29%; the average content of quartz, feldspar, and other clastic minerals
was 15.14%; and the average content of carbonate minerals was approximately 10.57% (in
which siderite was in the form of nodules and powder crystals). The lithologic combination
of shale, siltstone, and limestone interbeds was mainly present in the lower Longtan
Formation, where thin coal seams are present. With the corresponding sedimentary facies
in the tidal flat environment, the average content of clay minerals was 52.69%; the average
content of quartz, feldspar, and other clastic minerals was 19.88%; and the average content
of carbonate minerals was 18.25%. At the bottom of the Longtan Formation, bauxite shale
is developed and unconformably contacts the limestone in the Maokou Formation.

3.3. Geochemical Characteristics

The organic matter quality and maturity are critical for shale evaluation.
Thermal maturity is a vital parameter for shale organic–geochemical assessment,

and the vitrinite reflectance (Ro) is commonly used for thermal maturity measurements.
Additionally, a series of tests were conducted for these selected eight shale samples. In the
process of measuring the reflectance of vitrinite, the number of measurement points for
each sample should be no less than 15, and Romax was selected as the reflectance value
for each measurement point (Table 1). The results showed that the Ro values ranged from
2.4% to 3.57% with an average of 3.08%, which indicated that the Longtan shale is in a
high-maturity stage.

Table 1. Kerogen type and reflectance of the Longtan Formation.

Sample No. Lithology
Reflectance

Minimum Maximum Average Standard Deviation Measured Points

#3 Carbonaceous shale 2.22 2.61 2.4 0.11 20
#4 Calcareous shale 2.47 2.86 2.65 0.11 20
#6 Shale 2.52 2.85 2.69 0.09 20
#7 Silty shale 2.97 3.42 3.23 0.13 16
#8 Shale 2.96 3.41 3.26 0.11 20
#9 Shale 3.06 3.48 3.32 0.12 15

#12 Shale 3.23 3.55 3.49 0.12 10
#15 Silty shale 3.35 3.75 3.57 0.12 16

The total organic carbon (TOC) content is known to play one of most useful roles
in determining shale reservoirs. For this study, a total of 28 samples were collected for
TOC testing. The results showed that the TOC values of Longtan samples had a wide
range of 0.16% to 34.16%. The average content was 4.15%, which is very good for shale
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gas reservoirs. Additionally, the TOC contents varied in different parts of the Longtan
Formation. The TOC of the shale from the lower Longtan Formation was significantly
higher than that of the middle and upper Longtan Formations. The TOC values of the lower
Longtan Formation shale mainly ranged from 1.213% to 14.16% with an average of 5.76%.
The maximum TOC of the shale from the lower Longtan Formation reached 14.16%, and
the shale was found near the coal. The TOC values of the shale from the middle Longtan
Formation were 1.18% to 4.49% with an average of 2.86%. The TOC values of the upper
Longtan Formation shale ranged from 0.94% to 3.47% with an average of 2.6%.

