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Abstract: The ore mineralogy of a new promising target of the Aldan–Stanovoy gold province—the
Spokoininsky cluster—is considered. Gold mineralization is represented by a volumetric, nonlinear
type, unconventional for the region; it is related to elements of fold structures and reverse fault in the
enclosing metamorphic basement rocks. Vein-disseminated sulfide–(pyrite)–quartz ores build up
deposit-like bodies in beresites from gneisses and granite gneisses and are associated with Mesozoic
igneous rocks of subalkaline formations. Mineralization is characterized by polysulfide (Fe-Cu-Pb);
gold–bismuth (Au-Bi) and gold–silver–telluride (Au-Ag-Te) mineral types. Different mineral types
have their own typomorphic minerals and typochemistry (fineness and impurities) of native gold.
The widespread distribution of telluride mineralization and its great importance in the formation of
gold mineralization on the Aldan shield is confirmed. The distribution area of bismuth (including
tellurium–bismuth) mineralization in the southern part of the Aldan shield, in the zone of influence
of the Stanovoy deep fault, has been identified.

Keywords: gold mineralization; metasomatites; bismuth; tellurides; uytenbogaardtite; bismoclite;
cervelleite; native gold; supergene gold; the Spokoininsky cluster; the Aldan-Stanovoy gold province;
the Aldan shield

1. Introduction

The Spokoininsky ore cluster is a new promising ore target of the Aldan-Stanovoy gold
province (ASGP), identified during prospecting in 2020 [1]. The search for ore targets has
been undertaken since the 1970s [2] but resulted in only scattered mineralization points with
an unclear structural position and mineralogy of ores. The territory of the cluster occupies
the upper reaches of the right tributary of the Timpton river—the Ulakhan-Tarakanda
River (Bol. Tyrkanda)—and covers the most productive southeastern part of the Tyrkanda
gold-rich area, known since the beginning of the last century for rich placers of gold, from
which more than 20 tons of gold were extracted. The primary sources of gold feeding the
placers have not yet been identified. The largest placer deposit of the region is the placer of
the Bol. Tyrkanda River, with gold reserves of more than six tons, which is in development
to this day [3]. The placer deposit is localized in the valley of the river, starting near the
mouth of the Spokoiny Creek, i.e., the Spokoininsky cluster.

The first mineralogical studies of the Spokoininsky cluster ores revealed a variety
of Bi, Te, and Ag minerals, as well as a number of rare minerals, such as bismoclite and
uytenbogaardtite. Determination of the connection of gold with certain mineral associations
and the comparative analysis of morphological and geochemical properties of native gold
of primary ores and supergene gold of eluvial deposits are relevant tasks for understanding
the factors of its formation, i.e., the ore genesis.
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2. Materials and Methods

Materials used for our research are 72 hand-sampled specimens of primary ores taken
from surface mine workings and outcrops, as well as 20 shallow-pit samples from loose
detrital clay material of eluvial deposits.

The polished sections made from the samples were optically examined using a Jenavert
ore microscope in reflected light. The minerals were analyzed on a Camebax-micro X-ray
spectral microanalyzer and a JEOL JSM-6480LV scanning electron microscope with an
OXFORD energy spectrometer, and the Back Scattered Electron images were taken at the
Diamond and Precious Metal Geology Institute, Siberian Branch, Russian Academy of
Sciences (Yakutsk, Russia). The quantitative analysis was carried out using Software INCA
Energy (Version 4.17, Oxford Instruments, Abingdon, Oxfordshire, UK) with XPP matrix
correction scheme developed by Pouchou and Pichoir. Operating conditions were 20 kV
voltage, a beam current of 1.08 nA, a beam diameter of 1 mm, and measurement time of 10
s. Analytical lines: Bi, Au−M; Te, Pb, Ag, Sb, S–L; and Cu, Fe, Zn, S–K. Standards: gold
750–Au, Ag, Bi2S3–(bismuthinite)–Bi, HgTe (coloradoite)–Hg, Te, CuSbS2 (chalcostibite)–
Cu, Sb, S, ZnS (sphalerite)–Zn, CuFeS2 (chalcopyrite)–Fe, PbS (galena)–Pb, and FeAsS
(arsenopyrite)–As. Element detection limits (wt.%) for the X-ray spectral microprobe
analyses: Au 0.145, Ag 0.078, As 0.129, Hg 0.137, Cu 0.057, Fe 0.032, Pb 0.076, Bi 0.108,
Sb 0.044, and Zn 0.074. Limits of element detection (wt.%) scanning electron microscope
equipped with energy spectrometer: Au 1.84, Ag 0.96, Hg 1.6, Cu 1.22, Fe 1.04, Pb 1.78, and
Bi 2.7.

3. Geology of the Spokoininsky Cluster

The Spokoininsky cluster is located on the northern slope of the Aldan shield. The
territory is characterized by a large depth of the erosion section—the Archean crystalline
basement—composed of gneisses and crystalline schists of the Sutamskaya and Kyurikan-
skaya formations of the Dzheltula series of the Lower Archean, which is exposed through-
out the area of the region. The basement rocks are migmatized and contain concordant and
transverse bodies of the Archean and Proterozoic granites, ultrabasites, gabbro-diorites,
and gabbro-diabases.

The territory is located in the zone of the regional Tyrkanda fault, which has a north–
northwestern strike and a thickness of up to 10–15 km. During the Mesozoic tectonic–
magmatic events, the Tyrkanda fault zone underwent destruction: the northeastern seams
of the extended faults of the Sunnaginskaya system are superimposed on it, which are a
reflection of the global North Stanovoy fault located to the south.

