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Abstract: This article reviews blue shortwave-excited luminescence (BSL) in natural minerals and
synthetic materials. It also describes in detail the emission of seven minerals and gems display-
ing BSL, as well as three references in which BSL is caused by titanate groups (TiO6): benitoite,
Ti-doped synthetic sapphire and spinel. Emission (under 254 nm shortwave excitation) and exci-
tation spectra are provided, and fluorescence decay times are measured. It is proposed that BSL
in beryl (morganite), dumortierite, hydrozincite, pezzotaite, tourmaline (elbaite), some silicates
glasses, and synthetic opals is due to titanate groups present at a concentration of 20 ppmw Ti or
above. They all share a broad emission with a maximum between 420 and 480 nm (2.95 to 2.58 eV)
(thus perceived as blue), and an excitation spectrum peaking in the short-wave range, between 230
and 290 nm (5.39 to 4.27 eV). Furthermore, their luminescence decay time is about 20 microseconds
(from 2 to 40). These three parameters are consistent with a titanate emission, and to our knowledge,
no other activator.

Keywords: luminescence; titanate; beryl; pezzotaite; tourmaline; synthetic opal; lead glass;
hydrozincite; dumortierite

1. Introduction

The purpose of this study is to propose an interpretation for lesser-known blue short-
wave ultraviolet luminescence (BSL) observed in natural and synthetic minerals and gems.
We consider a luminescence blue if the emission is perceived as blue. If one takes into
account the mechanism of human color vision, this comprises emissions with maxima
stretching from near-UV to about 500 nm, provided they are relatively wide (full width
at half maximum –FWHM- of about 100 nm/0.65 eV). Shortwave ultra violet (SWUV or
simply SW) radiation is usually defined as 254 nm (4.88 eV), as in standard UV lamps.
Here, we extend that to a somewhat larger spectral range, to take into account the various
values chosen by authors in the literature, ranging from about 240 to 300 nm (2.58 to
2.95 eV). However, for the experimental section, we used strictly 254 nm excitation. Only
shortwave luminescence is required here, but blue longwave luminescence is not excluded
as in anatase TiO2 [1].

SWUV excited photoluminescence (SWPL) used in this work is distinct from excitation
with a beam of electrons (cathodoluminescence–CL) which also produces blue luminescence
in many minerals, and this may cause confusion. CL can be described as an irradiation
experiment, creating defects as they are probed. Samples often heat, and sometimes change
color. This does not happen with SWPL. CL uses particles with mass and charge, not SWPL.
Also, because of generally high electron energy, and broad-band excitation, CL may use
multiple excitation paths, with different emissions being prompted [2]. This may result in
coupling with different defect states in the material. These states would not be probed with
the comparatively narrow-band, lower energy SWPL. Also, CL probes strictly the surface
(limited penetration of electrons) whereas SWPL tests the bulk of the material (see Figure 1).
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One example is surface hydroxyl groups, that, although induced by SWUV exposure, are
detected by blue Cl, not SWPL [3]. In jadeite, blue CL is attributed to Na+ or Al3+ defect
centers, whereas there is no blue SWPL of jadeite [4]. In summary, SWPL and CL are not
identical but more complementary, emissions being induced by one (CL for example), being
often not detected with the other, in particular surface- or oxygen-related defects.
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Figure 1. Photo under daylight and under shortwave UV (254 nm) of the ten representative samples
of BSL phenomena. (Photo: Maxence Vigier).

We aim to demonstrate that BSL is in many cases related to the presence of titanate
groups, even if other, sometimes very different interpretations have been proposed. We
sought BSL across a large number of species, not taking into account at first their structural
or chemical characteristics. We then documented emission, excitation and time decay for
those samples satisfying our criteria. We complemented this approach by an extensive bib-
liographical search for BSL across the chemical, mineralogical and gemmological literature.