3.4. Pore System of Shale Reservoir
3.4.1. Pore Type

The micro- and nanopore system of the Longtan Formation samples in the study
area were observed by using Ar ion polishing FE-SEM. According to the pore genesis and
structural characteristics of shale [25–27], the reservoir spaces of the Longtan Formation
marine–continental transitional facies shale were mainly composed of inorganic pores,
organic pores, and microfractures. Organic pores were mostly distributed among clay min-
eral particles or in clastic particles such as quartz. Clay minerals (such as montmorillonite)
with unstable chemical properties generated a large number of pores during the process of
sedimentation and burial and transformed into a mixed layer of illite and montmorillonite.
Lamellar mixed layer aggregates developed a large number of interlayer pores, which
were curved (Figure 4a). Some intergranular and intragranular pores were also abundant
and were located between minerals such as quartz (Figure 4b,c). These interstratified,
intergranular, and intragranular micropores not only create space for shale gas storage
but also provided micro-migration channels for gas seepage. The second abundant pore
type was framboidal pyrite intercrystalline pores (Figure 4d), which were mainly formed
in the process of crystal accumulation due to the interference of the external environment
during the self-growth of pyrite and other minerals. The pore size varied from several
to several hundred nanometers, and the pores were relatively poorly developed and had
poor connectivity. Occasionally, due to the dissolution of mineral crystals such as siderite,
a certain number of intercrystalline (grain) dissolution pores (Figure 4e) were also gener-
ated at the edges. The intergranular dissolution pores were often in the form of bays or
were narrow and long, and there were relatively few dissolution pores in the study area
according to microscopic observations. The distribution of organic matter pores in the
Longtan Formation test samples was related to the type and occurrence of organic matter.
The organic matter distribution in the reservoir could be divided into filling, dispersed, and
bedding enrichment types (Figure 4f,g). The corresponding organic matter pores were not
very well developed, and they were circular or elliptical (Figure 4h). The microfractures in
the Longtan Formation shale were relatively developed, mainly distributed at the interface
of different mineral particles and the edge of organic matter, and partially distributed in
clay mineral particles. Exogenous fractures and interparticle fractures mainly formed under
an external force, and the widths of the fractures generally ranged from 1 µm to 20 µm.
Some microfractures cut through clastic particles or clay mineral particles in a straight line
(Figure 4j). Aged shrinkage pores (Figure 4k,l) were present between the organic matter
and mineral particles, and these pores developed mainly due to the volume shrinkage
during the thermal evolution of the organic matter. The intergranular pores in clay minerals
and organic matter pores were located in the shale with a high organic matter content in
the lower and middle Longtan Formation in Wells LY 3 and CLD 1. In Iran and Mongolia,
the clay mineral pores were mainly developed between the mixed layers, and they were
mainly in sheet, linear, or slit shapes. Isolated and disconnected pores were locally visible
in the organic matter.
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Figure 4. Distribution characteristics of micro-reservoir space in different shale samples of Longtan
Formation: (a) slit-shaped clay mineral grain pores from the middle Longtan Formation; (b) mineral
grain pores with relatively small apertures from the upper Longtan Formation; (c) mineral grain
pores with relatively small apertures from the upper Longtan Formation; (d) pyrite intergranular
pores; (e) siderite intergranular dissolution pores from the upper Longtan Formation; (f) fragmental
organic matter (TOC: 2.38%) from the lower Longtan Formation; (g) bundle tubular organic matter
(TOC: 3.55%) from the middle Longtan Formation; (h) irregular organic matter pores (TOC: 3.20%)
from the middle Longtan Formation; (i) bubble-shaped organic matter pores (TOC: 4.49%) from the
upper Longtan Formation; (j) mineral intergranular pores/fractures; (k) microfissures; (l) organic
matter edge contraction joints (TOC: 3.28%) from the middle Longtan Formation.
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3.4.2. Pore Structure

The characteristics of porosity and pore structure development in different samples
were tested by using the saturated ethanol method and liquid nitrogen isothermal ad-
sorption method, respectively. The specific surface area was calculated by using the BET
equation, and the pore volume was obtained by using the BJH equation. The porosity
values of the sample were 1.84% to 5.73%, and the values were relatively concentrated
in the ranges of 2% to 4% and 6% to 8%. The specific surface area values were mainly
distributed from 1.122 m2/g to 24.452 m2/g with an average of 9.94 m2/g, and the pore
volume values were mainly distributed from 0.001 mL/g to 0.032 mL/g with an average of
0.016 mL/g.

The shapes of the hysteresis loop curve and the isothermal adsorption–desorption
curve can qualitatively reflect the shapes of the pores to a certain extent [28]. However, the
pore types of shale reservoirs are diverse, and the hysteresis loop is often the superposition
of a variety of typical curves.

