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Abstract: The aeolian sand-box backfilling method proves effective for environmentally friendly coal
extraction in northwestern regions, including Xinjiang. This study investigated the geomechanical
characteristics of aeolian sand-box backfill material and its control effects on overlying strata through
indoor experiments, mechanical analysis, and numerical simulations. Uniaxial compression tests on
models with varying mesh sizes, wire diameters, and dimensions revealed that larger mesh sizes
and wire diameters increased the bearing capacity of the aeolian sand-box backfill material, while
increasing dimensions had the opposite effect. A mechanical analysis of the metal mesh box deforma-
tion produced equations describing its restraining force. Subsequent experiments and simulations on
models of different dimensions consistently demonstrated the material’s mechanical properties, with
stress-displacement curves closely aligned. 3DEC5.2 software simulations highlighted the effective-
ness of aeolian sand-box backfill material in controlling displacement and stress variations in goaf
areas. Notably, smaller-sized backfill material exhibited a more pronounced impact on controlling
overlying strata displacement and stress development.

Keywords: aeolian sand-box backfill material; uniaxial compression test; numerical simulation;
backfill mining

1. Introduction

Aeolian sand, abundant on the surface in the desertified mining regions of Northwest-
ern China, represents a valuable raw material. Box confinement is an effective method for
utilizing aeolian sand in goaf backfilling. In coal-rich regions such as the Junggar Basin,
Turpan-Hami Basin, and Tarim Basin in Xinjiang, the surface terrain is predominantly
arid to semi-arid deserts or desolate areas. Water resources are scarce, and the ecological
environment is exceptionally fragile [1–4]. Moreover, in Xinjiang, coal resources are pre-
dominantly characterized by shallow and thick coal seams. When utilizing the subsidence
mining method in goaf areas, the disruption and displacement of overlying strata are more
prominent in comparison to scenarios involving deeper coal seams and greater mining
depths. Large-scale mining operations are likely to exert a considerable impact, resulting in
damage to surface vegetation and underground water resources, posing a substantial threat
to the delicate ecological balance in the region. [5–10]. Therefore, in the current situation
where the public is increasingly concerned about the living environment and the country
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strongly advocates ecological civilization construction, for arid and semi-arid desertified
mining areas with extremely scarce water resources, solid filling materials are the most
ideal choice.

Aeolian sand is a prevalent resource in desertified mining areas of Xinjiang, offering
wide availability and cost-effectiveness. It emerges as an optimal choice for solid backfill
material in the goaf areas of this region [11–14]. Nevertheless, its application as a dry fill
material in the goaf encounters evident limitations. Aeolian sand, lacking cohesion, proves
ineffective in supporting overlying strata during dry filling (Figure 1a). This significantly
compromises the control effectiveness of the filling material on the roof strata. Recognizing
the inadequacies of aeolian sand as a loose dry fill material for supporting overlying strata,
this study proposes the use of aeolian sand-box backfill material, incorporating metal mesh
boxes and aeolian sand for goaf reclamation. This waterless technology addresses the issue
of aeolian sand’s incapacity to support the roof strata during dry filling (Figure 1b).
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material filling.

The stability of backfill material is crucial for effective subsidence control, with schol-
ars providing key insights:Amin, Muhammad N [15], in mechanical experiments on coal
gangue waste, analyzed the impact of lime and gypsum doses on the unconfined compres-
sive strength of the coal gangue mixture. Gu Wei [16], combining lab experiments and
numerical simulations, explored overlying strata movement patterns in gangue backfill
mining. Results showed that narrower mining widths lead to less stress increase during
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excavation and backfilling, enhancing backfill material stability. Mohammed Ashfaq [17]
conducted a comprehensive review of factors influencing the mechanical properties of coal
gangue and its geotechnical engineering applications. The study highlighted sustainable
benefits in projects such as roadbeds and fill mining. Farshadi Anahita [18] stabilized
windblown sand in Yazd, Iran, using glass fiber and nano-clay. The study indicated im-
proved shear strength with the addition of these materials to aeolian sand. Maksimov
Fedor [19] analyzed aeolian sand strength through numerical simulation and cyclic triax-
ial testing experiments, deriving a mechanical model applicable to soil damage. Huang
Peng [20], considering the viscoelasticity of coal gangue, established a mechanical model
for roof deformation. The model, using the lateral constraint compression method, pro-
vided accurate predictions for roof deflection and bending moments. Zhang Zhiyi [21]
researched vibratory compaction of aeolian sand-box backfill material through lab exper-
iments and PFC numerical simulations, revealing enhanced mutual compression under
vibration. Zhang Zhiyi [22] studied the bearing strength of fill bricks composed mainly of
aeolian sand and fly ash under different curing conditions. The conclusion highlighted
the formation of dense needle-like calcium carbonate after carbonization and curing as the
fundamental reason for increased bearing strength. Arias-Trujillo et al. [23–26] explored the
mechanical properties of laterally constrained aeolian sand, finding that increased lateral
constraint strength enhances load-bearing performance and provides stronger restraint
against soil displacement.