The position at the intersection cluster of regional faults determines the intense fault
tectonics and magmatism of the Mesozoic activation stage. The Mesozoic igneous rocks
are represented by fields of dikes, small stocks, folded rocks of monzonite–syenite, and
alkaline–syenite formations. The formation of intrusions involved contact–metasomatic
and hydrothermal–metasomatic processes in the form of hornfelsing, chloritization, epido-
tization, sericitization, and silification of host rocks. The Spokoininsky ore cluster is located
within the Mayskaya synclinal structure composed of amphibole and biotite–amphibole
gneisses, with interlayers of bipyroxene and diopside gneisses.

The most promising ore fields are Spokoinoe and Mayskoe (Figure 1). The Spokoinoe
ore field is located on the left bank of the lower reaches of the Spokoiny creek in the northern
part of the cluster, and Mayskoe field covers the watershed of the Spokoiny, Maysky, and
Taborny creeks in the south.

The Spokoinoe ore field is confined to the periclinal closure of the Mayskaya synclinal
structure, where slight granitization of gneiss is noted. Gneisses are injected by the Early
Proterozoic granitoids and intruded by bodies of the Mesozoic igneous rocks (nordmarkites,
syenite porphyries, hornblende and biotite porphyries, minettes, spessartites, and voge-
sites), forming stock-shaped deposit bodies, dikes, and lenticular bodies with sharp swells,
confined to the axial parts of complex folds.
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Figure 1. Schematic map of geological structure of the Spokoininsky ore cluster [1] with changes: 
1—technogenous formations: rewashed deposits of prospectors polygons; 2—Quaternary: channel 
and low floodplain alluvium; 3—Upper Quaternary deposits: floodplain, channel, above-floodplain 
terrace alluvium, and fluvioglacial deposits; 4—dikes of alkaline and alkaline–earth syenites; 5–7—
stocks: 5—alkaline–earth syenite, 6—pulaskites, laurvikites, and nordmarkites, 7—alkaline 
trachytes; 8—biotite, muscovite, and garnet granites, hypersthene–amphibole microcline granites, 
enderbites, and granites undivided; 9—variously hybridized granitized rocks and granite gneisses; 

Figure 1. Schematic map of geological structure of the Spokoininsky ore cluster [1] with changes:
1—technogenous formations: rewashed deposits of prospectors polygons; 2—Quaternary: chan-
nel and low floodplain alluvium; 3—Upper Quaternary deposits: floodplain, channel, above-
floodplain terrace alluvium, and fluvioglacial deposits; 4—dikes of alkaline and alkaline–earth syen-
ites; 5–7—stocks: 5—alkaline–earth syenite, 6—pulaskites, laurvikites, and nordmarkites, 7—alkaline
trachytes; 8—biotite, muscovite, and garnet granites, hypersthene–amphibole microcline granites, en-
derbites, and granites undivided; 9—variously hybridized granitized rocks and granite gneisses;
10—biotite, muscovite, and garnet granites, hypersthene–amphibole microcline granites, ender-
bites, and granites undivided; 11—variously hybridized granitized rocks and granite gneisses;
12,13—Kurikan Formation: 12—upper subformation (hypersthene and biotite–hypersthene gneisses
and crystal schists); 13—middle subformation (biotite–hypersthene and two-pyroxene gneisses
and crystal schists); 14—faults: a—reverse (to thrust) faults controlling distribution of highly
promising anomalous geochemical fields and b—other faults; 15—ore fields: I (Au)—Mayskoe and
II (Au)—Spokoinoe; 16—gold primary occurrences; 17—shallow-pit samples containing free gold;
18—gold placer deposits.
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Faults belong to the systems of the Tyrkanda fault: strike-slips, strike-slip reverse faults
of the northwestern strike, and the Sunnaginsky fault: normal faults, reverse faults of the
northeastern strike. The gentle strippings of the latitudinal and sublatitudinal strikes, char-
acterized as overthrust reverse faults, are less manifested. The latitudinal and northwestern
directions within the ore field are well expressed by gold anomalies forming a discrete band,
most contrasting at the intersection with the structures of the Sunnaginsky fault.

Gently dipping (10–20◦) zones of schistosity of latitudinal and sublatitudinal strike
contain gold ore bodies and are transverse, sub-concordant to the general occurrence of gneiss
(Figure 2). Morphologically, ore bodies form gently dipping lenticular-ribbon-like deposits in
the zones of schistosity, with a wavy surface, alternating with each other echelon-like in the
latitudinal direction when wedging out along the strike. Dip angles are gentle, from less than
10◦ to 30◦, and infrequently, 40◦. The general azimuth of the dip is to the north. The thickness
of individual deposits exposed by ditches ranges from 0.1–0.5 m to 1.6–2.5 m.
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In contrast to the Spokoinoe ore field, the Mayskoe field is characterized by a signif-
icantly higher degree of granitization, especially in the southern, most elevated part of the 
site and the absence of large outcrops of the Mesozoic igneous rocks. The Mesozoic mag-
matism occurs in the form of frequent dikes, dike-like bodies of syenite porphyries, and 
lamprophyres, filling the faults of the northwestern and northeastern strike. In the north-
ern, more eroded part of the ore field, a stock-shaped intrusion of alkaline–earth syenites 
has been exposed, and due to the presence of high-contrast magnetic anomalies, similar 
unexposed bodies are assumed in the south. 

