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Abstract: Melting phase relations in the eclogite-carbonate system were studied at 6 GPa and
900–1500 ◦C. Starting mixtures were prepared by blending natural bimineral eclogite group A (Ecl)
with eutectic Na-Ca-Mg-Fe (N2) and K-Ca-Mg-Fe (K4) carbonate mixtures (systems Ecl-N2 and
Ecl-K4). In the Ecl-N2 system, the subsolidus assemblage is represented by garnet, omphacite,
eitelite, and a minor amount of Na2Ca4(CO3)5. In the Ecl-K4 system, the subsolidus assemblage
includes garnet, clinopyroxene, K2Mg(CO3)2, and magnesite. The solidus of both systems is located at
950 ◦C and is controlled by the following melting reaction: Ca3Al2Si3O12 (Grt) + 2(Na or K)2Mg(CO3)2

(Eit) = Ca2MgSi3O12 (Grt) + [2(Na or K)2CO3·CaCO3·MgCO3] (L). The silica content (in wt%) in the
melt increases with temperature from < 1 at 950 ◦C to 3–7 at 1300 ◦C, and 7–12 at 1500 ◦C. Thus,
no gradual transition from carbonate to kimberlite-like (20–32 wt% SiO2) carbonate-silicate melt
occurs even as temperature increases to mantle adiabat. This supports the hypothesis that the high
silica content of kimberlite is the result of decarbonation at low pressure. As temperature increases
from 950 to 1500 ◦C, the melt Ca# ranges from 58–60 to 42–46. The infiltration of such a melt into
the peridotite mantle should lower its Ca# and causes refertilization from harzburgite to lherzolite
and wehrlitization.

Keywords: carbonate melt; mantle metasomatism; eclogite solidus; mixed paragenesis;
Earth’s mantle

1. Introduction

Diamondiferous eclogite xenoliths derived from the base of the subcontinental litho-
spheric mantle (SCLM) often show traces of mantle metasomatism [1–4]. Three-dimensional,
high-resolution X-ray computed tomography of eclogite xenoliths has revealed that dia-
monds grew in metasomatic alteration zones [5–7]. Numerous microinclusions of calcite
and alkaline Cl-bearing carbonate melt found in diamonds from metasomatic veins in eclog-
ite xenoliths [1,8,9] indicate that diamonds were formed during percolation of a carbonatitic
melt through eclogite.

Mantle carbonatitic melts entrapped by diamonds from kimberlites and placers
worldwide are rich in alkalis. Based on over a hundred analyses of carbonatitic inclu-
sions containing <15 wt% SiO2 and ≤5 Cl wt% [10–21], the mantle carbonatitic melts
contain (average/maximum) 6/19 wt% Na2O and 12/75 wt% K2O (see Supplementary
Table S7 [22]). An affinity of high- and low-Mg carbonatitic melts to diamonds of peridotitic
and eclogitic suits, respectively, was also revealed [23]. Moreover, inclusions intermediate
between low-Mg carbonatitic and saline melts have been found in diamonds recovered
from a xenolith of bimineralic eclogite Group B [8,13].

Alkali-rich carbonatitic inclusions have also been found in sheared garnet and spinel
peridotite xenoliths derived from 110–230 km depths and magmatic minerals from kimber-
lites of Siberia, Canada, Greenland, and Africa [24–35]. Interestingly, alkaline carbonatite
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inclusions have been found in sheared peridotite xenoliths [30,32–35], while no such inclu-
sions have been reported to occur in granular peridotite xenoliths. The latter was explained
by the segregation of carbonatite melt in zones of intense deformation, by means of a
dissolution–precipitation mechanism driven by mechanical stress [36].

Although the compositions of alkaline carbonate melts in equilibrium with peri-
dotites under P-T conditions of the subcontinental lithospheric mantle and underlying
asthenosphere were recently reported [37,38], data on the temperature stability range and
compositions of carbonate melts equilibrium with eclogite in the mantle are rather con-
tradictory. Estimates of the temperatures of carbonated eclogite solidus vary from ~1000
to 1350 ◦C at 5–6 GPa [39–44]. The experimental data on the composition of carbonate
melts in equilibrium with eclogites are very limited and scattered. The reliability of a few
available data points is questionable. A study of the melt compositions in experiments on
the melting of the carbonated eclogites showed that these compositions do not undergo
complete melting at the specified P-T conditions [45,46]. The results also showed that the
stable melts have an alkaline carbonate composition similar to the eutectic melts in the
Na2CO3-CaCO3-MgCO3 and K2CO3-CaCO3-MgCO3 systems at 6 GPa [47–50].

Given that alkaline carbonate melts are responsible for mantle metasomatism and
diamond formation [8,51–53], it is interesting to know their compositions in equilibrium
with eclogites at the base of SCLM and the underlying asthenosphere.

We have recently shown that such melts can be in equilibrium with eclogite at 1100
and 1200 ◦C at 6 GPa [54]. However, the temperature range, expected for the operation of
metasomatizing carbonate melts in the mantle, is much wider. The temperature estimates
for the formation of metasomatized and diamond-bearing eclogitic xenoliths and touching
garnet-omphacite inclusions in diamonds fall in the range of 900–1500 ◦C [3,55]. The ho-
mogenization temperature of some carbonate-bearing microinclusions in cuboid diamonds
reaches the temperature of the convective mantle [56], 1400–1500 ◦C [57].

Here, we present new experimental data on the solidus, melting reactions, and
trends in the compositions of carbonate melts in the systems consisting of natural eclogite
+ Na-Ca-Mg-Fe and K-Ca-Mg-Fe carbonate mixtures over 900–1500 ◦C at 6 GPa.

2. Methods
2.1. Starting Materials

Starting materials were prepared by blending synthetic carbonate mixtures and pow-
der of natural eclogite. The compositions of starting materials are given in
Tables 1 and S1–S3.

Table 1. Composition (wt%) of starting materials.

Component SiO2 TiO2 Al2O3 Cr2O3 NiO FeO MnO MgO CaO Na2O K2O CO2

Ecl UD-45-02 46.1 0.30 15.2 0.43 0.00 8.45 0.33 17.68 10.6 0.60 0.34 –
Cpx 55.1 0.18 2.01 0.23 b.d.l. 4.11 0.10 16.2 20.3 1.70 0.03 –
Grt 41.7 0.32 22.2 0.38 b.d.l. 10.8 0.38 18.6 5.60 0.08 b.d.l. –
N2 – – – – – 2.38 0.03 4.71 20.3 29.3 – 43.3
K4 – – – – – 2.72 0.03 5.39 21.2 – 31.7 39.0

Ecl-N2 29.3 0.19 9.61 0.28 0.00 6.23 0.22 12.9 14.1 11.1 0.22 15.8
Ecl-K4 28.1 0.19 9.23 0.26 0.00 6.21 0.21 12.9 14.7 0.37 12.6 15.2

Fresh xenolith of bimineral eclogite (UD-45-02) from the Udachnaya kimberlite pipe
(Yakutia, Russia) [58], similar to that used in our previous study [54], was employed. The
xenolith was chosen because it does not contain visible traces of secondary alterations
and undoubtedly is of mantle origin. Compositions of clinopyroxene, Di78Jd12En4Fs6, and
garnet, Prp65Alm21Grs14, correspond to Group A eclogite according to the classifications
of Taylor and Neal [59] and Coleman, et al. [60], respectively (Table 1). Mass balance
calculations indicate that the xenolith consists of 65 wt% garnet and 35 wt% clinopyroxene
(Table S1). Although the eclogite does not contain phlogopite, the IR spectra of omphacite
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and garnet revealed the presence of a minor amount of water as hydroxyl structural
defects. Considering the volume ratios of minerals, the bulk water content in the xenolith
is estimated to be 576 ppm H2O [58]. Assuming a pressure of 5 GPa, the geothermometer
of Ellis and Green [61] gives a temperature of 1193 ◦C [58]. It was also recently found
that the xenolith UD-45-02 contains diamonds (V.S. Shatsky personal communication).
Representative pieces of xenolith were ground with alcohol in a tungsten carbide mortar.