In conclusion, both domestic and international scholars have predominantly regarded
gangue and aeolian sand as supplementary materials in backfill research. However, there
exists a notable gap in exploring the mechanical properties and overlying strata control
effects of aeolian sand when used as a dry filling material. Addressing the challenges
associated with low internal friction angles and limited support for overlying strata in
aeolian sand, this study proposes the application of aeolian sand-box backfill material,
incorporating metal mesh, geotextile, and aeolian sand. The research investigates its
mechanical properties, mesh box stress, and overlying strata control effects, providing
theoretical support and insights for the utilization of aeolian sand-box backfill in desertified
mining areas in Xinjiang. This contribution aims to advance green mining practices in
the region.

2. Materials and Methods

The study comprises four parts (Figure 2): the first assesses the mechanical perfor-
mance of the aeolian sand-box backfill material model, examining the impact of wire
diameter, mesh size, and dimensions on load-bearing capabilities; the second analyzes the
mechanical deformation of the metal mesh in the aeolian sand-box backfill material, deriv-
ing a mechanical model for mesh box deformation using mechanical principles; the third
conducts mechanical tests on the aeolian sand-box backfill material, establishing mechani-
cal parameters for numerical simulations of backfill mining; in the fourth part, based on the
above analyses, numerical simulations evaluate the backfilling effectiveness of the aeolian
sand-box backfill material in the goaf area and analyze its overlying strata movement.
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2.1. Model Fabrication

The metal mesh cage plays a crucial role in supporting the load within aeolian sand-
box backfill structures. To explore, systematically and intuitively, the macroscopic influence
of different mesh cage sizes, wire diameters, and mesh configurations(mesh counts) on
the load-bearing performance of aeolian sand-box backfill structures, this study initially
constructed physical models with variations in these three parameters. Due to a significant
size difference between the aeolian sand-box backfill structure model and the prototype
in Section 2.3.1, the specifications of mesh and geotextile fabric used in the model had
to be smaller while maintaining consistent fabrication processes. Laboratory uniaxial
compression tests were conducted to obtain curves for the backfill structure models.

In the experiments, the aeolian sand was collected from the surface of the Gashunhai
No. 1 Coal Mine located on the edge of the Gurbantunggut Desert in Xinjiang. The metal
mesh was made of factory-produced 304 low-carbon steel wire, and the fastening wire used
was fine iron wire of 28-gauge. The geotextile material had a specification of 150 g/m2.

First, the metal mesh sheets were cut into square pieces of the required size. Next,
fine iron wire was used to secure the bottom and the connections around the square mesh
pieces. Then, geotextile was laid flat inside the mesh box, and aeolian sand was filled into
the mesh box. Finally, uniaxial compression tests were conducted on the prepared aeolian
sand-filled mesh box. The test process is illustrated in Figure 3.
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In the experiments, a SANS CMT5305 brand hydraulic uniaxial compression machine
(maximum test force: 300 kN; force accuracy: ±0.3% or better) was used to conduct uniaxial
compression tests on the aeolian sand-box backfill material (see Figure 3). The loading was
displacement-controlled, with a loading rate of 1 mm/min. The test plan is detailed in
Table 1.

Table 1. Experimental protocol for uniaxial compression.

Numbering Mesh Count Size/cm Diameter/mm

1 10 5 0.3, 0.45, 0.55
2 10 10 0.3, 0.45, 0.55
3 10 15 0.3, 0.45, 0.55
4 12 5 0.3
5 14 5 0.3

2.2. Analysis of Mesh Box Stress and Deformation

The metal mesh box imparts lateral constraint forces to the aeolian sand. Investigating
the stress distribution patterns of the wire mesh in the aeolian sand-box backfill material
during stress and deformation is crucial for the enhanced design, application, and rein-
forcement of the material. In the mechanical model presented herein, the mesh box is
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assumed to have equal dimensions in length, width, and height, with symmetrical metal
mesh between the fastening wire connections on both sides of the mesh sheet. One-half
of a single wire mesh is examined in the study. [27]. The stress analysis of the metal wire
mesh is depicted in Figure 4.
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The equilibrium equation is as follows:

FG = FNcosθ = FM (1)

qa/2 = FNsinθ = F (2)

In the above diagram, a represents the mesh box dimensions; F is the longitudinal wire
tension; FM is the tension at the connection point; FN is the tension in the straight section
of the wire mesh; FG is the tension in the netted section of the metal wire mesh; q is the
uniformly distributed load on the metal mesh; and d is the deflection.