The correlation of the Mesozoic magmatic formations and gold mineralization is well 
demonstrated at the Mayskoe field. In the northern part of the site, ore zones are exposed 
by ditches in contact with the bodies of syenite porphyries and lamprophyries, which are 
also slightly gold-bearing. In the south are geochemical anomalies of gold trace 

Figure 2. Geological cross section for gold mineralization of the Spokoininsky ore cluster, longitudinal
section [1] with changes: 1—stocks of alkaline syenites; 2—granitized gneisses and granite gneisses;
3—Kurikan Formation, upper subformation; 4—folds; 5—reverse (to thrust) faults; 6,7—lodes:
a—eroded and b—not eroded.

In contrast to the Spokoinoe ore field, the Mayskoe field is characterized by a signif-
icantly higher degree of granitization, especially in the southern, most elevated part of
the site and the absence of large outcrops of the Mesozoic igneous rocks. The Mesozoic
magmatism occurs in the form of frequent dikes, dike-like bodies of syenite porphyries,
and lamprophyres, filling the faults of the northwestern and northeastern strike. In the
northern, more eroded part of the ore field, a stock-shaped intrusion of alkaline–earth
syenites has been exposed, and due to the presence of high-contrast magnetic anomalies,
similar unexposed bodies are assumed in the south.

The correlation of the Mesozoic magmatic formations and gold mineralization is
well demonstrated at the Mayskoe field. In the northern part of the site, ore zones are
exposed by ditches in contact with the bodies of syenite porphyries and lamprophyries,
which are also slightly gold-bearing. In the south are geochemical anomalies of gold trace
unexposed intrusions. The main role as an ore-controlling factor also belongs to gentle
structures, such as overthrust reverse faults of the latitudinal and sublatitudinal strike.
Another important factor is the presence of plicative structures complicating the Mayskaya
syncline. Ore mineralization is localized in areas of schistosity, with cleavage confined to
various elements of folds, bends of hinges, turns of limbs, and other complicating elements
(Figure 2). Ore bodies form gently and steeply dipping lenticular-ribbon-like deposits,
bodies of complex shape in the zones of schistosity, with dip angles from 10–20◦ to 70◦.
Ore intervals with gold mineralization are 2.0–5.0 m and 7.0–10.0 m. In the identified
ore intervals with a gold content, increased Cu contents are recorded (500–5000 g/t), Pb
(100–200 g/t), Bi (50–100 g/t), and Ag (60–200 g/t) [1].

In general, a model of gold mineralization of a volumetric, nonlinear type related
to elements of plicative structures and reverse fault tectonics in the host-granitized meta-
morphic rocks of the basement is proposed for the Spokoininsky ore cluster, represented
by a combination of deposit-like bodies with vein-disseminated sulfide–(pyrite)–quartz
type of mineralization. Mineralization is localized in beresites from gneisses and granite
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gneisses with vein-disseminated pyrite–quartz gold mineralization and is associated with
the Mesozoic igneous rocks of subalkaline formations.

Considering structural features, brecciated, vein–veinlet, and disseminated types of
ores are common. The main vein mineral is quartz—white, grayish, rarely honey-yellow,
sometimes transparent, opaline silica, fine crystalline, drusoid, massive and brecciate, and
chalcedonic in thin veinlets. It forms veinlets, lenses, geodes, and small net-shaped veinlets
in beresites and beresitized gneisses, with thicknesses from 0.5 mm to 1.0–15.0 cm.

4. Results
4.1. Mineralogy of Ores

Mineralization of the Spokoininsky gold ore cluster is characterized by the following
mineral types: polysulfide (Fe-Cu-As-Pb-Zn), gold–bismuth (Au-Bi), and gold–silver–
telluride (Au-Ag-Te) (Table 1).

Table 1. Typification of the ores of the Spokoininsky cluster.

Type of Ore Minerals

Polysulfide Pyrite, chalcopyrite, galena, arsenopyrite, sphalerite, native tin,
scheelite, and wolframite

Gold–bismuth Native bismuth, bismuthite, tellurobismuthite, bursaite, matildite,
cuprobismutite, smirnite, and bismoclite

Gold–silver–telluride Krennerite, sylvanite, petzite, hessite, cervelleite, polybasite,
native silver, acanthite, and uytenbogaardtite

The polysulfide mineral type is widespread in the area of the ore cluster. The main
ore mineral is pyrite. The mineral—to varying degrees oxidized, often large, cubic, and
pentagon dodecahedral, and up to 1.0 cm across—grows on quartz druse crystals. Fine-
grained pyrite, more often oxidized, forms concentrations, with massive veinlets up to
0.5 cm thick at the base of quartz druses and host beresites. Pyrite is often a matrix for
ore microminerals. Chalcopyrite occurs as allotriomorphic particles in quartz and pyrite.
All other minerals are micron-sized. Galena forms frequent small particles, represented
by thin rounded and irregular shapes. Hypidiomorphic microcrystals (<10 microns) of
arsenopyrite are sporadically observed. Sphalerite is rare, characterized by a Fe content of
up to 12%.

The ores contain very few grains of native tin, scheelite, and wolframite. Native tin and
wolframite form small 10–15 micron interstitial grains in metasomatic quartz and scheelite—
oval-rounded and isometric inclusions in pyrite and iron hydroxides replacing pyrite.