The starting carbonate mixtures, N2 and K4, were close to eutectics established at
6 GPa and 1050 ◦C in the Na2CO3-CaCO3-MgCO3 and K2CO3-CaCO3-MgCO3 systems,
respectively [49,50]. The mixtures were blended from reagent grade Na2CO3, K2CO3,
CaCO3, natural magnesite (<0.1% impurity) from Brumado (Bahia, Brazil), and siderite,
Fe0.83Mn0.01Mg0.08Ca0.08CO3, from Farmsen Clay Pit, Schellerten, Hildesheim (Lower Sax-
ony, Germany) (Table 1 and S2). The iron number, Fe# = 100·Fe/(Fe + Mg), of carbonate
mixtures, 22 mol%, was close to that of eclogite UD-45-02, 21 mol%.

The eclogite powder and carbonate mixtures were ground under acetone in a tungsten
carbide mortar. The carbonate/silicate ratio in each starting material was 40/60 in mol%,
which corresponds to a bulk CO2 content of 20 mol% or 15–16 wt% (Table 1 and S3).

2.2. High-Pressure Experiments

Since the starting mixtures contain hygroscopic compounds, K2CO3 and Na2CO3,
special care was applied to prevent samples’ contamination with atmospheric water. The
prepared assemblies with loaded samples were dried at 200 ◦C for ≥12 h under vacuum
prior to experiment. To minimize the contamination of the dried cell with water during its
loading into the press, indoor humidity was maintained at 15%–35%.

The design of the cell assembly is identical to that used by Shatskiy et al. [62]. The
assembly includes an octahedral pressure medium made of ZrO2 ceramics [63], a graphite
heater with 4.0/4.5 mm inner/outer diameter, and a W/Re (3%/25%) thermocouple,
electrically insulated by Al2O3 tubes. The powdered samples were loaded in graphite
capsules, electrically insulated from the heater by a thin (0.2 mm) MgO-SiO2 ceramic sleeve.

Eight tungsten carbide cubes (“Fujilloy N-05”) of 26 mm in size with 12-mm trun-
cations were used as anvils to compress the octahedral cell assembly. Pyrophyllite gas-
kets, 4.0 mm in width and thickness, were fixed by rice glue at the edges of truncations
to support anvil flanks. The experiments were run on a 1500-ton multianvil DIA-type
press ‘Discoverer’.

The temperature gradients in the cell were examined using thermal modelling soft-
ware [64]. The results revealed that the temperature gradient within individual samples
varies from 7 to 14 ◦C/mm. The correctness of the modelling was verified experimen-
tally [65] using the two-pyroxene thermometer [66].

Experiments were performed by 4-h compression to a load of 6.5 MN, corresponding
to a sample pressure of 6 GPa, and heating to a target temperature at a rate of 25–50 ◦C/min.
Then samples were annealed for 198 h at 900 ◦C, 168 h at 950 ◦C, 169 h at 1000 ◦C, 64 h
at 1300 ◦C, 24 h at 1400 ◦C, and 5 h at 1500 ◦C. During annealing, the temperature was
maintained within 2–3 ◦C of the desired value at a constant press load. The experiments
were terminated by turning off the heater power, resulting in a temperature drop below
150 ◦C in a few seconds, followed by 5-h decompression.

2.3. Analytical Techniques

Immediately after experiments, the recovered graphite cassettes with samples were
filled with epoxy under vacuum. Then capsules were sliced using a low-speed diamond
saw to recover nearly axial, vertical cross-sections of samples. The obtained specimens
were placed on a double-sided tape in a plexiglass holder with epoxy. The samples were
then polished under oil using 400(37)-, 1000(13)-, and 1500(9)-mesh (µm) sandpapers.
Finally, samples were polished using a 3 µm diamond paste. After polishing, the sam-
ples were cleaned using petroleum benzine and wipes and then stored in benzine before
carbon coating.
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Samples were studied using a MIRA 3 LMU scanning electron microscope (Tescan Or-
say Holding, Brno-Kohoutovice, Czech Republic), coupled with an INCA energy-dispersive
X-ray microanalysis system 450, equipped with liquid nitrogen-free Large area EDX X-Max-
80 Silicon Drift Detector (Oxford Instruments Nanoanalysis Ltd., High Wycombe, UK) [67].
Energy-dispersive X-ray spectra (EDS) were collected by using an electron beam-rastering
method, in which the stage was stationary while the electron beam moved over the surface
area, with dimensions 5–30 µm (for silicate minerals) and 50–500 µm (for quenched melt)
at 20 kV accelerating voltage and 1.5 nA beam current. The live counting time for X-ray
spectra was 20 s. The silicon drift detector energy-dispersive X-ray spectrometry (SDD-EDS)
enables accuracy and precision equivalent to that of wavelength-dispersive spectroscopy
in the case of routine analysis of rock-forming silicate minerals [67,68] and even shows
better performance in the case of alkali-rich carbonate samples, which are unstable (i.e.,
decompose and evaporate) under the strong stationary electron beam [69].

3. Results

The symbols used in the manuscript are given in the abbreviations section.

3.1. Textures of Recovered Samples

Representative backscattered electron (BSE) images of the samples are shown in
Figures 1 and 2. Below the solidus, at 900 ◦C, the crystalline phases are homogeneously
distributed throughout the sample (Figure 1a,b). At 950 ◦C, the sample consists of the sub-
solidus assemblage in the low-temperature (LT) zone and quenched melt with suspended
clinopyroxene and garnet crystals in the high-temperature (HT) zone (Figures 1c–e and
2a,b). Above the solidus over 1000–1500 ◦C, the melt forms a separate pool in the HT
sample side, while an aggregate of clinopyroxene and garnet crystals adjoins the LT side
(Figures 1c–l and 2c,e). The carbonate melt quenches to an aggregate of needle-shaped car-
bonate crystals up to 60 µm in length (Figure 1d). At 1500 ◦C, needle-shaped clinopyroxene
crystals appear in addition to carbonate (Figures 1l and 2f).

Clinopyroxene, garnet, and olivine form euhedral to subhedral grains 5–50 µm in
size (Figures 1 and 2). Relicts with the initial composition remain in the larger garnet
crystals, while the smaller ones are free of relicts (Figure 1b). In the Ecl-N2 system over
1100–1300 ◦C, in addition to clinopyroxene and garnet, a minor amount of olivine appears
as well-shaped euhedral crystals up to 15 µm in size (Figure 1i).

Carbonates (eitelite, magnesite, Na2Ca4(CO3)5, and K2Mg(CO3)2) are present over
900–950 ◦C between silicate minerals (Figures 1a–e and 2b). Magnesite crystals are also
present at 1000 ◦C adjacent to the LT capsule end (Figure 1g).