BSL has previously been attributed to a number of activators. Our attention turned
first to closed-shell compounds, that is complexes of transition elements without d electrons
surrounded by oxygen atoms [5]. This family includes titanates, but also permanganates,
chromates, vanadates, as well as molybdates, niobates, zirconates, tungstates and tantalates.
Blasse (1980) has summarized their luminescence behavior. From this vast number of
possibilities, we are interested in those absorbing around 4.8 eV (254 nm) and emitting light
perceived as blue A well-studied, but rather unique example is scheelite (CaWO4) where
the BSL is ascribed to tungstate (WO6) groups [6–8]. The only other closed shell compounds
with similar constraints would be octahedral TiO6 (again, [5]). This is confirmed by the
study of benitoite by Gaft (2004), which proposes a detailed energy level scheme responsible
for the emission of the titanate group in this titanate-containing mineral [9]. The relatively
long decay time (2.6 µs) is explained by the presence of a forbidden state acting as a
trap level.

BSL is also noted in rare-earth containing solids, with activators such as Ce3+ in
apatite (Ca5(PO4)3)(Cl,F,OH) [10]. More rarely, luminescence can also be attributed to rarer
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elements or ions: UO2+ in turquoise (CuAl6(PO4)4(OH)8·4H2O) [11], Pb2+ in hydrozincite
(Zn5(CO3)2(OH)6) [12], Tl+ in pezzotaite (Cs(Be2Li)Al2Si6O18) [13], or sulphur-doped (S2)−

in doped sodalite (Na8Al6Si6O24Cl2) [14].
BSL is most frequently related to the presence of titanium, according to literature. Yet

often details of the luminescence are missing (proof of Ti presence, excitation spectra or
decay time measurements). In addition, the presence of isolated Ti3+ (d-d transitions) was
assumed as a source of luminescence in several oxides like ZrO2 or Al2O3 [15–17]. Recent
theoretical modeling refutes this hypothesis in ZrO2 and ascribes it to Ti4+ [18]. Minerals
and gems containing Ti4+ cation in their nominal chemical formula are also known to
present BSL phenomena. The best known example is benitoite (BaTiSi3O9), mentioned
above, [9,19] and to a lesser degree baratovite (KCa7(Ti,Zr)2Li3Si12O36F2) and katayamalite
(KLi3Ca7Ti2(SiO3)12(OH)2) [16].

Other authors have mentioned F-center as luminescence activators for BSL. In ox-
ides and silicates, these are oxygen vacancies filled with two electrons, also noted “Vx

O”
in Kröger–Vink notation. Examples include spinel (MgAl2O4) [20–22] and corundum
(Al2O3) [23,24]. Some authors have attributed the pair formed by a F-centers and Ti4+

as the activator in Al2O3 [25], rutile (TiO2) [26], hackmanite (Na8Al6Si6O24(Cl2,S)) [27],
and aluminosilicate glasses [28]. Each of these activators display a unique combination of
emission/excitation/lifetime decay characteristics that makes it possible to pin down the
origin of luminescence.

In the course of examining the luminescence of hundreds of minerals and gems, we
have encountered a small number of BSL, which are considered unusual, sometimes not
even described in articles, textbooks or websites. They seem to share comparable properties,
mostly that the blue emission color and emission spectra are similar. Among those, BSL
was observed in dumortierite (Al7BO3(SiO4)3O3), synthetic spinel (MgAl2O4), synthetic
opal and some rare tourmalines (dravite or elbaite, NaMg3Al6(BO3)3Si6O18(OH)4/Na(Li,
Al)3Al6(OH)4(BO3)3.

Many titanium-containing minerals are known to have blue-to-blue-green shortwave-
excited luminescence. Table 1 provides a summary of those minerals. The presence of
titanium as chemical component, generally as a well-defined octahedral titanate group,
makes these compounds the materials of choice as reference for the luminescence properties
of the titanate group.

Table 1. Summary of luminescent properties of Ti-bearing natural minerals for which BSL has been
documented. For all, the perceived luminescence color is blue and the purported is TiO6.

Minerals Emission nm
(FWHM eV)

Excitation nm
(FWHM eV)

Lifetime
Decay Reference

Baratovite
KCa7(Ti,Zr)2Li3Si12O36F2

406 (1.00) 250 (1.63) – [16]

Benitoite BaTiSi3O9 420 (0.57) 240 (1.77) and
280 (1.29) 2.6 µs [9]

Berezanskite
Ti2�2KLi3(Si12O30) 480 290 – [29]

Katayamalite
KLi3Ca7Ti2(SiO3)12(OH)2

406 (1.00) 250 (1.62) – [16]

Natisite Na2TiO[SiO4] 450 (0.94) 250 (1.00) – [29]
Penkvilksite

Na4Ti2Si8O22·4H2O 440 (0.99) 250 (1.00) – [29]

All of these minerals display a broad emission band centered between 406 and 450 nm
(2.75 to 3.05 eV) with a 100 nm (0.65 eV) FWHM. In mineralogical studies, the excitation
spectrum and lifetime decay associated with the luminescence maxima are not systemati-
cally measured (Table 1). Most BSL excitation spectra exhibits a large band about 50 nm
(1 eV) FWMH in the 240–300 nm (4.13 to 5.16 eV) spectral range. The decay time is of the
order of a µs. For natural minerals in Table 1, all BSL is linked to [TiO6] titanate groups.