The elongation of the steel wire after stress deformation [28]:

∆L =
FM
k1

+
FN
k2

+
FG
k3

(3)

By simultaneously solving Equations (1)–(3), the tension at the metal mesh connection
point is obtained:

FM =
1
2

k1k2k3a
√

1 + 4(d/a)2 − 1

k2k3 + k1k2 + k1k3
√

1 + tanθ2
(4)

In the equation: k1 is the stiffness at the connection point; k2 is the stiffness of the
curved section of the wire mesh; and k3 is the stiffness of the netted section of the wire
mesh. By combining Equations (1) and (4), the tension in the straight section of the metal
mesh is determined:

FN =
1
2

1
cosθ

k1k2k3a
√

1 + 4(d/a)2 − 1

k2k3 + k1k2 + k1k3
√

1 + tanθ2
(5)

Lateral constraint force of the metal mesh box:

M = 2
( a

c
+ 1

) k1k2k3atanθ
√

1 + 4(d/a)2 − 1

k2k3 + k1k2 + k1k3
√

1 + tanθ2
(6)

In the equation: c is the aperture of the metal mesh.
From Equation (4), it is evident that FM is a monotonically increasing function with

respect to a, indicating that as the metal mesh box undergoes a specific load, the tension
at the connection point rises with the augmentation of the mesh box dimensions. The
connection point represents a vulnerable link in the mesh box, where localized stress
concentration may occur. Therefore, during mesh box design, precautionary measures
should be taken to mitigate the risk of connection point failure associated with an increase
in dimensions.
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From Equation (6), it is evident that the lateral constraint force of the metal mesh
box is a decreasing function with respect to c. In other words, when the number of wire
meshes per unit area inside the metal mesh remains constant, the greater the number of
wire meshes, the more significant the lateral constraint force provided by the metal mesh
box to the aeolian sand. A schematic illustration of the lateral constraint force provided by
the metal mesh box to the aeolian sand is shown in Figure 5. The lateral constraint force of
the metal mesh box is an increasing function with respect to the stiffness k1, wire stiffness
k2, k3, and deformation angle. In other words, the lateral constraint force provided by the
metal mesh box increases with the increase in stiffness and deformation angle. When the
metal mesh box provides a certain lateral constraint force, the deformation angle decreases
with the increase in stiffness. This implies that the deflection of the mesh box will also
decrease. Therefore, in the fabrication of the mesh box, to save costs, one should not blindly
increase the wire diameter or reduce the metal mesh aperture, which could lead to material
wastage. Instead, the choice of wire diameter and aperture size can be determined based
on the actual engineering requirements after establishing the allowable deformation range
for the box.
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2.3. Mechanical Performance Testing of Aeolian Sand-Box Backfill Material

To comprehend the mechanical properties of the aeolian sand-box backfill material,
uniaxial compression tests were carried out on backfill materials of three different sizes,
followed by a thorough analysis of their variations. Subsequently, the obtained mechanical
parameters were employed in the 3DEC numerical simulation software to conduct backfill
mining simulations.

2.3.1. Laboratory Uniaxial Compression Tests

The aeolian sand-box backfill material consists of a metal mesh box, geotextile, and
aeolian sand. The aeolian sand was collected from the surface of the Saji Hai No. 1 Coal
Mine, located on the edge of the Gurbantünggüt Desert in Xinjiang. The geotextile had
a specification of 320 g/m2. The wire material for the metal mesh box was low-carbon
steel. The samples of aeolian sand-box backfill material were all in the form of cubes.
The mesh box is shown in Figure 6, and the physical parameters are listed in Table 2. To
investigate the mechanical properties of aeolian sand-box backfill material with different
sizes, uniaxial loading tests were conducted on specimens with side lengths of 50 cm,
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80 cm, and 100 cm. The loading was displacement-controlled using a YJW10000 computer-
controlled electrohydraulic servo shearing test machine, with a loading rate of 10 mm/min,
until the specimens and the loading was stopped. Finally, stress vertical displacement data
were exported for analysis.
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Table 2. Physical parameters of aeolian sand-box backfill material.

Aperture/cm Silk Diameter/mm Size/cm

17.5 6 50, 80, 100

The experiments were conducted in the heavy-duty laboratory of the School of Archi-
tecture and Civil Engineering at Xinjiang University. The testing equipment used was the
YJW-10000 computer-controlled electrohydraulic servo shearing test machine, as shown in
Figure 7. This test platform can be used for tests with a model size of 1100 mm × 1100 mm
and consists of upper and lower pressure plates, hydraulic apparatus, and a servo control
room. It has a maximum loading capacity of 10,000 kN and can apply loads from the top
and bottom to determine the specimen’s bearing performance.
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2.3.2. Numerical Simulation of Uniaxial Compression Tests

Numerical simulation analysis of the force and deformation of the aeolian sand-box
backfill structure was conducted using 3DEC simulation software, the numerical model is
shown in Figure 8. The model consisted of upper and lower pressure plates and backfill
material. In the first step, the ploy command was utilized to model the upper and lower
pressure plates and the backfill material (50 cm, 80 cm, 100 cm). The upper and lower
pressure plate models were defined as rigid, while the backfill material was characterized
using the MohrCoulomb plasticity model. Subsequently, the edge command was employed
to discretize the model with a grid size of 0.1. Following this, a loading condition was
imposed on the upper and lower pressure plates at a velocity of 10 mm/min until failure
occurred. The stress displacement curves resulting from the numerical simulation uniaxial
compression test were then compared and analyzed in relation to those from the physical
uniaxial compression test. Finally, the mechanical parameters derived from the numerical
simulation were utilized in the 3DEC backfill mining simulation experiment.
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2.4. Backfill Mining Numerical Simulation

In this section, leveraging the prior investigation into the mechanical properties of
backfill material, we implement the aeolian sand-box backfill material in the goaf and assess
its impact on controlling the overlying strata. The findings will offer valuable insights into
the utilization of aeolian sand-box backfill material in backfill mining projects.