Typomorphic minerals of gold–bismuth mineral type are native bismuth, bismuthite
(BiS), tellurobismuthite (Bi2Te3), bursaite (Pb5Bi4S11), cuprobismutite (Cu8AgBi13S24), and
matildite (AgBiS2) (Figure 3, Table 2). Secondary minerals are represented by smirnite
(Bi2TeO5) and bismoclite (BiOCl). Bismuth mineralization was identified mainly in ores
of the Mayskoe ore field. Tellurobismuthite forms elongated and oval crystals in pyrite,
and bursaite forms tabular crystals in quartz. Native bismuth in growth with matildite is
enclosed in pyrite. They also revealed matildite with a significant content of Te (7.11 wt.%)
as well as an obscure oxygen-containing phase with a spongy surface in which the concen-
tration of Te reached 23.25 wt.%. Cuprobismutite and smirnite were observed in supergene
gold: smirnite is represented by a disintegrated mass in the form of a border and cuprobis-
mutite in relic grains. Among the bismuth minerals, matildite and bismoclite were found
in the Spokoinoe ore field. Matildite was observed in supergene gold in close growth with
galena in the form of a border and had microinclusions in it. Bismoclite is a secondary
mineral of bismuth, found in a quartz cavity in the form of a tetragonal crystal with faces
truncated at 45◦.
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Figure 3. Gold–bismuth mineralization of the Spokoininsky ore cluster: (a)—ellipsoidal grains of
tellurobismuthite (Tbi) in pyrite (Py), (b)—tabular grains of bursaite (Brs) in quartz (Qz), (c)—native
bismuth (Bi) in growth with matildite (Mtd) in pyrite (Py), (d)—relics of cuprobismutite (Cbit) in
supergene gold (Au), (e)—disintegrated mass of smirnite (Smr) on the edge of supergene gold (Au),
(f)—bismoclite crystal (Bmc) in quartz (Qz).

Table 2. Chemical composition of bismuth minerals (in wt.%).

Mineral Bi Te Ag Cu Cl Pb S Si Fe O Total apfu

Native Bi 100.33 100.33 Bi1.00
Tellurobismuthite 51.43 47.89 99.32 Bi1.96Te3.00

Bismuthite 81.50 17.51 99.01 Bi2.13S3.00
Bursaite 36.63 3.96 44.92 14.41 99.92 (Pb5.31Bi4.27Ag0.90)S11.00
Matildite 56.32 27.09 15.33 98.75 Ag1.05Bi1.12S2.00

Cuprobismutite 60.36 4.95 12.28 16.34 93.93 (Cu9.10Bi13.54Ag2.16)S23.00
Bismoclite 71.59 11.87 2.00 2.13 11.55 99.13 Bi1.02Fe0.11Si0.21Cl1.00
Smirnite 66.79 19.13 1.86 12.38 100.16 Bi2.06Te0.97Fe0.22O5.00

Bismuth minerals are characterized by the presence of a significant impurity of silver
(3.96 wt.%) in bursaite and cuprobismutite (4.95 wt.%). Impurities of Fe and/or Si in the
composition of the bismoclite and smirnite are due to the influence of the background matrix
of quartz and iron hydroxides. There is also a background impurity of iron in smirnite.
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Gold–silver–telluride type is represented by krennerite (AuTe2), sylvanite ((Au,Ag)2Te4),
petzite (Ag3AuTe2), hessite (Ag2Te), cervelleite (Ag4TeS), polybasite, native silver, acanthite
(Ag2S), and uytenbogaardtite (Figure 4, Table 3). The grain size does not exceed 50 microns.
In addition, gold bismuth type is more developed in the Mayskoe ore field. Minerals of
petzite–hessite paragenesis and polybasite are observed in the form of oval and irregular
grains in pyrite. Tellurides of the krennerite group were observed as inclusions in hessite
and petzite, gravitating towards the central parts of the grains. There are cases of hessite
growths with tellurobismuthite. Acanthite, native silver, and uytenbogaardtite are observed
in the ores of the Spokoinoe field, and hessite–cervelleite paragenesis is developed in the
form of rounded micron inclusions (no more than 30 microns) in hypergene gold. Along
with cervelleite of stoichiometric composition, there is cervelleite with a considerable
content of copper up to 5.92%.
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Figure 4. Gold–silver–telluride mineralization of the Spokoininsky ore cluster: (a,b)—paragenesis
of krennerite (Knn), sylvanite (Syv), petzite (Ptz), hessite (Hes), and native gold (Au) in pyrite
(Py), (c)—jointing of hessite (Hes) and tellurobismuthite (Tbi), (d)—polybasite (Plb) in pyrite (Py),
(e)—cervelleite (Cvl) with hessite (Hes) in supergene gold (Au), (f)—acanthite (Aca) with a border of
uytenbogaardtite (Uyt) in iron hydroxides (Gth).
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Table 3. Chemical composition of Au, Ag, and Te minerals (in wt.%).