3.2. Phase Relations

Successive changes in the phase assemblage with increasing temperature are shown in
Figure 3. The run conditions and the modal abundance of phases are listed in
Tables 2 and S1–S10 both in mol% and wt%. The mass balance calculations are given in
Tables S5 and S6 in mol% and wt%, respectively.

The system Ecl-N2. At 900 ◦C (run D280, 198 h), the sample is represented by the
subsolidus assemblage consisting of clinopyroxene, garnet, eitelite, and a trace amount of
Na2Ca4(CO3)5 (Figure 1a,b, Table 2). As the temperature increases to 950 ◦C (run D267,
168 h), melting begins, Na2Ca4(CO3)5 disappears, while eitelite is still present (Figure 1c–e,
Table 2).

At 1000 ◦C (run D253, 169 h), eitelite disappears, while a minor amount of magnesite
(3 wt%) is present (Figure 1f,g, Figure 3a and Table 2). At 1300 ◦C (run D211, 64 h), a
minor amount of olivine (1 wt%) appears in addition to clinopyroxene and garnet similar
to that observed at 1100 and 1200 ◦C in our earlier study [54] (Figure 1h,i, Figure 3a and
Table 2). At 1400 ◦C (run D214, 24 h) and 1500 ◦C (run D217, 5 h), olivine disappears, the
clinopyroxene fraction slightly decreases, and the melt fraction increases (Figure 3a).



Minerals 2023, 13, 82 5 of 23Minerals 2022, 12, x FOR PEER REVIEW 5 of 23 
 

 

 
Figure 1. BSE images of sample cross-sections from 6-GPa experiments in the system Ecl-N2 at 900 
°C (a,b), 950 °C (c–e), 1000 °C (f,g), 1300 °C (h,i), 1400 °C (j), and 1500 °C (k,l). HT—high-tempera-
ture and LT—low-temperature sample sides. The gravity vector is directed downward. The color 
images (b,e,i) were taken in the element mapping mode. The numbers at the top-right corners of 
each subfigure are sample numbers. See the abbreviations section for mineral and phase symbols. 

Figure 1. BSE images of sample cross-sections from 6-GPa experiments in the system Ecl-N2 at 900 ◦C
(a,b), 950 ◦C (c–e), 1000 ◦C (f,g), 1300 ◦C (h,i), 1400 ◦C (j), and 1500 ◦C (k,l). HT—high-temperature
and LT—low-temperature sample sides. The gravity vector is directed downward. The color images
(b,e,i) were taken in the element mapping mode. The numbers at the top-right corners of each
subfigure are sample numbers. See the abbreviations section for mineral and phase symbols.
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Figure 2. BSE images of sample cross-sections from 6-GPa experiments in the systems Ecl-K4
at 950 ◦C (a,b), 1300 ◦C (c,d), 1500 ◦C (e,f). See the Figure 1 caption for other details. See the
abbreviations section for mineral and phase symbols.

Figure 3. Modal abundances of phases as a function of temperature in the systems Ecl-N2 (a) and
Ecl-K4 (b) at 6 GPa. Modes (in mol%) were determined from the bulk compositions of starting
mixtures and compositions of phases measured by EDS (Table S5). Modes in wt% are given in Table
S6. See the abbreviations section for mineral and phase symbols. The data at 1100 and 1200 ◦C are
after [54]. See the abbreviations section for mineral and phase symbols.
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Table 2. Modal abundance of phases (in wt%) in the experimental samples.

System
Run

T, ◦C t, h
Run Products

Cpx Grt Ol Na2Ca4 Eit K2Mg Mgs L Sum r2

Ecl-N2 Initial mixture 22 41 − − − − − 37
D280 900 198 25 40 − tr. 35 − − − 4.00
D267 950 168 21 45 − − 32 − − 2 0.15
D253 1000 169 31 31 − − − − 3 35 1.98

D178 * 1100 111 23 37 3 − − − tr. 37 0.06
D178S * 1100 111 28 32 1 − − − − 38 0.56
D174 * 1200 86 21 38 5 − − − − 37 1.53

D174S * 1200 86 21 39 3 − − − − 37 1.73
D211 1300 64 23 37 1 − − − − 39 0.43
D214 1400 24 23 37 − − − − − 40 0.35
D217 1500 5 21 36 − − − − − 43 0.80

Ecl-K4 Initial mixture 21 40 − − − − − 39
D280 900 198 19 42 − − − 33 6 − 0.68
D267 950 168 19 44 − − − 4 28 5 0.18

D178 * 1100 111 18 42 40 2.30
D178S * 1100 111 19 41 − − − − − 40 1.51
D174 * 1200 86 19 41 − − − − − 40 1.72

D174S * 1200 86 17 43 − − − − − 40 2.32
D211 1300 64 17 38 − − − − − 45 0.28
D214 1400 24 15 40 − − − − − 45 0.88
D217 1500 5 13 39 − − − − − 48 3.79

Notes: t—run duration. Weight fraction of phase estimated from mass balance calculations. The calculations
and standard deviations are given in Tables S4–S6 both in mol% and wt%. tr.—trace amount. *—after [54].
S—synthetic mixture instead of the rock. “Sum r2” is the summation of squares of residuals obtained by using
mineral modes, phase compositions, and composition of the starting materials. See the abbreviations section for
mineral and phase symbols.

The system Ecl-K4. At 900 ◦C (run D280, 198 h), the sample consists of clinopyroxene,
garnet, K2Mg(CO3)2, and magnesite (Figure 3b, Table 2). At 950 ◦C (run D267, 168 h),
the resulting mineral assemblage remains unchanged, while the melt fraction increases
at the expense of K2Mg(CO3)2 (Figures 2c,d and 3b). Over 1300–1500 ◦C (runs D211,
D214, D217), the samples are represented by clinopyroxene, garnet, and quenched melt
(Figures 2e–h and 3b) as that observed by Shatskiy et al. [54] in the same system at
1100 and 1200 ◦C (Figure 3b, Table 2).

3.3. Composition of Phases

The chemical composition of phases is given in Table 3 in wt% and Tables S1–S10 both
in mol% and wt%.

Table 3. Phase compositions in wt%, normalized to 100%.

System,
T, ◦C,

Run No.,
Duration

Phase n SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO Na2O K2O CO2 * Ca
#

Ecl Cpx 55.1 0.18 2.01 0.23 4.11 0.10 16.2 20.3 1.70 0.03 – 44
UD-42-02 Grt 41.7 0.32 22.2 0.38 10.8 0.38 18.6 5.60 0.08 b.d.l. – 14

Ecl-N2

900,
D280,
198 h

Cpx 4 54.6
(1.3) b.d.l. 5.08

(39) 0.11 (5) 4.42
(12) b.d.l. 13.0

(1.0) 18.5 (5) 4.26
(75) b.d.l. – 46

Grt 9 38.9 (4) 0.39 (6) 19.2 (5) 0.43 (4) 12.0 (7) 0.32 (6) 4.33
(61) 24.0 (4) 0.30

(17) b.d.l. – 61

Na2Mg 9 – – – – 2.10 (6) b.d.l. 21.3 (8) 1.29
(15)

28.6
(1.1) 0.52 (1) 46.1

(1.6) 4

Na2Ca4 2 – – – – 1.36 b.d.l. 2.32 40.6 11.9 0.09 43.7 90

950,
D267,
168 h

Cpx 3 54.8 (6) 0.05 (6) 4.82
(33) 0.22 (2) 3.89

(30) b.d.l. 13.8
(1.0) 18.9 (4) 3.43

(41) b.d.l. – 46

Grt 9 39.9 (2) 0.61 (7) 19.4 (3) 0.49 (3) 10.3 (3) 0.38 (3) 7.48
(1.46)

21.2
(2.1)

0.32
(13) b.d.l. – 53
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Table 3. Cont.