Model Establishment

Modeling of rock layers and backfill material was performed using the 3DEC numerical
simulation software. Initially, the entire model was defined using the PLOY command,
and subsequently, the JEST command was utilized to establish the rock joints and contacts
with the backfill material. The overall model had dimensions of 300 m in length, 4 m
in width, a coal seam burial depth of 200 m, and a coal seam height of 4 m. Meshing
was accomplished using the EDGE command, with a maximum grid size of 2 and a
minimum of 0.2. The bottom and sides of the entire geological model were constrained.
The MohrCoulomb constitutive model was applied to the rock layers and backfill material
in the numerical simulation, with the joints modeled using the MohrCoulomb sliding
model. Geological parameters for the numerical simulation were sourced from Wusu Four
Trees Coal Limited Liability Company (Wusu, China). The study area is situated at the
No. 8 well in Baiyanggou Town, 43 km southwest of Wusu City. The parameters for each
geological layer are detailed in Table 3, and the model is depicted in Figure 9.
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Table 3. Rock layer parameters in numerical simulation.

Number Lithology Depth/m Density
/kg/m3

Bulk
Modulus

/GPa

Shear
Strength

/GPa

Friction
Angle/◦

Tensile
Strength

/MPa

1 Loess 17 2200 0.05 0.03 25 0
2 Gravel-bearing medium-grained sandstone 14 2600 8.2 6.5 28 2.7
3 Siltstone 31 2620 5.8 4.7 35 2.4
4 Medium-grained sandstone 10 2650 12.8 9.2 36 3.5
5 Coarse-grained sandstone 12 2700 16.6 12.5 35 4.2
6 Siltstone 9 2620 5.8 4.7 35 2.4
7 Coarse-grained sandstone 7 2700 16.6 12.5 35 4.2
8 Siltstone 7 2620 5.8 4.7 35 2.4
9 Fine sandstone 8 2750 14.3 10.9 36 4.9

10 Medium-grained sandstone 16 2650 12.8 9.2 36 3.5
11 Siltstone 6 2620 5.8 4.7 35 2.4
12 Coarse-grained sandstone 9 2700 16.6 12.5 35 4.2
13 Medium-grained sandstone 15 2650 12.8 9.2 36 3.5
14 Coarse-grained sandstone 12 2700 16.6 12.5 35 4.2
15 Medium-grained sandstone 8 2650 12.8 9.2 36 3.5
16 Fine sandstone 18 2750 14.3 10.9 36 4.9
17 Mudstone 6 2580 4.6 3.7 22 2.1
18 Coal 4 1600 4.5 3.4 33 1.7
19 Fine sandstone 5.6 2750 14.3 10.9 36 4.9
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On the basis of the previous model, coal seam mining with backfilling is simulated.
In the first step, the ‘reset’ command is used to clear the displacement generated by self-
weight stress in the model. To eliminate boundary effects caused by coal seam mining,
50 m coal pillars are left at both ends of the model. The ‘excavate’ command is used to
simulate coal seam excavation, and the ‘fill’ command is employed for backfilling (200 m of
filling). The simulation is conducted in two phases: (1) Simulation of coal seam excavation
without backfilling the excavation is conducted in four steps, with each step involving the
excavation of 50 m of coal. (2) Simulation of backfilling during mining: three different-sized
aeolian sand-box backfill materials are used to backfill the mined-out area in four steps,
with each step involving 50 m of excavation and 50 m of backfilling. The simulation setup
is described in Table 4. The simulations include monitoring of displacements, stresses,
and other factors. Specifically, vertical displacements of the roof above the coal seam
are monitored. Monitoring points are spaced 25 m apart above the coal pillars and 20 m
apart above the mined-out area. Vertical stress in the roof is monitored at points spaced
10 m apart. Finally, the development of fractures in the overlying rock strata at different
advancement lengths is also monitored.
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Table 4. Numerical simulation schemes.