Mineral Ag Au Sb Te Cu As S Fe Total apfu

Native Ag 99.98 99.98 Au1.00
Krennerite 3.71 42.60 52.17 2.41 100.89 Au4.23Ag0.67Fe0.84Te8.00
Sylvanite 7.08 28.34 63.08 98.50 Au1.16Ag0.53Te4.00

Petzite 43.17 21.71 35.60 100.48 Ag2.87Au0.79Te2.00
Hessite 62.33 38.40 100.73 Ag1.92Te1.00

Cervelleite 68.23 25.12 5.07 98.42 Ag4.00Te1.25S1.00
Cu-rich cervelleite 66.14 24.14 5.92 5.38 101.58 (Ag3.65Cu0.56)Te1.13S1.00

Polybasite 64.57 6.81 8.36 2.26 16.28 2.26 100.53 [Fe0.88(Ag3.97.Cu1.85)5.82
(As0.65Sb1.21)1.86S7][Ag9CuS4]

Uytenbogaardtite 56.45 28.53 11.79 4.33 101.10 Ag2.85Au0.79Fe0.43S2.00
Acanthite 88.16 8.12 2.91 99.19 Ag3.23Fe0.21S1.00

Uytenbogaardtite Ag3AuS2 was found in association with spongy and xenomorphic
acanthite particles, less often with native gold in oxidized quartz–feldspar metasomatites
(Figures 4f and 5). The matrices for minerals are iron hydroxides replacing pyrite. Uyten-
bogaardtite is characterized by a variable composition (Table 4). It has iron intake from
the matrix.
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Table 4. Chemical composition of uytenbogaardtite (in wt.%).

No. of Analyses S Fe Ag Au Total apfu

22-5 11.36 6.50 31.66 48.14 97.66 Ag1.66Au1.38Fe0.66S2.00
16-5 11.87 4.77 52.14 32.22 101.00 Ag2.61Au0.88Fe0.46S2.00
29-1 11.79 4.33 56.45 28.53 101.10 Ag2.85Au0.79Fe0.42S2.00
44-3 12.50 3.21 56.15 28.08 99.94 Ag2.67Au0.73Fe0.29S2.00
37-2 10.22 3.87 61.92 24.94 100.94 Ag3.60Au0.79Fe0.43S2.00
37-1 10.46 4.09 63.71 23.60 101.85 Ag3.62Au0.73Fe0.45S2.00
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4.2. Typomorphic Features of Gold

Native gold of primary ores and supergene gold of eluvial deposits have been studied.
Granulometry. Native gold in ores is usually finely dispersed and dust-like <5–15 microns,

and single grains reach only 0.1 mm.
Supergene gold records the predominance of gold of a very fine fraction (less than <0.1 and

0.1–0.25 mm); medium-sized gold (0.25–0.5 mm) occurs in smaller quantities, and (0.5–1.0 mm)
is less common. One small nugget with a size of 5.5 × 3.2 mm was found (Figure 6).
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Morphology. In ores, primary gold has an interstitial and cementing nature. It
usually develops in interstices between pyrite grains (Figure 7a) or along cracks in pyrite
(Figure 7b), in addition to single pseudoidiomorphic grains of hexagonal appearance
(Figure 7c). Microscopically native gold has a porous structure.
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A significant part of supergene gold has a crystalline appearance and is represented
by individual crystals or their intergrowths (Figure 8a–e). Crystals form isometric and
crystallomorphic grains with shapes close to an octahedron and a combination of a cube and
an octahedron, flattened prismatic, elongated needle-like, drusoid, and dendrite-like and
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coral-like individuals. Striation and growth marks are observed on the crystal faces, and
the edges are mostly smoothed. Hemi-idiomorphic gold is also often found—aggregates of
grain intergrowths with separate developed cubic and prismatic faces, combined with gold
of irregular morphology (Figure 8f). The shape of the grains is of the irregular type, mainly
lumpy, scaly, hook-like, lamellar, or wire-shaped (Figure 8h,i). There is a large occurrence of
idiomorphic gold in the Mayskoe ore field. In the Spokoinoe ore field, lumpy and scaly gold
of irregular morphology was more often observed. Microscopically, gold is usually porous.
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Figure 8. Morphology of supergene gold: (a)—isometric crystal of octahedral appearance;
(b)—isometric crystal with the development of a combination of cube and octahedron shapes;
(c)—stepped structure of crystallomorphic druzoid gold; (d)—clusters of crystals of prismatic and oc-
tahedral shapes; (e)—prismatic with a microspongy structure; (f)—hemi-idiomorphic gold; (g)—shell
dendritic; (h)—lamellar-looped; (i)—leafy dendritic.

Often in supergene gold, patterns of the origin of newly formed gold were observed,
according to the rhythmiczonal structure of iron hydroxides.

Chemical composition. The main impurity of primary gold according to the mi-
croprobe analysis is Ag, and there are single grains with a significant impurity of Cu
(6.37–30.04 wt.%). The fineness of native gold has wide variations ranging from 673 to
993‰. In the Spokoinoe field, low-grade gold prevails (average value—753‰); in the
Mayskoe field exists medium-grade (average value—810‰) (Figure 9a).

According to the results of the X-ray spectral microanalysis, the content of impurities
Zn, As, Hg, Pb, and Sb in supergene gold was below the sensitivity limit (detection). Minor
impurities of Fe (up to 0.139 wt.%), Cu (up to 0.231 wt.%), and Bi (up to 0.199 wt.%) were
found in single samples. The supergene gold of the Spokoinoe ore field is characterized by
low fineness (701‰–800‰) of approximately 60%, and the share of medium-grade gold
(801‰–900‰) accounts for 30% (average value—793‰) (Figure 9b). The Mayskoe ore field
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is dominated by medium-grade gold (800‰–900‰), which accounts for approximately
50% (average value—842‰). Relatively low-grade (700‰–800‰) and high-grade gold
(900‰–950‰) amount to 20% and 22%, respectively.
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gold. 1—Spokoinoe ore field, 2—Mayskoe ore field, n—number of analyses.