Figure 5 shows the characteristics of the low-pressure nitrogen adsorption/desorption
experiments. With reference to the IUPAC’s classification scheme based on the nitrogen
adsorption/desorption isotherm curve, the morphologies of the sample adsorption loops
could be divided into two categories.
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The type I adsorption loop had the characteristics of the IUPAC’s H2 and H3 curves:
the adsorption and desorption curves in the low-pressure section (0≤ P/P 0 < 0.4) basically
coincided, and the medium-pressure section (0.4 ≤ P/P 0 < 0.8) had obvious inflection
points and a large hysteresis loop width, indicating that the corresponding pore structure
was complex. Multiple pore types existed simultaneously and were characterized by ink-
bottle-shaped pores. In the high-pressure section (0.8 ≤ P/P 0 ≤ 1.0), the slope of the
adsorption and desorption curves increased (Figure 5a), indicating the existence of grooved
open pores. The shape of the type II adsorption loop was similar to that of the type I
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adsorption loop. The adsorption and desorption curves of the low-pressure section and the
medium-pressure section almost coincided with no obvious inflection point. The slopes
of the adsorption and desorption curves within the high-pressure range did not increase
significantly (Figure 5b), indicating that the pore type in the sample was singular and the
number of groove-shaped open pores was small; most of these were slit-type micropores.
Statistics indicated that the nitrogen adsorption–desorption curves of most of the middle
Longtan Formation shale samples and some of the lower Longtan Formation shale samples
were mostly characterized by type I adsorption curves. The nitrogen adsorption–desorption
curves of shale samples in the upper Longtan Formation were mostly type II adsorption
curves, and the pore types were mostly slit pores with relatively small gas adsorption
capacities. According to the pore size distribution curve, the pores were mainly micropores
and mesopores. The pore size distribution showed a bimodal distribution with peak values
of 2–5 nm and 10–20 nm (Figure 5c).

4. Discussion
4.1. Sedimentary Environments and Sedimentary Facies

According to the major and trace element analyses of the samples, the V/Cr ratio,
Sr/Cu ratio, Mo enrichment coefficient, and other index values of different samples were
calculated, and the sedimentary environment of the Longtan Formation in the study area
was systematically analyzed. The smaller the V/Cr ratio was, the higher the oxidation
degree of the water; the larger the ratio was, the stronger the reduction degree of the
water [29–31]. Generally, when the V/Cr is smaller than 2.00, it indicates an oxidizing
environment; when the V/Cr is greater than 4.25, it shows a reducing environment. V/Cr
values ranging from 2.00 to 4.25 indicate an oxygen-poor environment. It is generally
believed that a Sr/Cu ratio of 1.30 to 5.00 indicates a warm and moist climate and that a
Sr/Cu ratio greater than 5.00 suggests a dry and hot climate. The enrichment coefficients
(EFs) of the variable-valence elements U and Mo can be used to characterize the enrichment
degree of elements in sediments. When EFX > 1, element X is enriched relative to the average
shale. Conversely, EFX < 1 indicates that element X is deficient relative to the average shale.
When U is enriched but Mo is not, a possible anoxic sedimentary environment may be
indicated; when they are significantly enriched at the same time, a sulfide sedimentary
environment is indicated (that is, a sedimentary environment containing a certain amount
of H2S in the water body) [32]. During the calculation process, trace elements were first
standardized with relatively stable Al elements during diagenesis [32–35] and compared
with the average shale value (according to Wedepohl). The calculation formula was
as follows:

EFX = (X/Al)sample/(X/Al)Average Shale (1)

In addition, the CIA proposed by Nesbitt et al. could also be used to evaluate the
paleoclimatic conditions during the period of marine–terrestrial transitional shale depo-
sition of the lower Longtan Formation [36]. Generally, large CIA values indicate warm
and moist paleoclimates, while small CIA values indicate dry and cold paleoclimates. In
particular, when the CIA is between 50 and 65, it indicates a dry and cold climate under the
background of low chemical weathering; when the CIA is between 65 and 85, it indicates
a warm and moist climate under the background of moderate chemical weathering; and
when the CIA is between 85 and 100, it indicates a hot–moist climate under the background
of strong chemical weathering. The calculation formula was as follows:

CIA =

[
Al2O3

CaO∗ + Al2O3 + Na2O + K2O

]
× 100 (2)

The results showed that the Sr/Cu values of rock samples of the Longtan Formation
in the study area ranged from 0.75 to 5.72 with an average of 2.90, and the V/Cr values
were 1.02–4.21 with an average of 2.09, indicating that the water in the Longtan Formation
was in a poor oxygen state during the deposition of organic shale. The CIA values ranged
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from 76.96 to 97.89; the average was approximately 87.41. Mo (EF = 1.47) and U (EF = 1.51)
were relatively enriched, indicating that the climate during the deposition of the Longtan
Formation was warm and moist (Tables 2 and 3).