Mining Method Backfill Size/cm Advancing Distance/m

Sublevel caving No
50, 100, 150, 200Backfill mining 50, 80, 100

3. Results
3.1. Mechanical Properties of the Filling Material Model
3.1.1. The Impact of Mesh Count on the Bearing Performance of the Filling Material

To investigate the influence of different mesh sizes on the load-bearing characteristics
of the aeolian sand-filled box, this paper selected single-axis compression test data for
the aeolian sand filling box with dimensions of 5 cm, mesh counts of 10, 12, and 14, and
wire diameter of 0.3 mm for analysis. The result shows the vertical curves for the aeolian
sand-filled boxes with different mesh counts, as depicted in Figure 10.
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From Figure 10, it can be observed that the curve during the OA stage is nearly linear,
indicating the compression and densification phase of the aeolian sand-filled box. This is
because there are micro-pores between the aeolian sand particles, and under the influence
of external forces, the particles redistribute, making the aeolian sand more compact. Beyond
the OA stage, the aeolian sand inside the box becomes even more compact, and the pressure
develops rapidly, resulting in an upward curvature in the curve. As the vertical load
increases, the vertical displacement of the filling material increases, and at the same time,
lateral deformation gradually increases. Since the connection area is a weak point in the box
and can experience stress concentration locally, this ultimately leads to damage at the edge
connections. This experimental phenomenon corroborates the macro-level conclusions
mentioned in Section 2.2, specifically the findings from Equation (4). The observation
that metal boxes with higher mesh numbers (14, 12, and 10) have better load-bearing
performance is consistent with the conclusions derived from the mechanical formula in this
paper (Equation (6)). It confirms that with a constant wire diameter, a higher number of
wires per unit area inside the metal box leads to greater lateral constraint forces provided
by the metal box for the windblown sand. As a result, the vertical load-bearing capacity of
the windblown sand filling material improves.
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3.1.2. The Impact of Wire Diameter on the Load-Bearing Performance of Backfill Material

In order to investigate the effects of different wire diameters on the mechanical prop-
erties of backfill material models, this study conducted uniaxial compression tests using
wind-blown sand fill boxes with dimensions of 5 cm and mesh counts of 10. The wire
diameters tested were 0.3 mm, 0.45 mm, and 0.55 mm. The analysis of the test data resulted
in vertical curves for the mesh boxes, as depicted in Figure 11.
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From Figure 11, it is evident that the compression stresses at the point of failure for
metal mesh boxes with wire diameters of 0.3 mm, 0.45 mm, and 0.55 mm were 1.39 MPa,
2.44 MPa, and 3.38 MPa, respectively, with corresponding vertical displacements of 13 mm,
16 mm, and 18 mm. Notably, failure in all cases occurred at the edge connections of the
mesh boxes. Furthermore, it is apparent that the compression stress at which the metal
mesh box with a wire diameter of 0.55 mm failed was 1.39 times that of the 0.3 mm wire
diameter box and 2.43 times that of the 0.45 mm wire diameter box. This suggests that
filling material with thicker wire diameters exhibits a higher load-bearing capacity.

3.1.3. The Impact of Wire Dimensions on the Load-Bearing Performance of
Backfill Material

To investigate the influence of different box dimensions on the load-bearing charac-
teristics of wind-blown sand-filled-box-type backfill, this study selected dimensions of
5 cm, 10 cm, and 15 cm in uniaxial compression test setups, with a mesh count of 10 and
wire diameter of 0.3 mm. The analysis was conducted on the test data, resulting in vertical
curves as depicted in Figure 12.

From Figure 12, it is evident that the compression stresses at the point of failure for
metal mesh boxes with dimensions of 5 cm, 10 cm, and 15 cm were 1.39 MPa, 0.33 MPa,
and 0.18 MPa, respectively, with corresponding vertical displacements of 13 mm, 11 mm,
and 9 mm. Notably, failure in all cases occurred at the edge connections of the mesh boxes.
The 5 cm-sized box exhibited a more pronounced upward curvature in the curve compared
to the other two, indicating that wind-blown sand-filled box-type backfill with smaller
dimensions experienced a faster increase in load-bearing capacity per unit deformation.
Thus, the mechanical characteristics of the smaller-sized box were superior, mainly reflected
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in higher compression stress at failure, a greater maximum allowable deformation of the
backfill material, and a faster growth in load-bearing capacity per unit deformation.
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3.2. Mechanical Performance Testing of Aeolian Sand-Box-Type Backfill
3.2.1. Mechanical Performance Testing of Aeolian Sand-Box-Type Backfill

From Figure 13, it can be observed that the abscissa represents displacement and the
ordinate represents stress. The curves of aeolian sand-box backfill structures with three
different sizes all exhibit an upward concave growth pattern. When reaching the peak,
they demonstrate brittle failure characteristics, consistent with the typical distribution
of classical plastic materials [29–31]. Therefore, the mechanical properties of the aeolian
sand-box backfill structure exhibit plasticity. The failure stress magnitude of the mesh boxes
decreases with an increase in size. For example, the failure stress of the aeolian sand-filled
mesh box with a side length of 500 mm is 0.39 MPa, while the aeolian sand-box-type backfill
with a side length of 1000 mm has a significantly lower failure stress of only 0.13 MPa. In all
three sizes of aeolian sand-box-type backfill, fractures occurred at the boundary connections
upon reaching the failure stress, leading to the loss of load-bearing capacity for the backfill
material. This is attributed to the primary lateral confinement provided by the metal wires
in the aeolian sand-box-type backfill. As lateral deformation increases, both radial and
transverse wires deform under external forces, generating axial forces. The combined effect
of these axial forces constitutes the lateral confinement supplied by the metal mesh for the
aeolian sand. Since the central part of the metal wires and the connection points experience
nearly equal stress, and considering that the strength of the connection points is typically
about one-third of the tensile strength of the metal wires, the boundary connections emerge
as the weak points in the aeolian sand-box-type backfill.