Minerals 2023, 13, 104 4 of 17

It must be noticed that all the minerals in Table 1 do not contain iron. Other titanate
containing minerals do contain iron as a major constituent and do not show BSL. Examples
include non-luminescing ilmenite FeTiO3, neptunite KNa2Li(Fe2+)2Ti2Si8O24, warwickite
(Mg,Fe)3Ti(O, BO3)2, and titanomagnetite Fe2+(Fe3+, Ti)2O4. It is well-known that iron acts
as a luminescence poison [27–29]. Often, the O2− ≥ Fe3+ charge transfer participates in a
well-known excitation-recombination process [30–33].

We also looked for evidence of BSL components in the material chemistry literature
(Table 2). A small number of synthetic materials with titanate groups as a major constituent
satisfy the conditions for BSL as well.

Table 2. Summary of luminescent properties of Ti-bearing synthetic compounds for which BSL has
been documented. For all, the perceived luminescence color is blue.

Crystals Emission nm Excitation nm Lifetime
Decay

Proposed
Cause Reference

LaMgSn-xTixO8 464–480 265 Ti4+ [34]
Mg2TiO4 441 266 [35]

Na2TiGeO5 447 254 Ti4+ [36]

The only FWHM available was 50 nm (0.74 eV) for the 254 nm excitation in NaTiGeO5,
comparable with that for natural minerals in Table 1.

After considering natural and synthetic materials containing titanate as a major com-
ponent, and given the small number and relative rarity of some such compounds, we
turned to materials that do not contain titanate as a component, but as an impurity (natural
minerals and gems) or deliberate dopant (synthetic materials). In the synthetic compounds,
titanium was mostly introduced in an effort to obtain luminescence (LED, emission and
other scientific purposes). These materials are listed in Tables 3 and 4 with what is published
of their luminescence properties.

Table 3. Summary of luminescent properties of natural compounds containing extrinsic Ti for which
BSL has been documented. For all, the perceived luminescence color is blue.

Minerals Emission nm
(FWHM eV)

Excitation nm
(FWHM eV)

Lifetime
Decay

Proposed
Cause Reference

Aluminosilicate
glass 490 270 0.7 and

5.6 µs TiO6 [28]

Bazirite
BaZrSi3O9

460 (1.23) 250 (1.00) Ti4+ [37]

Diopside
CaMgSi2O6

415 (1.53) “Shortwaves” [38]

Hydrozincite
Zn5(CO3)2 (OH)2

430 (0.68) 240 (1.54) 0.7 µs Pb2+ [12]

Pezzotaite
CsAl2Si6O18

425 (0.84) 266 2–8.3 µs Tl+ [13]

Corundum:
Sapphire

Al2O3

425 (1.45) 250 42 µs [39,40]

Spinel
MgAl2O4

465 (0.88) 233 (1.64) and
260 (1.11)

3.5; 9.3;
46.3 µs

Ti4+

F-centers
[21]

Topaz
Al2SiO4(F,OH)2

460 (1.23) 320 “10−3” ms
Heavy

elements [41]

Wadeite
K2ZrSi3O9

480 (1.13) 235 (1.14), 300
(0.69) TiO6 [29,42]
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Table 4. Summary of luminescent properties of synthetic compounds containing extrinsic Ti for
which BSL has been documented. For all, the perceived luminescence color is blue.