Table 2. Experimental Results for the Major Elements in Samples from the Longtan Formation of the
Cored Well.

Sample No. Depth (m)
Major Element Contents (%)

SiO2 Al2O3 MgO Na2O K2O P2O5 TiO2 CaO TFe2O3 MnO CIA

Detection Limits 0.0335 0.0375 0.0277 0.0021 0.0382 0.0019 0.0333 0.0438 0.0078 0.0138

#1 3161.23 34.56 16.43 2.66 1.07 1.28 0.37 3.18 8.08 10.18 0.19 76.96
#2 3165.31 24.95 12.87 1.44 0.64 1.09 0.07 2.89 4.88 27.78 0.14 79.6
#3 3168.8 21.07 3.65 1.37 0.07 0.13 0.21 0.14 4.68 9.21 0.07 90.6
#4 3171.97 7.33 3.02 1 0.09 0.02 0.02 0.16 3.79 11.05 0.06 90.16
#5 3173.48 42.62 24.25 0.83 1.07 1.34 0.33 4.57 0.7 6.6 0.02 84.34
#6 3210.79 7.26 4.8 0.09 0.16 0.06 0.03 0.42 0.5 1.06 0.01 88.77
#7 3222.58 55.49 20.89 0.78 0.86 2.3 0.14 3.95 1.6 2.22 0.04 79.69
#8 3239.16 10.29 7.63 0.17 0.13 0.5 0.11 0.51 8.13 12.42 0.05 88.88
#9 3242.08 39.78 33.09 0.12 0.19 0.13 0.03 4.91 0.15 5.82 0 97.89
#10 3243.14 32.77 27.52 0.11 0.18 0.19 0.08 4.43 0.28 15.8 0.01 97.23

Table 3. Trace Element Experiment Results for Samples from the Longtan Formation of the Cored Well.

Sample
No.

Depth
(m)

Trace Element Contents (ug/g) Elemental Ratio

Li Be V Cr Co Ni Cu Zn Ba Mn Sn U Sr/Cu V/Cr EFMo EFU

#1 3161.23 23.89 2.72 265.03 130.2 16 80.12 576.69 119.09 434.57 1408 4.06 3.72 0.912 2.04 1.41 1.27
#2 3165.31 21.43 2.62 248.95 309.8 38.98 207.96 395.07 100.42 335.93 1131 2.97 2.8 0.985 0.8 1.76 1.22
#3 3168.8 18.14 0.83 118.53 28.86 67.82 192.33 72.75 247.31 40.64 562 1.23 1.42 3.49 4.11 10.41 2.18
#4 3171.97 14.02 0.67 34.02 23.78 39.43 89.13 28.02 21.08 34.16 425 1.24 1.16 4.533 1.43 3.18 2.16
#5 3173.48 59.77 4.7 357.12 145.96 52.01 123.05 204.23 133.66 455.07 143 5.11 4.18 3.731 2.45 1.18 0.96
#6 3210.79 21.92 1.47 220.6 100.74 22.18 106.53 75.82 10.72 243.44 48 1.6 1.33 1.159 2.19 2.91 1.55
#7 3222.58 7.15 5.57 320.96 111.54 41.82 65 188.32 91.06 315.37 279 5.47 4.44 3.333 2.88 1.2 1.19
#8 3239.16 26.1 5.02 54.7 53.96 3.54 21.13 144.54 27.14 762.65 343 2.27 3.39 1.003 1.01 2.35 2.49
#9 3242.08 217.17 3.58 1285.76 500.56 11.7 96.62 26.91 24.6 42.21 37 7.47 18.69 4.568 2.57 1.16 3.16
#10 3243.14 240.73 3.77 977.89 391.7 18.82 113.5 99.51 47.94 45.23 76 8.94 11.37 1.678 2.5 1.09 2.31