In conclusion, when applying aeolian sand-box-type backfill in mining areas, it is es-
sential to select the appropriate dimensions of the backfill based on the specific engineering
conditions. Additionally, reinforcing the boundaries of the mesh boxes according to the
intended engineering use is crucial to maximize their load-bearing performance.
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3.2.2. Numerical Simulation of Uniaxial Compression Tests on Aeolian Sand
Box-Type Backfill

By utilizing a ‘trial-and-error’ method to adjust the physical mechanical parameters
(friction angle, tensile strength) of different-sized aeolian sand-box backfill structures in
3DEC, the numerical simulation parameters for the backfill material are presented in Table 5.
Finally, the curves obtained from the numerical simulation software were compared with
those from the physical experiments, as illustrated in Figure 14.

Table 5. Parameters of the aeolian sand-box backfill material model [32].

Size/cm Bulk Modulus
(MPa)

Shear Strength
(MPa)

Tensile Strength
(MPa)

Friction
Angle (◦)

Density
(kg/m3)

50 2.96 1.36 2.1 35 2680
80 1.33 0.62 1.7 31 2680

100 0.68 0.31 1.23 28 2680Minerals 2023, 13, x FOR PEER REVIEW 14 of 21 
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Figure 14. Curves of backfill material from numerical simulation and physical experiments.
(a) backfill size 50 cm; (b) backfill size 80 cm; (c) backfill size 100 cm.

From (Figure 14a–c), it is evident that both the curves obtained from numerical simu-
lations and physical experiments exhibit an initial increase followed by a decrease. The
curves, in both cases, demonstrate concave upward growth before the mesh box’s failure.
This behavior is attributed to the fact that the aeolian sand-box-type backfill behaves as a
plastic material, and before failure, it goes through a compaction phase.

As the vertical load applied to the backfill material increases, the vertical bearing
capacity of the backfill material reaches its peak and then exhibits unloading. In physical
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experiments, this is manifested by the failure at the boundaries of the mesh box, leading to
a loss of load-bearing capacity. In numerical simulations, it is characterized by joint sliding
and fracture, resulting in a loss of load-bearing capacity. The peak strength and brittle
failure obtained from both uniaxial methods are essentially consistent.

In conclusion, this section’s numerical simulation method and mechanical parameter
settings can support numerical simulations for backfill mining.

3.3. Numerical Simulation of Coal Seam Mining
3.3.1. Movement Patterns of Overlying Strata during Caving Method Mining

This section examines the impact of caving method mining on overlying strata move-
ment through the analysis of 3DEC numerical simulations. Overlying strata displacement
cloud maps were generated for varying face advancement lengths (50 m, 100 m, 150 m,
200 m), illustrated in Figure 15. Vertical displacement curves for different face advancement
lengths in caving method mining were created to better understand their influence on roof
strata displacement, as shown in Figure 16a. Additionally, to explore the impact of both
caving method and backfill mining on roof displacement, maximum roof displacement
curves were generated for different face advancement lengths under both methods, as
presented in Figure 16b.
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As shown in Figure 15, during coal seam mining using the caving method, the dis-
placement of the overlying rock layers above the coal seam primarily exhibits a trapezoidal
distribution, which is in line with the typical pattern of overlying strata displacement.
This observation aligns with the findings of other researchers [33–35]. The collapse of
the overlying strata above the coal seam intensifies with the progression of the working
face. At an advancement distance of 50 m, the overlying strata experience minimal im-
pact from coal seam mining, with the influence of coal excavation on the overlying rock
layers above the coal seam reaching approximately 10.8 m in height. With an increase in
coal seam advancement distance to 100 m, 150 m, and 200 m, a notable escalation in the
extent of overlying strata collapse is observed. Simultaneously, the impact height of the
collapse on the rock layers above the goaf also rises with the advancement distance. At
advancement distances of 100 m, 150 m, and 200 m, the impact heights on the overlying
rock layers measure approximately 38.8 m, 119 m, and 204 m, respectively. Examination
of displacement cloud maps reveals that at an advancement distance of 150 m, there is
discernible surface impact, and with a coal mining advancement distance of 200 m, surface
displacement further increases.

To analyze the impact of caving and backfill mining methods on overlying strata
displacement, displacement curves for overlying strata during caving method mining at
different face advancement distances were generated. Maximum overlying strata displace-
ment curves for both caving and backfill mining at various face advancement distances
were also produced, corresponding to Figure 16a,b.