Crystals Emission nm
(FWHM eV)

Excitation nm
(FWHM eV)

Lifetime
Decay

Proposed
Cause Reference

Ti:BaZrO3 408 (0.76) 274 (0.83) Ti4+ [43,44]
Ti:BaSnSi3O9 425 (0.70) 245 (1.04) Ti4+ [45]

Ti:CaZrO3 427 260 Ti [35]
Ti:Ca3Al4ZnO10 370 (1.45) 265 (0.89) Ti4+ [36]

Ti:La2Sn2O7 434 265 Ti [35]
Ti:Lu2O3 380 (0.43) 240 (1.65) Ti4+ [46]

Ti:Mg5SnB2O10 430 (1.42) 260 (1.12) TiO6 [47,48]
Ti:MgSnO4 473 265 2.5 µs Ti [35]

ZrO2
monoclinic 470 235, 290, and 375 2.46 µs Ti4+ [18,49]

Note that in Table 3 (natural minerals) titanium is the most often cited cause for BSL.
Titanate groups are mentioned as the probable cause, but also Ti3+, or the association of
Ti with intrinsic defects. Finally, totally different causes are proposed for some, such as
“heavy elements”, with specific reference to Tl and Pb.

As expected, titanium is considered the activator in all the Ti-doped synthetic materials
exhibiting BSL as it is the intended dopant used to trigger luminescence. There again, we
note this element appearing as TiO6 and Ti4+.

Note that there are many more cases of blue luminescence attributed to titanium or
titanate groups in the literature consulted (more than 25), but excitation data and/or proof
of the presence of traces of Ti is missing in many compounds to establish that it is indeed
BSL (see Table S1 in Supplementary Materials).

In addition to experimental work, recent advances in the theory of luminescence
modelling in solids have proved useful to tackle the origin of luminescence when it is con-
troversial. In particular, some attention has been paid to the role of titanium in oxides [18,44].
These studies confirmed without ambiguity that the blue luminescence in monoclinic ZrO2
and BaTiZrO3 is due to Ti4+ instead of F-centers.

On this bibliographic basis, it is apparent that titanate groups are likely to be the cause
of BSL. We therefore proceeded with checking that the luminescence characteristics of BSL
materials not described so far match those of the references materials selected or described
in the literature. We actually started by checking that these compounds do contain traces
of titanium.

2. Materials and Methods

We surveyed hundreds of gems and mineral specimens for BSL. Out of those, ten have
been selected to represent either an adequate reference (benitoite, synthetic corundum,
synthetic spinel) or as representative of BSL. They are listed in Table 5. They all fluoresce
blue under shortwave UV (SWUV–254 nm, Figure 1). All samples were tested using Raman
and other spectroscopic techniques to verify their nature. As hydrozincite is the only
polycrystalline material, we assessed its detailed nature by X-ray diffraction. It contains
a small amount of cerussite, which is not blue luminescing. All samples are part of the
gemology teaching collection at Nantes University.

We include three references to be able to compare data obtained with the same instru-
ment in the same conditions. This avoids variability factors (different lamps, correction or
software) that may exist from one luminescence spectrometer to the other.
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Table 5. Ten minerals or gem samples exhibiting BSL, selected for this study.

Minerals Chemical
Formula Nature Absorption

Color Sample

Benitoite BaTiSi3O9 Natural Blue 3684
Corundum:

synthetic sapphire Al2O3 Synthetic Colorless 3697

Dumortierite Al7BO3Si3O18 Natural Blue 3977
Silicate glass:

“Fondu du Jura”
65.7%w SiO2, 9.1%w Na2O,

25.2%w Al2O3
Synthetic Blue 1846

Hydrozincite Zn5(CO3)2(OH)6 Natural White 4101
Beryl Morganite Be3Al2(SiO3)6 Natural Colorless 1865

Synthetic Opal SiO2, nH2O Synthetic White with
play of color 2029

Pezzotaite CsAl2Si6O18 Natural Purple-Pink 966
Flame fusion

synthetic Spinel MgAl2O4 Synthetic Colorless 1386

Tourmaline: Elbaite Na(Li,Al)1.5Al6(Si6O18)(BO3)3
(OH)3

Natural Colorless 3056

The luminescence data were acquired with a Horiba JobinYvon Fluorolog-3 fluorimeter.
The light source is a 450 W xenon lamp, the detector a Hamamatsu R13456 photo-multiplier.
The emission spectra were carried out with an excitation at 254 nm, covering the range
300 to 900 nm with an excitation spectral bandwidth (“slit”) of 4 nm and sampling every
nanometer with an integration time of 1 s per point. The excitation spectra were acquired
covering 240 to 400 nm with an emission spectral bandwidth (“slit”) of 4 nm and sampling
every nanometer with an integration time of 1 s per point. The acquisition was done via the
Fluor-Essence software. The low-temperature luminescence experiments were performed
in situ in a vacuum system with a conduction-cooling device at the temperature of liquid
nitrogen (77 K) and with the same spectral parameters.