Based on the results of the thin-section observations and sedimentary environmental
analysis, it could be concluded that various sedimentary facies were present in the Longtan
Formation. The sedimentary facies varied greatly in different areas. In the southwestern
part of the Sichuan Basin, a great amount of basalt was present. The sedimentary facies
varied from delta-front, shore swamp, and mixed tidal flat to shallow shelf facies (Figure 6).
For the delta-front facies to shallow shelf facies, the water in the depositional environment
gradually increased. Basalt infiltration greatly influenced the sedimentary environments
in the Longtan period. A detailed analysis of outcrops and drill cores in the study area
revealed that the deposition of Longtan Formation shale was affected by both marine
tidal action and terrigenous river action. The high detrital flux originated from the basalt
infiltration area and delta-front area. The formation of the delta-front facies in the Longtan
period in the study area were affected by waves and tides, and the overall energy in the
sedimentary environment was high. The most favorable sedimentary environments for
shale deposition were shore swamps and tidal flats. The shale in the shore swamp and
tidal flat facies had high TOC contents and a good pore structure.

In addition, the lithological combinations varied greatly vertically (Table 4). From the
bottom to the top, the Longtan Formation experienced a process of dynamic water: quiet
water low energy→medium-low energy→ low energy (Figure 6). The shale could have
formed in shore swamps and mixed tidal flats. The limestone formed mainly in the shallow
shelf. The influence of the detrital input decreased in the shallow shelf area. Chemical and
biological reactions played a key role when carbonate minerals increased in mixed tidal flat
facies and shallow shelf facies.
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4.2. Shale Reservoir Quality in Different Sedimentary Facies 

The distribution of sedimentary facies, organic matter content, mineral composition, 
and tectonic evolution together influence the micropore type, shale gas occurrence state, 
and enrichment degree of the reservoir [33,34]. Among them, the lithology and mineral 
composition under the control of the sedimentary environment are the main factors con-
trolling the pore distribution [35]. As the main components of shale, quartz and clay min-
erals have different degrees of influence on the pore structure and shale reservoir quality. 

According to the statistics of the specific surface area and pore volume of samples in 
different sedimentary environments, the specific surface area values of samples from the 
tidal flat environment had a relatively wide distribution ranging from 1.3706 to 24.4528 
m2/g with a mean value of 8.4331 m2/g. The specific surface area values of samples from 
the shallow water shelf depositional environment were relatively large and ranged from 
5.073 to 24.0224 m2/g with a mean value of 15.6474 m2/g. The specific surface area of the 
samples from delta facies ranged from 1.122 to 14.3005 m2/g with a mean value of 7.7714 
m2/g. Due to the characteristics of the sedimentary environment, the pore volume and 
specific surface area of shale in delta, tidal flat, and shallow shelf facies increased gradu-
ally (Figure 7). The delta-front facies had strong hydrodynamic conditions, low contents 
of organic matter, high contents of carbonate rocks such as calcite and quartz, and large 
intergranular pores. In tidal flat and shallow shelf environments, shale was deposited in 
a relatively closed low-energy environment. The partially reducing environment with a 
low oxygen content gave the shale a high organic carbon content. The reservoir space in 
the samples was mainly composed of organic matter pores and intergranular pores in clay 
minerals, which increased the pore volume and specific surface area. 
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4.2. Shale Reservoir Quality in Different Sedimentary Facies 

The distribution of sedimentary facies, organic matter content, mineral composition, 
and tectonic evolution together influence the micropore type, shale gas occurrence state, 
and enrichment degree of the reservoir [33,34]. Among them, the lithology and mineral 
composition under the control of the sedimentary environment are the main factors con-
trolling the pore distribution [35]. As the main components of shale, quartz and clay min-
erals have different degrees of influence on the pore structure and shale reservoir quality. 