System,
T, ◦C,

Run No.,
Duration

Phase n SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO Na2O K2O CO2 * Ca
#

Na2Mg 3 – – – – 1.74 (5) b.d.l. 20.9 (8) 1.43 (1) 29.5
(1.0) 0.31 (2) 46.1

(1.7) 4

L 9 0.62
(15) 0.13 (6) 0.42

(48) b.d.l. 3.43
(59) b.d.l. 8.31

(1.75)
19.8
(2.5)

23.2
(1.8)

1.05
(33)

43.0
(2.7) 58

1000,
D253,
169 h

Cpx 22 55.9 (8) 0.23 (6) 8.86
(76) 0.35 (3) 2.68

(20) b.d.l. 11.0
(1.1)

15.2
(1.0)

5.79
(65) b.d.l. – 47

Grt 7 40.9 (2) 0.30 (4) 22.0 (8) 0.42 (3) 11.4 (1) 0.42 (2) 14.1 (7) 10.3 (8) b.d.l. b.d.l. – 26

Mgs 4 – – – – 7.59 (2) b.d.l. 40.0 (3) 2.25
(24) b.d.l. b.d.l. 50.1 (3) 4

L 6 1.10
(25) 0.17 (6) 0.27 (4) b.d.l. 4.67

(14) b.d.l. 9.12
(26) 16.6 (2) 25.0 (3) 0.26 (1) 42.8 (7) 50

1300,
D211,
64 h

Cpx 18 54.7 (4) 0.15 (6) 6.54
(60) 0.21 (5) 3.45

(11) b.d.l. 13.1 (9) 17.9 (6) 3.89
(43) b.d.l. – 46

Grt 10 41.3 (5) 0.50 (4) 21.1 (4) 0.62 (4) 9.83
(89) 0.37 (6) 15.2

(1.7)
10.8
(2.5)

0.22
(19) b.d.l. – 27

Ol 1 40.2 b.d.l. b.d.l. b.d.l. 13.8 b.d.l. 45.8 0.2 b.d.l. b.d.l. – 0

L 5 2.77 (9) b.d.l. 0.20 (4) b.d.l. 4.83 (4) b.d.l. 9.66
(19) 15.7 (3) 24.8 (2) 0.51 (2) 41.5 (4) 48

1400,
D214,
24 h

Cpx 20 54.5 (4) b.d.l. 6.90
(48) 0.25 (4) 3.45

(13) b.d.l. 13.3 (5) 17.7 (7) 3.82
(31) b.d.l. b.d.l. 45

Grt 5 41.1 (7) 0.43 (4) 21.6 (4) 0.58 (2) 8.98
(75) 0.37 (9) 15.5

(1.0)
11.3
(1.3)

0.16
(14) b.d.l. b.d.l. 28

L 8 4.44
(29) 0.08 (6) 0.28 (6) b.d.l. 5.33

(12) b.d.l. 9.69
(74) 15.2 (8) 24.2 (9) 0.75 (3) 40.0

(2.2) 46

1500,
D217,

5 h

Cpx 8 54.5 (3) b.d.l. 8.35
(25) 0.34 (3) 3.01

(12) b.d.l. 12.7 (3) 16.8 (4) 4.36
(19) b.d.l. – 46

Grt 6 41.5 (2) 0.34 (6) 21.8 (1) 0.55 (3) 8.17
(91) 0.33 (7) 16.1 (6) 11.0

(1.4)
0.19
(12) b.d.l. – 28

L 3 7.06
(1.18) 0.06 (0) 0.62

(12) b.d.l. 5.55
(25) 0.13 (9) 9.42

(13) 15.0 (2) 23.2 (6) 1.72 (2) 37.3 (8) 46

q-Cpx 1 51.4 1.17 5.05 0.04 7.71 0.12 15.1 15.7 3.63 0.08 – 37
Ecl-K4

900,
D280,
198 h

Cpx 3 55.0 (0) 0.15 (0) 1.65 (5) 0.12 (4) 2.98
(29) b.d.l. 16.5 (1) 22.2 (6) 1.03

(11) 0.33 (2) – 47

Grt 14 39.8 (4) 0.53 (8) 20.0 (3) 0.53 (7) 10.7 (2) 0.42 (5) 6.84
(59) 21.1 (9) b.d.l. b.d.l. – 54

K2Mg 6 – – – – 2.53 (2) b.d.l. 15.6 (8) 1.96
(18)

0.65
(18) 39.9 (3) 39.3

(1.2) 8

Mgs 9 – – – – 8.02
(15) 0.15 (4) 39.7

(1.5)
2.15
(29) b.d.l. b.d.l. 50.0

(1.5) 3

950,
D267,
168 h

Cpx 11 54.8 (5) b.d.l. 1.55
(23) b.d.l. 2.62

(54) b.d.l. 16.8 (4) 22.8
(1.5)

0.84
(42)

0.47
(15) – 47

Grt 20 40.0 (3) 0.46 (6) 20.0 (3) 0.50 (5) 10.7 (3) 0.37 (5) 8.24
(95)

19.7
(1.4) b.d.l. b.d.l. – 49

K2Mg 6 – – – – 2.59
(13) b.d.l. 15.2

(1.4)
2.91
(27) 0.57 (0) 39.5 (0) 39.3

(1.2) 11

Mgs 7 – – – – 7.54
(12) 0.15 (5) 39.4

(1.2)
2.93
(20) b.d.l. b.d.l. 50.0

(1.8) 5

L 2 1.08 b.d.l. 0.28 b.d.l. 4.38 b.d.l. 7.00 19.5 1.16 28.0 38.6 60
1300,
D211,
64 h

Cpx 2 54.2 b.d.l. 2.64 b.d.l. 3.32 b.d.l. 16.6 22.3 0.74 0.29 – 47
Grt 2 41.2 0.20 22.0 0.61 (1) 8.27 0.27 15.2 12.3 b.d.l. b.d.l. – 31

L 4 6.92
(1.03) 0.10 (9) 0.90

(13) b.d.l. 5.35
(16) b.d.l. 9.25

(99)
14.7
(1.4)

0.89
(17)

28.4
(1.7)

33.4
(2.4) 46

1400,
D214,
24 h

Cpx 2 54.0 b.d.l. 2.07 b.d.l. 3.04 0.09 16.9 22.9 0.47 0.44 – 47
Grt 2 41.6 0.21 21.8 0.46 7.59 0.26 15.5 12.6 b.d.l. b.d.l. – 31

L 6 7.67
(1.55) 0.20 (8) 0.78

(12) b.d.l. 5.70
(35) b.d.l. 8.80

(1.10)
14.0
(1.8)

1.12
(10)

29.2
(1.2)