Fluorescence decay time is an important parameter to characterize the cause of lumi-
nescence. A fluorophore which is excited by a photon will drop to the ground state with
a certain probability based on the decay rates through a number of different (radiative
and/or nonradiative) decay pathways. To observe fluorescence, one of these pathways
must be by spontaneous emission of a photon, for ex for BSL. BSL lifetime decay curves are
fitted with Origin software with the following single exponential formula:

y = y0 + A1∗ exp
(
−(x − x0)

t1

)
(1)

where y0 is the y offset, A1 is the amplitude, x the time in seconds, x0 the x offset and t1 is
the decay time measured.

Trace element data were obtained by laser ablation inductively coupled plasma mass
spectrometry (LA-ICP-MS) using a G2 Excimer Laser Ablation System (at 50% of its maxi-
mum energy) coupled to a Varian quadrupole 820-MS system. Analyses consist for each
sample of 5 lines of 60 spots. Each spot was obtained with an energy density of 4.54 J/cm2

with a repetition rate of 10 Hz, spot size of 110 µm and a speed of 10 µm/s. The analysis
consists of 30 s background acquisitions, 30 s data acquisition and 60 s time after each
line (cell wash-out, gas stabilization, computer processing and move to next sample). We
used two standard references: NIST 610 and NIST 612 measured at the beginning of the
sequence and between each sample or two samples in a row [50]. The concentration of
elements was calculated using the GLITTER software and calibrated using 27Al [51].

3. Results
3.1. Inductively-Coupled Plasma Mass Spectrometry by Laser Ablation (LA-ICP-MS)

We investigated with LA-ICP-MS the elements that had been proposed as activators
for BSL in the literature: chiefly Ti but also S, Tl and Pb. Results are reported in Table 6.
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Table 6. Impurities concentrations (ppmw—parts per million weight) of the possible activators of
BSL in the ten samples selected obtained by LA-ICP-MS techniques. avg (average), SD (standard
deviation), nd (below limit of detection).

Benitoite Synthetic
Sapphire Dumortierite Glass Hydrozincite

avg-SD avg-SD avg-SD avg-SD avg-SD
33S 201.072–36.852 nd 1064.6–341.6 2136.8–624.5 10.1–1.0
47Ti Constituant 23.5–1.5 3658.2–127.2 1274.2–46.5 31.2–3.3

205Tl nd nd 0.074–0.014 0.08–0.01 nd
208Pb 0.354–0.021 1.3–0.1 11.6–0.9 2895.0–236.4 438.2–115.2

Beryl
(Morganite)

Synthetic
opal Pezzotaite synthetic

spinel
Tourmaline

(Elbaite)
avg-SD avg-SD avg-SD avg-SD avg-SD

33S 703.216–225.848 254.6–36.5 396.3–131.5 nd 630.5–195.8
47Ti 23.374–1.104 28.5–1.1 508.4–23.8 23.5–1.5 38.9–1.5

205Tl 7.100–0.576 nd 2.59–0.14 nd 0.074–0.009
208Pb 5.230–0.361 1.27–0.06 8.4–0.5 1.27–0.09 108.2–5.9

In all samples most of the activators proposed for blue luminescence are detected,
but in contrasting amounts. Tl is detected in the ppm range or is below detection limits,
making it a less likely candidate for BSL activation. Also, sulfur is not detected in one
of the documented examples of BSL, synthetic sapphire. Pb is present in some samples
but often at ppm level. On the other hand, titanium is always detected above the 20 ppm
level in LA-ICP-MS on average, including in the reference materials. Nevertheless, extreme
care must be taken when interpreting luminescence results based on a single criterion, in
particular chemistry. Indeed, many emissions are caused by activators present only at the
ppm level such Cr3+ in Ga2O3 [52] or the uranyl molecular ion in opal [53].

3.2. Photoluminescence Properties
3.2.1. Emission Spectra

Beyond the presence of the supposed activator, we must ascertain that all BSL de-
scribed present similar spectroscopic characteristics for their emission. Figure 2 illustrates
the emission spectra of our ten samples.