As shown in Figure 16a, with an increase in coal mining advancement distance, the
displacement of overlying strata gradually increases. When the advancement distance is
50 m, the maximum overlying strata collapse displacement is 0.6 m. When the advancement
distance is 100 m, 150 m, and 200 m, the maximum collapse displacements of the overlying
strata are 1.07 m, 2.74 m, and 3.71 m, respectively. With the increase in coal mining
advancement distance, the disturbed area of overlying strata also expands, and the range
of overlying strata collapse increases. This phenomenon can have a detrimental impact on
the surface ecological environment [36,37]. To mitigate this, it is necessary to implement
backfilling in the goaf area to reduce the disturbance to the overlying strata.

As depicted in Figure 16b, a comparative analysis of maximum overlying strata dis-
placement curves was conducted between caving method mining and backfill mining
employing different sizes of backfill material. The figure clearly illustrates that backfill
mining effectively mitigates the disturbance caused by coal seam excavation to the overly-
ing strata. When utilizing aeolian sand backfill material of three different sizes in the goaf
area, the maximum displacement of the overlying strata is significantly smaller compared
to the caving method. For instance, at a coal seam advancement distance of 200 m, the
maximum overlying strata displacement with the caving method is 3.71 m, whereas when
filling the goaf area with backfill materials of 50 cm, 80 cm, and 100 cm in size, the maxi-
mum overlying strata displacements are 1.9 m, 1.7 m, and 1.2 m, respectively. Beyond an
advancement distance of 100 m, both caving and backfill mining exhibit regions of elevated
roof displacement. For instance, with the caving method at a 150 m advancement distance,
the overlying strata displacement is 1.67 m greater than at a 100 m advancement distance.
In contrast, utilizing a 100 cm-sized aeolian sand-box-type backfill material for goaf filling
results in an increase of 0.66 m in overlying strata displacement when the advancement
distance is 150 m compared to 100 m. Therefore, the use of aeolian sand-box-type backfill
material in this study proves effective in reducing disturbance to the overlying strata to a
certain extent.

3.3.2. Effect of Aeolian Sand-Box-Type Backfill on Overlying Strata Displacement Control

From the preceding discussion, it is evident that employing aeolian sand-box-type
backfill in goaf areas can mitigate the disturbance caused by coal seam mining to the
overlying strata. To assess the suitability of aeolian sand-box-type backfill for filling mining
under different coal seam conditions, this section examines the control effect of various
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sizes of aeolian sand-box-type backfill on the overlying strata. Curves illustrating the
control effect of different backfill material sizes on overlying strata under various face
advancement distances have been generated, as depicted in Figure 17.
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Observed in Figure 17a–d, the collapse curves of the overlying strata exhibit an
upward concave shape when filling the goaf area at various face advancement distances
with aeolian sand-box-type backfill materials of different sizes. Notably, smaller sizes of
aeolian sand-box-type backfill materials demonstrate superior control over overlying strata
settlement. Taking Figure 17d as an example, when filling the goaf area with aeolian sand-
box-type backfill materials with side lengths of 50 cm, 80 cm, and 100 cm over a distance
of 200 m, the maximum roof displacements are 1.26 m, 1.75 m, and 1.93 m, respectively.
The load-bearing capacity of aeolian sand-box-type backfill materials is influenced by their
size, wire diameter, and mesh size, as discussed in Section 2.2. It is known that the load-
bearing capacity decreases as the size of aeolian sand-box-type backfill materials increases.
In essence, smaller-sized backfill materials offer greater support to the roof, exhibiting a
higher load-bearing response rate, leading to earlier compaction of the overlying strata and
a reduction in displacement to some extent.

3.3.3. Stress Distribution Patterns in Strata during Backfill Mining

In this section, Figure 18a illustrates the impact of two coal mining methods, caving
and backfilling, on the stress magnitude and distribution patterns of rock and coal pillar
stresses. Additionally, Figure 18b depicts stress distribution curves for various positions
within the mining face during backfill mining, considering different face advancement
distances. This facilitates a comprehensive analysis of the control effect of aeolian sand-box-
type backfill materials of varying sizes on the variation of rock strata stress. Furthermore,
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Figure 19 provides stress contour plots for rock strata with 100 cm-sized backfill material,
offering a visual analysis of stress variation and distribution patterns.
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From Figure 18a, it is evident that backfilling the goaf with aeolian sand-box-type
backfill material effectively controls the increase in rock strata stress. At face advancement
distances of 50 m, 100 m, 150 m, and 200 m, the maximum rock strata stress obtained
by caving is higher than that obtained by backfill mining. For example, in the case of
caving mining at a face advancement distance of 200 m, the maximum rock strata stress is
−50.3 MPa, while backfill mining results in a maximum rock strata stress of −37.9 MPa.
The maximum rock strata stress increases with the size of the backfill material. At face
advancement distances of 200 m using aeolian sand-box-type backfill material with side
lengths of 50 cm, 80 cm, and 100 cm, the maximum rock strata stress obtained is −22.1 MPa,
−25.8 MPa, and −37.9 MPa, respectively. Therefore, smaller-sized aeolian sand-box-type
backfill material exhibits a more effective control over rock strata stress compared to
larger-sized material.
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To analyze the variation of maximum rock strata stress with face advancement distance
during backfill mining, stress distribution curves were generated for rock strata with a
100 cm-sized aeolian sand-box-type backfill material in the goaf (Figure 18b). Observing
Figure 18b, it is evident that at different face advancement distances, the maximum stress
in the overlying rock strata consistently occurs just above the coal pillar. Furthermore, this
maximum stress increases with the face advancement distance. For the left coal pillar, at
face advancement distances of 50 m, 100 m, 150 m, and 200 m, the maximum stress above
the coal pillar is −18.98 MPa, −26.03 MPa, −35.14 MPa, and −37.9 MPa, respectively. The
vertical stress above the backfill material gradually increases with the face advancement
distance, displaying an overall gentle and steady distribution trend [38–40].