32.5
(1.7) 46

1500,
D217,

5 h

Cpx 7 54.1 (4) b.d.l. 2.39
(19) b.d.l. 3.01

(14) b.d.l. 16.9 (4) 22.5 (2) 0.53
(14) 0.45 (6) – 47

Grt 8 41.8 (2) 0.14 (9) 21.7 (1) 0.56 (5) 6.62
(33) 0.23 (9) 15.5 (4) 13.4 (8) b.d.l. b.d.l. – 33

L 9 12.2
(1.5) 0.20 (9) 1.15

(10) b.d.l. 5.83
(28) b.d.l. 9.51

(69) 13.1 (6) 1.03
(18) 28.2 (8) 28.7 (6) 42

q-Cpx 1 50.1 0.73 4.68 b.d.l. 6.53 0.12 15.5 19.1 1.21 1.94 – 42

Notes: b.d.l.—below detection limit; n—number of measurements; standard deviation is given in brackets; CO2
*—CO2 abundance in carbonate phases calculated as CO2 = FeO + MnO + MgO + CaO + Na2O + K2O–SiO2–Al2O3,
assuming all CO2 in the liquids in carbonate ion form; Ca# = 100·Ca/(Ca + Mg); q-Cpx – clinopyroxene form the
melt quench products. See the abbreviations section for mineral and phase symbols.

3.3.1. Clinopyroxene

Equilibration with the Na-rich carbonate melt (N2) increases Na2O in clinopyrox-
ene from the initial 1.7 to 5.8 wt% (Tables 1, 3 and S8). In contrast, equilibration with
the K-rich carbonate melt (K4) decreases Na2O from 1.7 to 0.3 wt% and increases K2O
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from the initial 0.03 to 0.6 wt% (Tables 1, 3 and S8). Thus, after the experiments, the
clinopyroxenes in Ecl-N2, belong to Group B eclogites, according to the classification
of Taylor and Neal [59], whereas those in Ecl-K4 belong to Group A eclogites or garnet
clinopyroxenes (Figure 4). Like the equilibrium clinopyroxene, the one in the melt quench
products (q-Cpx) recovered from 1500 ◦C is almost free of K2O and contains 3.6 wt%
Na2O in the Ecl-N2 system, while in the Ecl-K4 system, q-Cpx contains 1.2 wt% Na2O and
1.9 wt% K2O (Tables 3 and S8). In both systems, q-Cpx is richer in FeO (6.5–7.7 wt%) and
TiO2 (0.7–1.2 wt%) than the initial and equilibrium clinopyroxene (Tables 1, 3 and S8).

Figure 4. Na2O vs. MgO in clinopyroxenes from 6-GPa experiments in the systems Ecl-N2 (green)
and Ecl-K4 (red). q-Cpx clinopyroxene from the melt quench products. Clinopyroxene from the
original eclogite is denoted by a yellow star. Group A, B, and C according to the classification of
Taylor and Neal [59]. The data at 1100 and 1200 ◦C are after [54].

3.3.2. Olivine

Olivine is a minor phase at 1300 ◦C in the Ecl-N2 system (Figure 3b). It has Fo86Fa14
composition and contains 0.3 wt% CaO (Table 3 and Table S10).

3.3.3. Carbonates

At 900–950 ◦C, eitelite, (Na0.99K0.01)2(Mg0.91Fe0.05Ca0.04)(CO3)2, and (K0.98 Na0.02)2
(Mg0.84Fe0.08Ca0.08)(CO3)2 crystallize in the Ecl-N2 and Ecl-K4 systems, respectively
(Figure 3, Tables 3 and S11). Magnesite with approximate composition, (Mg0.87Fe0.09Ca0.04)
CO3, is a minor phase in both systems (Figure 3, Tables 3 and S4).

3.3.4. Melt

The melt has an alkali-rich carbonate composition (Tables 3 and S7). At
900–950 ◦C, the melt has Ca# 58–60 and coexists with Mg-rich carbonates, eitelite in the
Ecl-N2 system and K2Mg(CO3)2 + magnesite in the Ecl-K4 system (Figure 6b, Table 3).
As temperature increases to 1100 ◦C, the melt consumes Mg-carbonates and its Ca# de-
creases to 47–54 (Figure 6b, Tables 3 and S7). The silica content in the melt increases from
<1 wt% over 900–950 ◦C to 3–7 wt% at 1300 ◦C, and 7–12 wt% at 1500 ◦C (Figure 6a, Tables
3 and S7). The alumina content in the melt also increases with temperature but does not ex-
ceed 1.2 wt% (Table 3). Over 1300–1500 ◦C, the silica content in the K-rich melt is about two
times higher than that in the Na-rich melt (Figure 6b, Tables 3 and S7). An increase in the
silica concentration in the melt is accompanied by a decrease in the clinopyroxene fraction.
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This is especially evident in the Ecl-K4 system (Figure 3, Table 2). Unlike clinopyroxene, the
fraction of garnet remains unchanged. Thus, garnet is buffering the low Al2O3 in the melt.

Figure 5. Garnet compositions from 6-GPa experiments in the systems Ecl-N2 (green) and Ecl-K4
(red) expressed in terms of grossular–pyrope–almandine. Garnet from the original eclogite is denoted
by a yellow star. Group A, B, and C according to the classification of Coleman et al. [60].

Figure 6. Silica content (a) and Ca# (b) in the carbonate melt versus temperature. The data at 1100
and 1200 ◦C are after [54].

3.4. Approach to Equilibrium

To verify the approach to equilibrium, we calculated temperatures at 6 GPa using the
geothermometers [61,70–72] based on the Mg-Fe2+ exchange between clinopyroxene and
garnet. The calculations were performed using the PTEXL code developed by Thomas
Koehler and Andrei Girnis (personal communication). In our calculation, we considered
Fetotal = Fe2+ without the effect of Fe3+.

The runs in the Ecl-N2 system at 900–1000 ◦C exhibit a significant (by 150–300 ◦C)
overestimation of the calculated temperatures (Table 4). This may be due either to an
unsatisfactory approach to equilibrium only in experiments with the Na-rich carbonate
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melt at 900–1000 ◦C, or the inapplicability of the thermometers to experiments with the
Na-rich carbonate melt. However, in all other experiments, calculated temperatures are
within 100 ◦C of the nominal run temperatures (Table 4). Thus, in most of the experiments,
equilibrium was approached sufficiently for the question being investigated.

Table 4. Temperature estimates using Cpx-Grt geothermometers, p = 6 GPa.

System Run T, ◦C K88 EG79 P85 K00

Ecl-N2

D280 900 956 1116 1107 1073
D267 950 1175 1254 1249 1233
D253 1000 1164 1145 1131 1162
D211 1300 1404 1339 1335 1409
D214 1400 1493 1408 1408 1498
D217 1500 1523 1431 1433 1529

Ecl-K4

D280 900 922 1021 1007 968
D267 950 955 1026 1012 973
D211 1300 1384 1324 1320 1369
D214 1400 1388 1328 1324 1370
D217 1500 1504 1422 1425 1488

Notes: K88—[73], EG79 —[2], P85 —[74], K00—[75].

3.5. Melt—Solid Distribution Coefficients

The Fe-Mg distribution coefficients between silicate minerals and melt, S/LD(Fe-Mg) =
S(Fe/Mg)/L(Fe/Mg) atomic ratio, where S—solid (Cpx, Grt, Ol) and L—liquid) are given
in Table 5 and Table S5. For clinopyroxene S/LD(Fe-Mg) is 0.41–0.68 and 0.25–0.35 in the
Na- and K-bearing systems, respectively. For garnet, S/LD(Fe-Mg) varies from 0.70 to 3.3
and for olivine S/LD(Fe-Mg) is 0.60. The S/LD(Fe-Mg) distribution coefficients from our
experiments match the previously determined solid/melt phase equilibria under similar
conditions in other experiments [42,43,54,76].