Compositional heterogeneity. In the same sample, the fineness of primary gold ranges
usually from 10 to 130‰, supergene gold usually from 20 to 240‰. Heterogeneous gold,
sharply differing in color from bright yellow to a pale whitish color, was identified in
shallow-pit samples of the Spokoinoe ore field. Considering morphology, gold is more
often thinly lamellar and scaly; in the central part, it has a porous structure, and it is massive
on the periphery. The marginal fluctuations of the fineness as a whole are 480‰–999‰
(Figure 10). The overwhelming amount of native gold has a fineness of 750‰–780‰
(average value 778‰). Two types of heterogeneous gold of zonal structure were identified
in individual grains. There are gold particles in which the fineness varies from an electrum
of 480‰–520‰ on the periphery of the grain to a relatively low-grade 737‰–775‰ in the
central parts. Another type of heterogeneous gold is more common—low-grade gold from
668 to 790‰, with a fringe or fragments of a rim of impurity-free native gold. Noteworthy
is the complete absence of gold of medium and high fineness in the range 791‰–995‰.
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Relationship with other minerals. Native gold was observed mainly in pyrite and iron
hydroxides replacing pyrite and less often in association with hessite, petzite, and acanthite.
There is also free gold in quartz and feldspar. In pyrite, native gold is usually located along
cracks in the intergranular space or along growth zones. Microporous hessite containing
oxygen (Te 28.29–29.90, Ag 54.57–56.75, and O 14.22–16.97) was observed in association
with native gold (Figure 11a). Rounded to oval-shaped microinclusions of ore minerals
are found in supergene gold: galena, sphalerite, matildite, cuprobismutite, hessite, and
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cervelleite (Figures 3d, 4e and 11b,c), as well as smirnite from the edge of the grain of gold
(Figure 3e). One of the relict grains found in gold is a mixture of hessite and nonequilibrium
gold-containing cervelleite-like phase (Te 14.6–27.33, Ag 55.82–59.29, Au 9.97–21.50, and
S 3.42–8.62) with microinclusions of cervelleite of stoichiometric composition (Figure 11c).
Goethite in the intergrowths with supergene gold often contains an admixture of tellurium
up to 2–4 wt.%. In addition, there are cases of location of native gold in supergene minerals
similar in composition to plumbojarosite and goethite with rhythmiczonal acanthite threads
(Figure 11d).
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Figure 11. Mineral associations of gold: (a)—association of hessite (Hes) and native gold (Au) in
pyrite (Py); (b,c)—relics of minerals in supergene gold: (b)—galena (Gn) with phases and border
of matildite (Mtd), (c)—a mixture of hessite (Hes) with gold-containing cervelleite-like phase and
microinclusions of cervelleite (Cvl); (d)—the relationship of supergene gold (Au) with plumbojarosite
(Pjrs), goethite enriched with tellurium, and goethite with rhythmic-zonal acanthite (Ght + Aca).

5. Discussion

Aldan-Stanovoy gold province is one of the main gold-mining regions in Russia. The
gold content of the ASGP is related to hydrothermal–metasomatic processes caused by the
Mesozoic tectonic–magmatic activation of the region, involving the intrusion of massifs of
subalkaline and alkaline high-potassium igneous rocks of the Jurassic–Cretaceous age [4–11].

The gold mineralization of the ASGP is characterized by a variety of geological and
structural positions, hydrothermal–metasomatic formations, and mineral types. Ore-
bearing hydrothermal–metasomatic formations are represented by sericite–microcline
metasomatites, beresites, gumbaites, jasperoids, and argillizated rocks. The metasomatites
of the gumbaite formation are represented by pyrite–carbonate–feldspar metasomatites,
which are associated with the main gold and uranium deposits of the Elkon ore cluster.
The formation of sericite–microcline metasomatites is associated with the gold–copper–
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porphyry (Ryabinovsky) type of mineralization, including veinlet-disseminated sulfide
mineralization in alkaline volcano–plutons (Ryabinovoe and Novoe deposits). The jasper-
oid type of mineralization is represented by deposits formed in three geological structural
settings: in contact zones of the Mesozoic alkaline and subalkaline intrusions with car-
bonate rocks of the Vendian among hydrothermally altered dolomite marbles, magnesian
skarns, and syenites (Samolazovsky subtype); in zones of layer-by-layer and intersecting
jointing in the Vendian–Lower Cambrian carbonate rocks (Lebedinsky subtype); and at the
contact of the Lower Cambrian limestones with the Jurassic sandstones (Kuranakhsky sub-
type). The gold–argillizite mineralization of the Nimgerkansky type is spatially confined
to the intrusions of syenite porphyries of Cretaceous age and is associated with crystal-
bearing and amethyst-bearing mineralization. In addition to the Mesozoic mineralization,
the Precambrian gold mineralization of the Piniginsky type occurs in the basites of the
Medvedev complex [12].

Gold mineralization of the Spokoininsky cluster is represented by a volumetric, nonlin-
ear type, which is unconventional for the region, related to elements of plicative structures
and reverse fault tectonics in the enclosing metamorphic basement rocks. Ore zones repre-
sent an echeloned system of scalariform deposits grading into gently plunging ore columns
in the frontal part of the reverse fault. The connection of gold mineralization with the
Mesozoic magmatism is discussed.