BSL is caused by an emission band with an apparent maximum between 414 and 463
nm (2.68 to 3.00 eV), as one would expect for a blue color perception. Also, the emission
is always broad, ranging from about 75 to 100 nm (about 0.6 eV) FWHM. The emission is
not always a single symmetrical band, so other contributions by other elements or maybe
other electronic transitions could be part of this emission feature. In addition, the results
are presented in nm for ease of comparison with other publications, but this induces a
slight asymmetry of the spectral features. Nevertheless, overall, the emission of the new
BSL materials have an emission profile which is close to that of the reference materials.

3.2.2. Excitation Spectra

Excitation spectra are critical to assign the cause of luminescence. They describe the
absorptions responsible for the emission (Figure 3).
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Here also, the excitation spectral feature is not always a single symmetrical band. Two
components seem present, one in the 240–250 nm (4.96–5.16 eV) range and the other in
the 270–290 nm (4.27–4.59 eV) range. This is consistent with Gaft observations in several
titanates that there are sometimes two excitation bands, one nearer 240 nm, and the other
towards 290 nm [54]. These authors attribute the 240 nm excitation band to the allowed
1A1g-1T2u transition, and the weaker band at 290 nm to the formally forbidden 1A1g-1T1u
transition. Nevertheless, overall, the excitation spectra of the reference and new BSL
minerals are clearly comparable and consistent, if they are not identical.

3.2.3. Lifetime Decay of Luminescence

The third parameter to be taken into account when studying luminescence is the
lifetime decay. Rarely studied in mineralogy, it is nevertheless essential to calculate it in
order to determine which defect is at the origin of the luminescence. Similar activators
should have similar lifetimes. The lifetime decay results of the ten BSL samples are
presented in Figure 4.
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Figure 4. Lifetime decay of the ten samples showing BSL.

The values range from about 2 to approximately 40 µs on our instrument. The data
for the reference materials are intercalated within the other new BSL, such as dumortierite,
morganite, tourmaline and synthetic opal. Despite the apparent spread, this remains
consistent for the same phenomenon across a wide variety of host atomic structures.

4. Discussion

All of the BSL minerals studied here show a broad emission band of about 100 nm
FWHM wide (0.31 eV) between 414 and 463 nm (2.99 to 2.68 eV respectively) and a broad
excitation band between 240 and 290 nm (4.27–5.16 eV) about 50 nm wide (0.89 eV), together
with a decay lifetime of the order of 10–40 microseconds (Table 7). This data is consistent
with titanate activator. We must first eliminate the other possible BSL activators invoked in
the literature.
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Table 7. Emission/excitation maxima of the ten samples showing BSL and associated lifetime decay.

Mineral Emission Maxima
(nm–eV)

Excitation Maxima
(nm–eV)

Lifetime Decay
(µs)

Benitoite 414–2.99 291–4.26 17.08
Corundum: Synthetic

Sapphire 425–2.92 256–4.84 39.96

Dumortierite 446–2.78 Near 240–Near 5.16 14.34
Pb silicate glass 463–2.68 248–5.00 28.37

Hydrozincite 439–2.82 248–5.00 1.92
Beryl Morganite 433–2.86 278–4.46 17.8
Synthetic Opal 452–2.74 253–4.90 40.59

Pezzotaite 426–2.91 Near 240–Near 5.16 14.49
Flame fusion Synthetic

Spinel 461–2.69 269–4.61 38.81

Tourmaline: Elbaite 420–2.95 253–4.90 25.46

The bibliographical search identifies four potential activators for the origin of BSL:
titanium, lead, thallium or sulphur.

The luminescence of thallium in halogen compounds KCl, KBr, KI is close to that
observed for BSL in terms of emission and excitation spectra [55]. However, Tl+ lifetime is
about 280 ns in KH2PO4, which is very different from our BSL values above 2 µs [56]. In
addition, Tl is often below the limit of detection in BSL materials.

(S2)− is very rarely mentioned as a source of blue luminescence in minerals [14],
although it is rather known to be a common activator for emission in the orange-red
spectral range [45,57,58]. There is little support for (S2)− as activator as decay times are not
provided and literature on this subject is scarce. Moreover, there is no relation between the
S content that we measured and blue luminescence intensity.