Table 5. Partition coefficients between minerals and melt.

Run no. T,◦C
S/LD(Fe–Mg) Cpx/LD

Cpx Grt Ol Na2O K2O

Ecl-N2
D267 950 0.68 3.33 − 0.148 −
D253 1000 0.48 1.58 − 0.231 −
D211 1300 0.53 1.30 0.60 0.157 −
D214 1400 0.47 1.05 − 0.158 −
D217 1500 0.40 0.86 − 0.188 −

Ecl-K4
D267 950 0.25 2.07 − − 0.017
D211 1300 0.35 0.94 − − 0.010
D214 1400 0.28 0.75 − − 0.015
D217 1500 0.29 0.70 − − 0.016

Notes: Cpx/LD(Na2O) = Na2OCpx/Na2OL, Cpx/LD(K2O) = K2OCpx/K2OL (weight ratio); S/LD(Fe–Mg) =
S(Fe/Mg)/L(Fe/Mg), atomic ratio.

The partition coefficient of Na2O (wt%) between clinopyroxene and carbonate melt,
Cpx/LD(Na2O) = Na2OCpx/Na2OL, established in the sodium system ranges from 0.142
to 0.237 (Table 5 and Table S5). The partition coefficient of K2O (wt%), Cpx/LD(K2O)
= K2OCpx/K2OL, ranges from 0.01 to 0.02 (Tables 5 and S5). These values are consis-
tent with those established in the silicate system, CaMgSi2O6-NaAlSi2O6-KAlSi2O6 at
6–7 GPa and 1100–1300 ◦C, Cpx/LD(K2O) = 0.02–0.11 [77] and in the carbonate-silicate
system (pyroxene-K2CO3) at 5–14 GPa and 1400–1700 ◦C, Cpx/LD(K2O) = 0.02–0.10 [78].
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4. Discussion
4.1. Subsolidus Assemblage and Melting Reactions

The subsolidus assemblage consists of garnet, clinopyroxene, and carbonates. Al-
though the starting carbonate mixtures are rich in CaCO3, with Ca# ~70, the subsolidus
assemblages in the experiments consist of eitelite in Ecl-N2 and K2Mg(CO3)2 + magne-
site in Ecl-K4 and do not contain Ca-bearing carbonates, except for the trace amount of
Na2Ca4(CO3)5. Almost all calcium is redistributed from carbonate to garnet according to
the following Ca-Mg exchange reaction:

3CaCO3 (in carbonates) + Mg3Al2Si3O12 (Grt) =
3MgCO3 (in carbonates) + Ca3Al2Si3O12 (Grt)

(1)

As a result of reaction (1), the garnet composition shifts from eclogite Group A to
eclogite Group C (Figure 5). The pressure-induced partitioning of Ca from carbonates to
garnet was reported earlier in several experimental studies on phase relations in carbonated
eclogite [24,42,79].

Unlike the Ca-free subsolidus carbonates, the incipient carbonate melt has Ca# 58–
60 (Figure 6b). Above the solidus, the garnet Ca# drops sharply from 49–60 to 25–30
(Figure 5, Tables 3 and S9), while eitelite and K2Mg(CO3)2 disappear (Figure 3). Thus, at
6 GPa, the Ecl-N2 and Ecl-K4 solidi are situated at 950 ◦C and controlled by the following
melting reaction:

Ca3Al2Si3O12 (Grt) + 2(Na or K)2Mg(CO3)2 (Eit) =
Ca2MgSi3O12 (Grt) + [2(Na or K)2CO3·CaCO3·MgCO3] (L).

(2)

We also suppose that as pressure decreases below 6 GPa and Ca-bearing carbon-
ates are stabilized, the Ecl-N2 and Ecl-K4 solidi will be controlled by the carbonate
component. Melting of the Na- and K-carbonate (carbonatite) systems has been studied
previously [45,46]. According to these data, the Na2Ca4(CO3)5 and then Na2Ca3(CO3)4
(below 4–5 GPa) compounds become stable and the solidus reactions can be approximated
as follows:

2Na2Mg(CO3)2 (Eit) + Na2Ca4(CO3)5 (Na2Ca4) =
[3Na2CO3·2MgCO3·4CaCO3] (L),

(3)

above 5 GPa and

2Na2Mg(CO3)2 (Eit) + Na2Ca3(CO3)5 (Na2Ca3) =
[3Na2CO3·2MgCO3·3CaCO3] (L),

(4)

Below 4–5 GPa. In the K-carbonate system, dolomite stabilizes in addition to K2Mg(CO3)2
yielding the following melting reaction:[-15]

K2Mg(CO3)2 (K2Mg) + CaMg(CO3)2 (Dol) =
MgCO3 (Mgs) + [K2CO3·MgCO3·CaCO3] (L).

(5)

According to various estimates, at 3 GPa, the alkaline carbonate or carbonatite solidus
is situated at about 750–850 ◦C [45,46,69,80].

4.2. Comparison with the Various Solidi of the Carbonated Eclogites in Previous
Experimental Studies

Phase relationships in carbonated eclogite under mantle P-T conditions have been
studied in several works. The obtained solidi are shown in Figure 7. As can be seen,
their temperatures differ significantly. Here we would like to discuss what this may be
connected with.
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Hammouda [39] studied the system OTBC consisting of 89.8 wt% basaltic glass,
10.1 wt% CaCO3, and 0.12 wt% H2O. He found that at 6 GPa and 1200 ◦C, the subsolidus
assemblage is represented by garnet, Ca# 38, clinopyroxene, and magnesian calcite with
Ca# 75. This is inconsistent with our data, according to which, at 6 GPa, garnet reacts with
CaCO3 to form a more calcium garnet containing up to 60 mol% grossular. As temperature
increases to 1250 ◦C, the first melt appears, while its composition resembles subsolidus
calcite and has Ca# 80. Moreover, as temperature increases above the solidus, the garnet and
clinopyroxene retain their composition almost unchanged. Given that Ca-Mg-Fe carbonates
with Ca# 75–80 do not melt at such low temperatures under dry conditions [62,81], it
appears that, in contrast to our experiments, the solidus of the OTBC system is controlled
by the melting of magnesian calcite in the presence of water.