From Figure 19, it is evident that as the advance distance increases, the disturbance
range around the coal seam expands, accompanied by a notable stress concentration
phenomenon near the coal pillar. Based on the aforementioned analysis, to effectively
enhance the safety of coal mining operations employing aeolian sand-box-type backfilling,
it is advisable to design different sizes of aeolian sand-box-type backfilling structures
tailored to various coal seam conditions. This approach can help prevent the occurrence
of excessive stress concentration in the coal pillar region. Examining the cloud maps
reveals that at advancement distances of 50 m and 100 m, the upper rock layers above
the backfilling area exhibit higher tensile stresses, gradually extending the affected area
upwards. This behavior stems from the flexible nature of aeolian sand-box-type backfilling
material, with its vertical load-bearing capacity increasing alongside vertical deformation.
In cases where the roof subsidence is relatively small, an immediate significant vertical
force may not be provided. Conversely, at advancement distances of 150 m and 200 m, the
upper rock layers above the backfilling area transition from tensile stress to compressive
stress. This is because with the increase in roof subsidence, the aeolian sand-box-type
backfilling material provides sufficient vertical load-bearing capacity for the roof, gradually
compacting the upper rock layers above the backfilling area. At this point, the overlying
rock layers gradually subside with the increasing advancing distance. The key layers
are primarily under compressive stress, indicating that these key layers are not prone
to fracture risks and will not generate impacts affecting the underground coal mining
operations’ safety. In conclusion, the aeolian sand-box-type backfilling material effectively
controls rock layer displacement and stress distribution.

4. Conclusions

This paper investigates the influence of filament diameter, pore size, and dimensions
on the bearing performance of aeolian sand-filled box-type fill materials through uniaxial
compression tests and mechanical analysis. The mechanical equation for the net box
constraint force in relation to the iron wire’s filament diameter, pore size, and dimensions
is derived. The study employs numerical simulation to analyze the control effect of aeolian
sand-filled box-type fill materials on overlying strata. The key findings are as follows:

1. Uniaxial compression tests on the aeolian sand-filled box-type fill material model re-
veal that they bearing capacity of the filling material increased with the augmentation
of wire diameter and mesh density. Conversely, the bearing capacity of the aeolian
sand-filled box decreased with the enlargement of dimensions. The compression
stress at the failure of metal mesh boxes with dimensions of 5 cm, 10 cm, and 15 cm
were 1.39 MPa, 0.33 MPa, and 0.18 MPa, respectively.

2. Force analysis was conducted on the metal mesh box on the outer side of the aeolian
sand-filled box-type filling. The mechanical relationship equation between the lateral
restraining force provided by the mesh box for the aeolian sand during the bearing
deformation and the wire diameter, mesh size, and dimensions was derived. Addi-
tionally, the force-deformation equation at the boundary connection of the mesh box
was obtained.

3. Physical uniaxial compression tests and numerical simulations were performed on
aeolian sand-filled box-type fill materials in three different sizes (50 cm, 80 cm, 100 cm).
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Both methods produced curves characterized by an initial increase followed by a
decrease. The curves from the two approaches closely matched, indicating good
agreement. Mechanical parameters derived from numerical simulations were found
to be reasonably accurate.

4. A comparative analysis was conducted on the maximum vertical displacement of
overlying strata obtained through the caving method and backfill mining method.
It was observed that the aeolian sand-filledbox-type filling structure can effectively
control overlying strata displacement. Moreover, smaller dimensions of the aeolian
sand-filled box-type filling structure resulted in a more pronounced control effect on
overlying strata movement.

5. The aeolian sand-filled box-type filling structure effectively alleviates high stress con-
centration issues in the coal pillar and overlying rock strata post-coal seam extraction.
Under the caving method, the maximum stress in the rock strata at an advancing
distance of 200 m reached −50.3 MPa, compared to −37.9 MPa with the backfill
mining method. The maximum stress in the rock strata correlates positively with the
enlargement of the filling structure size.
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