For a better understanding of the factors of the formation of gold mineralization, it is
necessary to conduct studies of physical–chemical and isotope–geochemical parameters as
well as determine the age of mineralization for correlation with magmatic events.

Ore content is related to mineralized zones of crush, cataclase, shear, and schistosity.
During the tectonic processing, the porosity of metamorphic and igneous rocks increased,
which was a favorable environment for hydrothermal–metasomatic transformations. On
the basis of the petrographic study of wallrock changes in igneous and metamorphic
rocks and ores of the Spokoininsky cluster, gold-bearing metasomatites can be referred to
as low-temperature hydrothermal–metasomatic formations of the beresite and argillized
formations. Beresites develop along gneisses and syenites and consist of quartz, sericite,
muscovite, hydromica, chlorite, ferruginous carbonates, and fine-grained pyrite. Argillized
quartz–feldspar metasomatites are very common in the area of the cluster, often bear-
ing vein–veinlet mineralization of drusoid quartz. The level of gold content is directly
dependent on the thickness of wallrock metasomatites and the intensity of silification.

Noble metal mineralization is associated with gold–bismuth (Au-Bi) and gold–silver–
telluride (Au-Ag-Te) mineral types.

Gold–bismuth mineralization is locally developed in the deposits of the Aldan shield.
Bismuth mineralization has been identified in the ores of deposits close to the Stanovoy
plutogenic region in the areas of acidic dikes and small intrusions: Altan-Chaidakh (gra-
nodiorites, diorite porphyrites, and dacites) and Bodorono (diorite porphyrites) [13–16].
These deposits, as well as the Spokoininsky cluster, are confined to the zone of the Tyrkanda
fault. In addition, bismuth mineralization is developed in the ores of the Lebedinsky cluster
located in the center of the magmatogenic structure, where the most intense magmatism
occurred in the Central Aldan region. The presence of bismuth mineralization in the ores
of the Spokoininsky cluster suggests the influence of acid magma.

The features of the geological structure of the Altan-Chaidakh deposit are determined
by the occurrences of the Mesozoic magmatism, very significant in volume and area of
distribution, which is related to the Altan-Chaidakh volcanic–tectonic structure. Miner-
alization is localized in the Lower Jurassic sandstones and the sills of porphyry dacites
injecting them. Ore mineralization is represented by complex gold–polymetallic and gold–
tellurium–bismuth mineral associations.

Of particular interest are sulfotellurides and tellurides Bi and sulfosalts Pb-Bi, as they
are related the groundmass of visible native gold. A wide range of bismuth minerals has
been identified, represented by bismuth, tetradymite, bismutoplagionite, bursaite, kosalite,
tellurobismuthite, sulfotsumoite, schirmerite, tellurites, and bismuth oxides. Ag, Sb, Cu,
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and Se are frequent impurities of bismuth minerals. Native gold associated with bismuth
minerals has a fineness of 850‰–890‰ [13].

Two producing associations have been identified at the Bodorono deposit: gold–
polymetallic and gold–tellurium–bismuth [14–16]. The latter contains lillianite (contains
impurities Ag (3.03 wt.%), Sb (1.48 wt.%), and Te (0.52 wt.%)), bismuthite, native bismuth,
pilsenite, rare bismuth sulfoselenide, laitakarite (in composition of the mineral, S completely
replaced by Se), secondary bismuth mineral smirnite, and tetradymite group minerals—
tellurobismuthite, tetradymite, and hedleyite (contains impurity Se (3.72 wt.%)). Native
gold with a high fineness of 820‰–940‰ is found in growths with lillianite, bismuthite,
and tellurobismuthite.

The predominant spread of both bismuth and telluride mineralization in the area of
the Spokoininsky cluster is characterized by the ores of the Mayskoe field. The reason is,
apparently, on the one hand, the large granitization of the host complex, the presence of
unexposed massifs, as well as a higher hypsometric level of gold mineralization. On the
other hand, in the Spokoinoe field, a significant part of the ore bearing the mineralization
of Bi and Te underwent denudation, and likely served as a source of placer gold. Secondary
bismoclite was observed in the ores, whereas matildite, hessite, and cervelleite were
preserved only as relics in supergene gold.

Rare bismuth oxychloride, bismoclite (BiOCl), first described by Mountain (1935), was
identified in a sample of eluvial origin, selected on the surface of a pegmatite outcrop at
Steinkopf, Namaqualand, Cape Province of South Africa [17]. Subsequently, the bismoclite
was identified mainly in the form of alluvial samples near bismuth-containing granite
pegmatites or as weathering products of bismuth sulfides in greisen deposits; it was also
found in epithermal and volcanic massive sulfide deposits with low and high sulfide
content. On the Aldan shield, bismoclite was also found in the Khokhoy karst deposit in
the north of the structure, where no other bismuth mineralization was found [18].

The first finding of bismoclite in an ore sample of hydrothermal–magmatic breccia of
the San Francisco de los Andes porphyry Bi-Cu-Au deposit, Argentina, is described by [19].
Bismoclite (BiOCl) was found in association with preisingerite (Bi3(AsO4)2O(OH)). It is
assumed that the bismoclite was formed as a result of weathering of hypogene bismuth-
bearing minerals under the influence of meteoric waters containing O2 and HCl. In addition,
the discovery of bismoclite as a mineral phase in the oxidized zone of weathered sediments
indicates the existence of hypogene mineralization of Bi at depth.