Figure 7. P-T plot illustrating phase relations in the Ecl-N2 (a) and Ecl-K4 (b) systems at 6 GPa in
comparison with the solidi of carbonated eclogite: H03—[39], D04—[40], YB04—[42], K12—[43];
carbonated phlogopite eclogite: S22—[82]; and carbonatite: B21—[46]. The solidus of the Di-CO2

system (L06) is after Luth [83], Gr-Dia—graphite-to-diamond phase transition [84]. The light-brown
numbers, adjacent to corresponding segments in polygons, denote Ca# of garnet, Ca# of carbonate
melt, and Jd# of clinopyroxene. The mantle adiabat is after [56]. The grey dash-dotted lines denote
continental geotherms with a surface heat flux of 35, 40, and 45 mW/m2 [85]. The data at 1100 and
1200 ◦C are after [54]. See the abbreviations section for mineral and phase symbols.
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Dasgupta, et al. [40] reported the phase relations in the SLEC1 system, prepared by adding
5 wt% CO2 in the form of a mixture (mole ratio): 4(Na0.96K0.04)2CO3·96(Ca0.32Mg0.44Fe0.36)
CO2, to an eclogite from Salt Lake crater, Oahu, Hawaii. They found that partial melting yields
carbonate melt, which appears near 1080 ◦C at 6.1 GPa (Figure 7). Above 5 GPa, the subsolidus
assemblage in the SLEC1 system is represented by garnet, clinopyroxene, magnesite, and rutile.
Similar to our study, calcium carbonates are absent in the subsolidus assemblage. However,
the lack of data on the composition of subsolidus carbonate phases, the composition of garnets
above and below the solidus at the same pressure, and the composition of the near-solidus melt
prevent inferring the melting reaction controlling the SLEC1 solidus in the range of 5.1–7.0 GPa.

Yaxley and Brey [42] studied synthetic carbonated eclogite EC1 synthesized at 3.5 GPa
and 1150 ◦C. The mineral composition of the starting material included garnet, clinopyrox-
ene, and calcite-dolomite solid solution. It was found that as pressure increases from 3.5
to 5.5 GPa and temperature decreases from 1275 to 1200 ◦C, the carbonate Ca# decreases
from 86 to 56, while the garnet Ca# increases from 22 to 27. Our experiments, where garnet
with Ca# 49–60 coexists with magnesite at 6 GPa and 900–950 ◦C, are consistent with the
established pattern. However, the solidus of the EC1 system is located 400–450 ◦C higher
than that of the Ecl-N2 and Ecl-K4 systems. The difference is due to the presence of Na
and K in the subsolidus carbonates in our experiment. In contrast to our study, in the
experiments by Yaxley and Brey [42], K is absent, while sodium enters clinopyroxene. As it
was shown early near 6 GPa, sodium is compatible in clinopyroxene and does not enter
carbonates [86]. Therefore, its fluxing effect on the solidus of carbonated eclogite is not so
significant and does not exceed 50 ◦C [87]. Thus, melting in the EC1 system at 5.5 GPa and
1340 ◦C is mainly controlled by the melting of calcium dolomite, whose composition is
close to the CaCO3-MgCO3 eutectic. This is also in good agreement with the Ca# 62 of the
solidus melt, which coincides with the CaCO3-MgCO3 eutectic established at 1400 ◦C [62].

Shatskiy, et al. [43] investigated the phase relations in a K-bearing altered mid-ocean
ridge basalt (MORB) + 10% CaCO3. The composition of the system differs from previous
works in higher contents of potassium and silica. As a result, melting in the system at 5 GPa
occurs at only 1050 ◦C and is accompanied by the formation of a potassium aluminosilicate
rather than a carbonate melt. As temperature increases to 1100 ◦C, the formation of two
immiscible carbonate and silicate melts is observed. This behavior of the system resembles
carbonated pelite (DG2) [22,88], where melting is mainly controlled by the assemblage of
dolomite + K-feldspar/phengite [22,89].

Shatskiy, et al. [24] studied the phase relationships in carbonated phlogopite eclogite.
They found that at 3–6 GPa, subsolidus assemblage consists of clinopyroxene, garnet,
phlogopite, and Ca-Mg carbonate. As pressure increases from 3 to 6 GPa and temperature
decreases from 1000 to 800 ◦C, the carbonate composition evolves from Mg-calcite to
Ca-dolomite, dolomite, and then magnesite. At 6 GPa, melting consumes phlogopite
and magnesite according to the following solidus reaction [24] accompanied by the Ca
redistribution from garnet to carbonate:

Phl (KMg3AlSi3O10(OH)2) + Mgs (MgCO3) + Grs (Ca3Al2Si3O12) =
Prp (Mg3Al2Si3O12) + Cpx (CaMgSi2O6) + L (water-bearing carbonate melt)

(6)

Thus, the addition of water at 6 GPa and bulk mole ratio H2O/K2O ≤ 2 yields re-
distribution of potassium from K2Mg(CO3)2 to phlogopite but does not affect solidus
temperature at 6 GPa (Figure 7). Considering results under anhydrous conditions in K-
carbonatite and Na-carbonatite systems [46], we expect a decrease in solidus temperatures
of Ecl-N2 and Ecl-K4 as pressure decreases. Unlike that, the solidus of carbonated phl-
ogopite eclogite has a negative Clapeyron slope, so that at shallower depths carbonated
phlogopite eclogite becomes more refractory (Figure 7).

4.3. Composition of Carbonate Melt

In the range of 950–1200 ◦C, the silica content in the melt does not exceed 1.5 wt%
(Figure 6). As temperature increases to 1300–1500 ◦C, the silica content in the melt increases
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sharply to 2–6 and 7–12 wt% in the Ecl-N2 and Ecl-K4 systems, respectively. A twofold
higher concentration of silica in a potassium melt correlates with a twofold higher con-
centration of alumina (Table S7). At 6 GPa in the aluminosilicate system, Na and K are
hosted by jadeite and K-feldspar, respectively. Jadeite is poorly soluble in the carbonate
melt owing to the compatibility of Na with clinopyroxene [86]. The solubility of K-feldspar
in carbonate melt should be higher since K is incompatible in the aluminosilicates in pres-
ence of carbonate [22,89]. This is consistent with the lower melting temperature of the
Kfs + Dol system compared to Di + Jd + 2Mgs, which is 1050 ◦C and 1350 ◦C at 6 GPa,
respectively [86,89]. Although potassium doubles the solubility of SiO2 and Al2O3 in the
carbonate melt at 1300–1500 ◦C, their solubility is still low and an excess of the KAlSi3O8
component over its solubility in carbonate melt leads to the appearance of immiscible
phonolitic melt [22,43,88–90].

Ca# of carbonate melt coexisting with eclogite and garnet clinopyroxenite varies
from 42 to 60 (Figure 6), similar to that established in the carbonated pelite system (Ca#
52–59) [22] and in equilibrium with wehrlite (Ca# 40–60) [37,38], but higher than Ca#
of K-rich carbonate melt in equilibrium with garnet lherzolite (~30–34) and harzburgite
(<30) [37,38,91] (Figure 8).

Carbonate melts are very mobile owing to their excellent wetting properties, low
viscosity, and density [92–96]. Therefore, carbonate melts, derived by partial melting of
carbonated oceanic crust, can readily impregnate the overlying peridotitic mantle. Re-
equilibration of eclogite-derived carbonate melt with peridotite should lower its Ca# and
cause refertilization from harzburgite to lherzolite and wehrlitization [37].

Figure 8. The pseudo-ternary projection of carbonate melt in equilibrium with bimineral eclogite
in the system Ecl-N2 and clinopyroxenite in the system Ecl-K4 at 6 GPa (this study). The colored
areas correspond to the compositions of the carbonate melt in equilibrium with harzburgite (green),
lherzolite (brown), and wehrlite (blue) [37,38]. The compositions of the carbonate melt obtained under
hydrous conditions in the system carbonated phlogopite lherzolite (Lhz-Mgs-Phl) in equilibrium
with lherzolite (Lhz) are after [82]. The compositions of carbonate melt obtained in the system
kimberlite-CO2 in equilibrium with ultramafic assemblies including Hzb, Lhz, Whr, orthopyroxenite
(Opxt), websterite (Web), and Cpxt are after [97].