According to the statistics of the specific surface area and pore volume of samples in 
different sedimentary environments, the specific surface area values of samples from the 
tidal flat environment had a relatively wide distribution ranging from 1.3706 to 24.4528 
m2/g with a mean value of 8.4331 m2/g. The specific surface area values of samples from 
the shallow water shelf depositional environment were relatively large and ranged from 
5.073 to 24.0224 m2/g with a mean value of 15.6474 m2/g. The specific surface area of the 
samples from delta facies ranged from 1.122 to 14.3005 m2/g with a mean value of 7.7714 
m2/g. Due to the characteristics of the sedimentary environment, the pore volume and 
specific surface area of shale in delta, tidal flat, and shallow shelf facies increased gradu-
ally (Figure 7). The delta-front facies had strong hydrodynamic conditions, low contents 
of organic matter, high contents of carbonate rocks such as calcite and quartz, and large 
intergranular pores. In tidal flat and shallow shelf environments, shale was deposited in 
a relatively closed low-energy environment. The partially reducing environment with a 
low oxygen content gave the shale a high organic carbon content. The reservoir space in 
the samples was mainly composed of organic matter pores and intergranular pores in clay 
minerals, which increased the pore volume and specific surface area. 
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4.2. Shale Reservoir Quality in Different Sedimentary Facies 

The distribution of sedimentary facies, organic matter content, mineral composition, 
and tectonic evolution together influence the micropore type, shale gas occurrence state, 
and enrichment degree of the reservoir [33,34]. Among them, the lithology and mineral 
composition under the control of the sedimentary environment are the main factors con-
trolling the pore distribution [35]. As the main components of shale, quartz and clay min-
erals have different degrees of influence on the pore structure and shale reservoir quality. 

According to the statistics of the specific surface area and pore volume of samples in 
different sedimentary environments, the specific surface area values of samples from the 
tidal flat environment had a relatively wide distribution ranging from 1.3706 to 24.4528 
m2/g with a mean value of 8.4331 m2/g. The specific surface area values of samples from 
the shallow water shelf depositional environment were relatively large and ranged from 
5.073 to 24.0224 m2/g with a mean value of 15.6474 m2/g. The specific surface area of the 
samples from delta facies ranged from 1.122 to 14.3005 m2/g with a mean value of 7.7714 
m2/g. Due to the characteristics of the sedimentary environment, the pore volume and 
specific surface area of shale in delta, tidal flat, and shallow shelf facies increased gradu-
ally (Figure 7). The delta-front facies had strong hydrodynamic conditions, low contents 
of organic matter, high contents of carbonate rocks such as calcite and quartz, and large 
intergranular pores. In tidal flat and shallow shelf environments, shale was deposited in 
a relatively closed low-energy environment. The partially reducing environment with a 
low oxygen content gave the shale a high organic carbon content. The reservoir space in 
the samples was mainly composed of organic matter pores and intergranular pores in clay 
minerals, which increased the pore volume and specific surface area. 
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4.2. Shale Reservoir Quality in Different Sedimentary Facies 

The distribution of sedimentary facies, organic matter content, mineral composition, 
and tectonic evolution together influence the micropore type, shale gas occurrence state, 
and enrichment degree of the reservoir [33,34]. Among them, the lithology and mineral 
composition under the control of the sedimentary environment are the main factors con-
trolling the pore distribution [35]. As the main components of shale, quartz and clay min-
erals have different degrees of influence on the pore structure and shale reservoir quality. 

According to the statistics of the specific surface area and pore volume of samples in 
different sedimentary environments, the specific surface area values of samples from the 
tidal flat environment had a relatively wide distribution ranging from 1.3706 to 24.4528 
m2/g with a mean value of 8.4331 m2/g. The specific surface area values of samples from 
the shallow water shelf depositional environment were relatively large and ranged from 
5.073 to 24.0224 m2/g with a mean value of 15.6474 m2/g. The specific surface area of the 
samples from delta facies ranged from 1.122 to 14.3005 m2/g with a mean value of 7.7714 
m2/g. Due to the characteristics of the sedimentary environment, the pore volume and 
specific surface area of shale in delta, tidal flat, and shallow shelf facies increased gradu-
ally (Figure 7). The delta-front facies had strong hydrodynamic conditions, low contents 
of organic matter, high contents of carbonate rocks such as calcite and quartz, and large 
intergranular pores. In tidal flat and shallow shelf environments, shale was deposited in 
a relatively closed low-energy environment. The partially reducing environment with a 
low oxygen content gave the shale a high organic carbon content. The reservoir space in 
the samples was mainly composed of organic matter pores and intergranular pores in clay 
minerals, which increased the pore volume and specific surface area. 
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4.2. Shale Reservoir Quality in Different Sedimentary Facies 