In our case, bismoclite, along with relic grains of cuprobismutite and matildite, is
most likely evidence of the former existence of bismuth mineralization in the ores of the
Spokoininsky cluster, which played a significant role in the formation of gold.

Telluride mineralization widely occurs in many gold deposits of the Aldan shield,
where it is late, superimposed on early pyrite–quartz mineralization. Au-Bi-Te, Au-Ag-Te,
and mixed types of telluride mineralization are found in the distribution of which zoning is
identified [20]. In the north of the Aldan shield, the Au-Ag-Te type dominates. In the south,
the gold mineralization of the Bodorono and Altan-Chaidakh deposits, bearing various
bismuth tellurides, is referred to as the Au-Bi-Te type. The ores of the Spokoininsky cluster
are characterized by the presence of mixed Au-Bi-Ag-Te mineralization. Bi-Te minerals in-
clude tellurobismuthite and smirnite; and Au-Ag-Te includes krennerite, sylvanite, hessite,
petzite, and cervelleite. The existing cases of close growth of tellurobismuthite and hessite
are evidence of their paragenetic relationship. While hessite, petzite, and tellurobismuthite
are common minerals of the tellurium of the Aldan shield, gold tellurides of the krennerite
group are found in a limited number of deposits, and cervelleite is found only in the ores
of the Spokoininsky cluster. It was identified as a relict inclusion in supergene gold in
association with hessite.

Cervelleite is found in ores of various deposits, including volcanogenic Bambolla mine,
Moctezuma, Sonora, (Mexico) (the first finding) [21], Um Samiuki, Egypt [22], deposits of
the Southern Urals [23], porphyry San Martin deposit, Argentina [24], Funan Au deposit,
China [25], epithermal Mayflower Au-Ag deposit, Montana [26], Eniovche, Bulgaria [27],
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Larga, Roşia Montană, Romania [28,29], and skarn Băiţa Bihor and Ocna de Fier, Roma-
nia [28,29]. That is, they were identified in ore systems that were genetically related to
magmatism.

Cervelleite of the Spokoininsky cluster is characterized by a stable admixture of copper
up to 5.92 wt.%. It is not uncommon; a similar cervelleite rich in Cu (up to 6 wt.% Cu) is
reported in several works [22,23,30]. On the basis of wide variations in the composition
and physical properties of cervelleite-like sulfotellurides, Novoselov et al. (2006) [23]
suggest the existence of several new phases which can be distinguished by the Cu content,
Te/S ratios, and, presumably, by the crystal structure.

Uytenbogaardtite Ag3AuS2 is a rare sulfide of gold and silver. Its formation is possible
both in hypogene [31–34] and supergene [35–38] conditions. Uytenbogaardtite of the
Spokoininsky cluster has a clearly hypergene nature of formation, as it was identified in
association with acanthite in the oxidation zone of quartz–feldspar ore metasomatites. The
matrix for minerals is iron hydroxide replacing pyrite, and the chemical composition of
uytenbogaardtite is characterized by significant dispersion, which can be explained by the
nonequilibrium medium of its formation present in supergene conditions.

The analysis of the obtained data on primary and supergene gold showed the enlarge-
ment of gold and the appearance of crystalline forms in eluvial deposits. At the same time,
there is a tendency to refine gold, but not to a significant extent. Characteristic edges of
pure gold were observed locally. The reason for this was a small degree of oxidation of
gold; relics of sulfides were preserved in it.

The difference in the fineness of native gold in the Mayskoe and Spokoinoe ore fields
was revealed. Different mineral types are characterized by different typochemistry of
native gold. The development of gold–rare-metal mineralization in the Mayskoe ore field
explains the higher fineness of native gold. Low-grade gold is characteristic of ores bearing
gold–silver–telluride association.

The association of native gold with minerals of tellurium and bismuth minerals in-
dicates their paragenetic relationship. The great importance of bismuth and tellurium
mineralization in the formation of gold mineralization has been considered and experimen-
tally proved by many researchers [39–47]. In particular, the model of Au enrichment via
the liquid bismuth collector mechanism and Bi/Te control of gold mineralization processes
in the study is shown in [39–42], and the substitution of Au-Ag tellurides with native gold
in the process of dissolution–reprecipitation is shown in experiments [43–47].

6. Conclusions

The gold mineralization of the Spokoininsky cluster is represented by a volumet-
ric, nonlinear type, which is unconventional for the region, and is related to elements
of plicative structures and reverse fault in the enclosing metamorphic basement rocks.
Veinlet-disseminated sulfide–(pyrite)–quartz ores form deposit-like bodies in beresites by
gneisses and granite gneisses and are related to the Mesozoic igneous rocks of sub-alkaline
formations. Noble metal mineralization is characterized by polysulfide (Fe-Cu-Pb), gold–
bismuth (Au-Bi) and gold–silver–telluride (Au-Ag-Te) mineral types. Different mineral
types have their own typomorphic minerals and typochemistry (fineness and impurities)
of native gold.

The widespread distribution of telluride mineralization and its great importance in
the formation of gold mineralization on the Aldan shield is confirmed. The distribution
area of bismuth (including tellurium–bismuth) mineralization in the southern part of the
Aldan shield, in the zone of influence of the Stanovoy deep fault, has been identified.

The conducted mineralogical and geochemical studies show a large commercial
prospect of the Mayskoe ore field, less affected by denudation processes, in contrast to the
ores of the Spokoinoe ore field, which serve as a source of rich gold-bearing placers.
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