Minerals 2023, 13, 82 16 of 23

5. Implications
5.1. Carbonatite Metasomatism

The present results show that the interaction of the Na-Ca-Mg-Fe carbonate melt
with eclogite at 950–1500 ◦C is accompanied by an increase in the jadeite component
in omphacite (Figure 4) and the grossular component in garnet (Figure 5) according
to the reaction:

Prp (Mg3Al2Si3O12) + Di (CaMgSi2O6) + L (carbonate melt) =
Jd (NaAlSi2O6) + Grs (Ca3Al2Si3O12) + Ol (Mg2SiO4) + L (carbonate melt)

(7)

As a result, eclogite Group A evolves to eclogite Group B (Figures 4 and 5). In addition,
reaction (4) produces olivine (Figure 3). The lack of nickel and low Mg# (86) distinguish
this olivine from peridotitic olivine (Table 3 and Table S10). Similar olivine was found
in a coesite-bearing diamondiferous eclogite xenolith along with secondary metasomatic
mineralization including phlogopite, K-feldspar, orthopyroxene, and secondary clinopy-
roxene [98,99].

The interaction of the K-Ca-Mg-Fe carbonate melt with the eclogite lowers the sodium
in the clinopyroxene and shifts the composition of the eclogite towards garnet clinopyrox-
enite (Figure 4). The above tendency may explain the formation of Na- and Al-depleted
clinopyroxene with ‘spongy’ texture replacing primary omphacite in diamondiferous
eclogites [1,100,101]. High potassium concentrations, up to 0.6 wt% K2O, in this clinopyrox-
ene [1] indicate its deep, >3 GPa, origin [102]. Moreover, this indicates that the metasomatic
melt was rich in potassium [78,103]. A direct finding of the K- and Cl-rich carbonatite melt
as microinclusions in diamonds in the alteration veins in the eclogite xenoliths containing
Na-poor ‘spongy’ textured clinopyroxene [8] supports our experimental observations.

5.2. Hosts for Potassium in Carbonated Eclogite

Present experiments on the K-rich carbonated eclogite system suggest that under
water-poor conditions at 6 GPa, potassium enters K2Mg(CO3)2. This is supported by the
findings of K2Mg(CO3)2 microinclusions in kimberlitic diamonds [20]. In contrast, under
hydrous conditions, potassium is mainly hosted by phlogopite, as shown experimentally in
the systems KMAS–H2O–CO2 [104], KCMAS–H2O–CO2 [105], and carbonated phlogopite
eclogite [82]. This is also confirmed by the findings of syngenetic phlogopite inclusions in
lithospheric diamonds [55,106–108] and diamondiferous eclogite xenoliths [1,2]. Thus, in
the presence of volatiles (CO2 and/or H2O), potassium is hosted either by K2Mg(CO3)2
containing 40 wt% K2O, or phlogopite containing 11 wt% K2O, or carbonate melt containing
up to 30 wt% K2O.

5.3. The Link between Kimberlites and Mantle Carbonatites

Although the temperatures in our experiments cover the entire range of geotherms of
the lithospheric and the asthenospheric mantle at a depth of 200 km [56,85], no gradual
transition from carbonate to kimberlite-like carbonate-silicate melt was observed. The
highest silica content (7–12 wt% SiO2) in the obtained melt is comparable with that in the
alkali-poor (9–15 wt% SiO2) and K-rich (12–16 wt% SiO2) carbonate melts in equilibrium
with natural peridotite at 6 GPa and 1500 ◦C [37,91,109]. This is consistent with the idea that
during ascent through the lithospheric mantle, the kimberlite magma was a combination
of alkaline carbonate melt and solid silicate matter (xenoliths and xenocrysts) [25,28,29].
Decarbonation [110] and the subsequent loss of CO2 during the explosive emplacement of
the kimberlites [111] led to a significant loss of the carbonate component and solidification
of kimberlite magma in the form of silicate rock. Postmagmatic leaching of the alkaline
carbonates that withstood decarbonation reinforces this trend [28,29]. The essentially
carbonate composition of the liquid component of kimberlite magma is confirmed by
the alkaline carbonate composition of inclusions in kimberlite magmatic minerals and
xenoliths [24,25,27,33–35], as well as experiments on kimberlite melting [97,112,113].
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Sokol et al. [114] have experimentally shown that a successive increase in the wa-
ter content from 2.5 to 11.6 wt% in the kimberlite magma system over 6.3–7.5 GPa and
1400–1500 ◦C promotes the fusion of the silicate constituent yielding the transformation
of the melt from essentially carbonate (5–12 wt% SiO2 at 2.5 wt% H2O) to carbonate-
silicate (17–19 wt% SiO2 at 6–6.5 wt% H2O) and finally complete melting of kimberlite at
11–12 wt% H2O. Comparing these data with the alkaline carbonatitic composition of
the melt inclusions in the igneous minerals of the kimberlites worldwide [24,25,27], we
conclude that the water content in kimberlite magma did not exceed a few percent.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/min13010082/s1, Table S1: Composition of natural eclogite used
as a component of starting mixtures; Table S2: Compositions of carbonate component of starting
mixtures; Table S3: Compositions of starting mixtures made of carbonates and natural eclogite;
Table S4: Summary of run conditions, composition of phases (in mol% and wt%) and mole/weight
fraction of phases (MFP/WFP) from experiments on the interaction of eclogite with carbonatitic melts
at 6.0 GPa and 900–1500 ◦C; Table S5: Calculation of mole fraction of phases (MFP) from experiments
on the interaction eclogite with carbonatitic melts at 6.0 GPa and 900–1500 ◦C; Table S6: Calculation of
weight fraction of phases (WFP) from experiments on the interaction eclogite with carbonatitic melts
at 6.0 GPa and 900–1500 ◦C; Table S7: Compositions of carbonatitic melts (L) from experiments on
the interaction of eclogite with carbonatitic melts at 6.0 GPa and 900–1500 ◦C; Table S8: Compositions
of clinopyroxenes (Cpx) from experiments on the interaction of eclogite with carbonatitic melts at
6.0 GPa and 900–1500 ◦C; Table S9: Compositions of garnets (Grt) from experiments on the in-
teraction of eclogite with carbonatitic melts at 6.0 GPa and 900–1500 ◦C; Table S10: Composi-
tions of olivine (Grt) from experiments on the interaction of eclogite with carbonatitic melts at
6.0 GPa and 900–1500 ◦C; Table S7: Compositions of carbonate from experiments on the interac-
tion of eclogite with carbonatitic melts at 6.0 GPa and 900–1500 ◦C; Table S8: Compositions of
clinopyroxenes (Cpx) from experiments on the interaction of eclogite with carbonatitic melts at
6.0 GPa and 900–1500 ◦C; Table S9: Compositions of garnets (Grt) from experiments on the inter-
action of eclogite with carbonatitic melts at 6.0 GPa and 900–1500 ◦C; Table S10: Compositions of
olivine (Grt) from experiments on the interaction of eclogite with carbonatitic melts at 6.0 GPa and
900–1500 ◦C; Table S11: Compositions of carbonate from experiments on the interaction of eclogite
with carbonatitic melts at 6.0 GPa and 900–1500 ◦C.
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pyrope, q-Cpx—quench clinopyroxene, Ca# = 100·Ca/(Ca + Mg), Web—websterite, Whr—wehrlite.
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