The distribution of sedimentary facies, organic matter content, mineral composition, 
and tectonic evolution together influence the micropore type, shale gas occurrence state, 
and enrichment degree of the reservoir [33,34]. Among them, the lithology and mineral 
composition under the control of the sedimentary environment are the main factors con-
trolling the pore distribution [35]. As the main components of shale, quartz and clay min-
erals have different degrees of influence on the pore structure and shale reservoir quality. 

According to the statistics of the specific surface area and pore volume of samples in 
different sedimentary environments, the specific surface area values of samples from the 
tidal flat environment had a relatively wide distribution ranging from 1.3706 to 24.4528 
m2/g with a mean value of 8.4331 m2/g. The specific surface area values of samples from 
the shallow water shelf depositional environment were relatively large and ranged from 
5.073 to 24.0224 m2/g with a mean value of 15.6474 m2/g. The specific surface area of the 
samples from delta facies ranged from 1.122 to 14.3005 m2/g with a mean value of 7.7714 
m2/g. Due to the characteristics of the sedimentary environment, the pore volume and 
specific surface area of shale in delta, tidal flat, and shallow shelf facies increased gradu-
ally (Figure 7). The delta-front facies had strong hydrodynamic conditions, low contents 
of organic matter, high contents of carbonate rocks such as calcite and quartz, and large 
intergranular pores. In tidal flat and shallow shelf environments, shale was deposited in 
a relatively closed low-energy environment. The partially reducing environment with a 
low oxygen content gave the shale a high organic carbon content. The reservoir space in 
the samples was mainly composed of organic matter pores and intergranular pores in clay 
minerals, which increased the pore volume and specific surface area. 
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ally (Figure 7). The delta-front facies had strong hydrodynamic conditions, low contents 
of organic matter, high contents of carbonate rocks such as calcite and quartz, and large 
intergranular pores. In tidal flat and shallow shelf environments, shale was deposited in 
a relatively closed low-energy environment. The partially reducing environment with a 
low oxygen content gave the shale a high organic carbon content. The reservoir space in 
the samples was mainly composed of organic matter pores and intergranular pores in clay 
minerals, which increased the pore volume and specific surface area. 
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4.2. Shale Reservoir Quality in Different Sedimentary Facies

The distribution of sedimentary facies, organic matter content, mineral composition,
and tectonic evolution together influence the micropore type, shale gas occurrence state,
and enrichment degree of the reservoir [33,34]. Among them, the lithology and mineral
composition under the control of the sedimentary environment are the main factors control-
ling the pore distribution [35]. As the main components of shale, quartz and clay minerals
have different degrees of influence on the pore structure and shale reservoir quality.

According to the statistics of the specific surface area and pore volume of samples in dif-
ferent sedimentary environments, the specific surface area values of samples from the tidal
flat environment had a relatively wide distribution ranging from 1.3706 to 24.4528 m2/g
with a mean value of 8.4331 m2/g. The specific surface area values of samples from the
shallow water shelf depositional environment were relatively large and ranged from 5.073
to 24.0224 m2/g with a mean value of 15.6474 m2/g. The specific surface area of the samples
from delta facies ranged from 1.122 to 14.3005 m2/g with a mean value of 7.7714 m2/g. Due
to the characteristics of the sedimentary environment, the pore volume and specific surface
area of shale in delta, tidal flat, and shallow shelf facies increased gradually (Figure 7). The
delta-front facies had strong hydrodynamic conditions, low contents of organic matter,
high contents of carbonate rocks such as calcite and quartz, and large intergranular pores.
In tidal flat and shallow shelf environments, shale was deposited in a relatively closed
low-energy environment. The partially reducing environment with a low oxygen content
gave the shale a high organic carbon content. The reservoir space in the samples was
mainly composed of organic matter pores and intergranular pores in clay minerals, which
increased the pore volume and specific surface area.
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Figure 7. Distribution of the specific surface area and pore volume of different shale types in different
sedimentary environments.