Pb luminescence is mostly associated with emission in relatively longwave UV (mostly
in 320–380 nm range) [54,59–63]. Also, Pb emission lifetimes appear to be much shorter
than those observed in BSL, such as 190 to 300 ns at room temperature [55,64]. It also seems
to be very dependent on Pb environment ranging from a few ns to microseconds in KCl,
KBr [65]. It should be noted that some luminescence in the yellow range is attributed to
Pb as in cerussite (PbCO3) or SrTiO3 [66]. Thus, lead does not appear to be a source of the
microsecond lifetime blue luminescence. In the specific case of our hydrozincite, it contains
titanium, which is not the case of hydrozincite studied by [12] for which emission was
attributed to Pb2+. Furthermore, our sample contains a small amount of cerussite, which
explains the high Pb concentration in ICPMS measurements, actually a contamination by a
non-BSL phase.

Titanate groups are the most likely activators associated with BSL; it has the same
position maxima and width in emission and excitation spectra and same order of magnitude
of decay times (Table 7), as confirmed by running references in the same manner as the BSL
“unknowns” have.

We demonstrated that titanate is at the origin of BSL in dumortierite, whose origin has
always been supposed to be related to titanium, but no detailed literature is available on
the subject [29]. Note that many pink or blue quartz, colored by varieties of dumortierite,
show this luminescence. We were also able to see the BSL in a synthetic opal. This is
more surprising as blue luminescence in natural opals and amorphous silica is known
to be associated with the presence of non-bonding oxygen or oxygen deficiency in silica
(ODC) tetrahedra [54,67,68]. However, the common blue luminescence of opals is mostly
triggered in longwave (365 nm) in contrast to that caused by the presence of titanate which
is SW-excited only. It is logical that synthetic opal offers different luminescence behavior
having a slightly different structure [69]. It is possible that TiO2 substitutes partially for
ZrO2 the material between SiO2 sphere– in this synthetic opal [70].

We describe for the first time blue luminescence in beryl, in this case morganite. The
similarity of the structure of beryl and pezzotaite makes it likely that BSL in the gems
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would have similar causes. It is what we find and then, we ascribed its blue luminescence to
TiO6 center presence in both of them. Titanium probably substitutes for Al in its octahedral
site in either mineral. This is a rare luminescence in beryl/pezzotaite as it necessitates
the presence of traces of Ti and the virtual absence of iron. BSL is limited in beryl to near
colorless to pink varieties (goshenite, morganite) and it is not found in more common,
iron-containing beryl varieties.

It is not surprising that titanate is found in a wide variety of minerals. Titanium is
the ninth most abundant constituent of the earth’s crust and mantle [71]. Naturally, it can
be found as a component of numerous minerals such as rutile/anatase/brookite (TiO2),
ilmenite (FeTiO3), sphene (CaTi(SiO4)O) and many others. However, titanium is present in
the majority of soils, rocks and sediments in very small quantities (a few percent to ppm).
In many natural crystalline compounds, Ti has two main valences, Ti3+ and Ti4+ and is
mainly found in octahedral coordination [72]. It is rarely found as TiO4/TiO5 [73–75]. As
with many transition elements, the mere presence of a few ppm is a potential source of
unique physical, in this case optical, properties. For decades, titanium has been known to
be a cause of luminescence under cathode rays, ultraviolet light, flame excitation or heating
in many compounds, so it is a well-established and likely luminophore or activator [76].

Based on the work of Sidike et al. 2010 and Satoh et al. 2017, correlations have
been observed between the Ti-O distance and the emission wavelength (Figure 5) [16,77].
However, very few studies determine directly the real Ti-O distance in Ti-doped com-
pounds. The Ti-O distance mentioned in many publications is the metal-oxygen distance
in the titanium-free compound. When present as an impurity, the determination of the
exact (average) Ti-O distance would require using synchrotron techniques, for example.
Nevertheless, we plotted the position of the emission versus estimated Ti-O bond length
(Figure 5) using measured or estimated Ti-O bond lengths available in the literature.
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A visual guide, not a fit, indicates a correlation trend between the length of the Ti-
O distance and the luminescence emission maximum. Counter-examples are curiously
located only in the 1.98 to 2.00 Å range. This means that emission is shifted from blue to
green as Ti-O lengthens leading the blue-green, green, yellow luminescence due to titanate
groups at longer Ti-O, superior to 2 Å although alternative possibilities have been proposed
(see below).
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Our assignment of BSL to the titanate group is based on four measurements. The
coincidence for seven minerals (plus three references) is striking; yet it is always possible
in luminescence studies that there is an alternate cause, due to a coincidence of spectral
properties between two activators. Despite the difference in lifetime measurements, the
resemblance between the blue emission of Pb2+ in hydrozincite (without titanium) and
hydrozincite with titanium merits further investigation. To complete the present work, it
would be interesting to probe further with time resolved luminescence, and also perform
temperature studies.