The pore structure parameters of the Longtan Formation samples obtained via low-
temperature liquid nitrogen adsorption were used for analysis. The correlations between
different pore structure parameters such as the specific surface area, pore volume, and
pore diameter as well as the contents of TOC, clay minerals, and quartz were analyzed
for different sedimentary environments (Figure 8). The results showed that in the delta
sedimentary environment, the porosity in the samples was weakly correlated with the TOC
and clay mineral contents (Figure 8a,b), and the correlation between the specific surface
area and pore volume and the TOC, clay minerals, and quartz was poor (Figure 8d–f). The
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inorganic pores in the silty shale of the upper Longtan Formation were mainly dissolution
pores. Based on the SEM observations, isolated organic matter pores with a high roundness
were present in the shore swamp facies.

1 

 

 
Figure 8. Pore structure (a–f), TOC, and mineral compositions of shales in different sedimentary facies.

The inorganic pores in the shale samples that formed in the tidal flat sedimentary
environment were mainly clay mineral interlayer pores, and a small number of mineral
particles had edge fractures. The pores were mainly micropores and mesopores. Organic
matter was sporadic along with some micropores. The pore structure characteristics of the
samples were analyzed for different sedimentary environments (including delta, tidal flat,
and shallow water shelf). The results showed that the relationship between the organic
carbon content and the porosity, specific surface area, and pore volume of the samples in all
sedimentary facies (except for the deltaic sedimentary facies) showed a positive correlation,
indicating that the relatively high organic carbon content acted as a carrier for microporosity
development and that the organic matter microporosity also contributed positively to the
specific surface area, pore volume, and porosity of the samples. The analysis showed that
the hydrodynamic conditions in the tidal flat and shore swamp sedimentary environments
were relatively weak and that the resulting argillaceous sediments and sandy sediments
were interbedded. The argillaceous sediments were mostly higher plant debris brought by
terrigenous debris, and the organic matter was relatively enriched. As the TOC increased,
the number of organic pores and their contribution to the reservoir space increased.

The clay minerals in different sedimentary environments showed a positive correlation
with the porosity and specific surface area of the samples because the higher content of
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clay minerals in the tidal flat sedimentary environment was the material basis for the
formation of inorganic pores and some microfractures; the weaker contribution of clay
minerals to the specific pore volume of the samples indicated that the inorganic pores
were mostly microporous and that the microporosity provided a more specific surface
area in the samples. A large number of intergranular pores in clay minerals played a
major role in controlling the reservoir space in the samples. In addition, the specific pore
volumes of the siliceous minerals and samples in different sedimentary environments were
weakly correlated (mainly because the pores and fractures developed between/within
mineral grains); for example, the siliceous minerals in the study area played a minor role
in influencing the storage properties of samples, but to some extent they protected the
development of pores and thus contributed to the pore volumes of the samples.

5. Conclusions

(1) The Longtan Formation in the southeast Sichuan Basin was deposited in complex
marine–continental transitional environments, and the sedimentary facies varied from
delta and shore swamp to mixed tidal flat and shallow shelf facies. The lithological
combinations also varied greatly vertically, and the most favorable sedimentary
environments for shale deposition were shore swamps and tidal flats. The shale in the
shore swamp and tidal flat facies had high TOC contents and a good pore structure.

(2) The sedimentary environments determined the organic matter accumulation and TOC
content. The TOC of shale in the shore swamp facies was much higher than that
in the mixed tidal flat and shallow shelf facies. All of the shale samples were in a
high-maturity stage. The accumulation of organic matter was affected most by the
detrital input and water depth.

(3) There were several lithological combinations present in various sedimentary envi-
ronments. The mineral compositions of the Longtan Formation varied frequently
in different sedimentary facies. The pore system of the Longtan shale consisted of
inorganic pores with a small number of organic pores and microfractures. The pore
structures in the shore swamp and shallow shelf facies were well developed. The
Longtan shale—with a large continuous thickness, good pore system, and high gas
content—will be the most favorable shale exploration target in the future.
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