The lack of information on the luminescence of minerals prevents us from mentioning
further possible candidates for BSL. There are a number of articles regarding the lumines-
cence of titanium-containing materials which indicate potential BSL, but often either the
effective color or the excitation wavelengths are missing. Thus, the list of BSL materials
might be much longer, but often only the emission data is provided, which does not stop
many authors from interpreting the source of a simple blue luminescence as being due to
titanates without chemical analyses proving the presence of Ti as a trace. Many blue-white
luminescences are ascribed to TiO6 in fluorescence database (such as Fluomin), for example
murmanite Na4Ti4(Si2O7)2O4 4H2O, a potential candidate if more information is provided.
The visual description is clearly insufficient to identify BSL in hibonite Ca2(Al,Ti)24O38 [78].
A non-exhaustive list of many luminescent compounds satisfying at least in part BSL
criteria is provided in SI.

Titanate related luminescence is not restricted to BSL. Some minerals emit a green to a
yellow luminescence with the same excitation spectrum and similar lifetimes to BSL. This
is recorded for natural minerals such as andalusite [54], topaz [41], cassiterite [79] lorenzite,
talc, uvarovite [29], baghdadite [16], chrysoberyl: alexandrite [54] and enstatites [80]. This is
also true of several chemical compounds such as MgSn2O4, zirconium titanate doped with
lanthanum or BaTi(PO4)2 [81–83] In some of these compounds, titanium is present in TiO5
groups, which may explain the shift of color [84–86]. It has also been proposed that there
is a link between the shift of the emission wavelength and the amount of titanium in the
solid, (in stannates [34]). Finally, some authors mention the presence of oxygen vacancies
in TiO5 polyhedra as an explanation for emissions in the green to yellow range [35,87,88].
These activators have also been proposed for BSL, so yellow and green emissions may be
induced by titanate groups with different environments from those leading to BSL.

5. Conclusions

We have demonstrated for the first time that BSL is due to octahedral titanate groups
in seven natural minerals and synthetic materials: dumortierite, hydrozincite, beryl, pez-
zotaite, some elbaites, some lead aluminosilicate glasses and some synthetic opals. This
was established by comparing the luminescence properties with reference materials for
which the origin of BSL has been firmly established as being due to TiO6. BSL minerals
are characterized by a broad emission band in the spectral range perceived as blue, be-
tween 400 and 500 nm (3.1 to 2.48 eV), respectively. This band is relatively broad (about
100 nm–near 0.6 eV). It is excited between 250 and 300 nm, with an excitation band about
50 nm wide (0.6 eV). Finally, the decay lifetime is of the order of ten microseconds, spreading
from 2 to 40 microseconds.

It is apparent from a literature search that many more minerals or materials might
possess a titanate-induced BSL. Yet, because of the lack of details regarding luminescence
parameters (excitation spectrum and decay time, for example) one cannot prove the titanate
origin of these emissions (see Tables S1 and S2 in Supplementary Materials). In addition,
recent progress in luminescence modelling has started to confirm titanate origin where the
origin of BSL was ambiguous. There is reason to believe that, in the future, the titanate
activation of BSL will be demonstrated for an increasing number of minerals (natural
or synthetic).
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//www.mdpi.com/article/10.3390/min13010104/s1, Table S1: Mineral and synthetic compounds on
which Ti-related blue luminescence (possibly BSL) has been described or inferred [1,27,29,39,79,83,88–101].
Table S2: Data associated with Figure 5, mineral & formula, Ti-O distance, emission maxima (in nm
and eV), bibliographic sources for luminescence and Ti-O distance [1,9,16,29,40,77,89–92,102–119].
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