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Abstract: There is an increasing demand to simulate and optimize the performance and profit of
comminution circuits, especially in low-grade ore processing, as is the case with critical metals
minerals. Recent research has shown that the optimization result is greatly influenced by quality
aspects of the products, such as cost, profit, and capacity. This paper presents a novel approach to
performing a multi-objective technical and economic analysis of tantalum ore processing to increase
the production of critical metals minerals. The article starts with mineral composition analysis to
highlight the potential of strategies for balancing the process layout for maximized production. The
introduction of a combined technical and economic analysis presents the possibility of improving the
profit by rearranging the mass flow given the rock’s mineral composition. Results show that selective
comminution can improve process capacity by 23% and decrease production cost by 10% for the
presented case.

Keywords: selective comminution; tantalum ore; process design; flowsheet recommendation and
design; plant efficiency; cost analysis; mass flow model

1. Introduction

Critical metals are present at very low abundance and are challenging to extract and
utilize efficiently. The rapidly growing demand for critical mineral resources worldwide
requires new understandings of the exploration advances aiding in discovering new eco-
nomic targets. The outstanding properties of tantalum make it a valuable metal and, in
some cases, irreplaceable and essential to sectors such as the aerospace, gas and oil, nuclear
and electronic industries [1]. Due to the high economic importance, medium supply risk,
and poor availability of substitution materials, the growing interest places tantalum on the
critical metals risk list from the British Geological Survey [2] immediately after the rare
earth elements. As a consequence of the increasing global demand for this metal, there is
also a need to develop more efficient mineral processing techniques [3–5].

During critical metals processing, the rock material is generally processed from the
beginning of the process until the end, by means that all particles are reduced by coarse
and fine comminution equipment without arranging any separation. This requires a high
amount of energy to run the process at a high cost, especially in low-grade ores as in
tantalum. As a result, the mineral production industry has left behind a recent decade
of unusually high product prices; additionally, this issue has led to marked reductions in
productivity in existing mineral industry operations [6].

The highest cost in mining operations is related to energy costs, where 70% of it is
used during crushing and milling processes [7,8]. Nonetheless, the fine comminution or
grinding and processing required between 80%–90% of the energy consumption, while the
crushing stage consumes 5% to 7% [9–11]. Therefore, by reducing the energy requirements
during the milling process, it could be possible to reduce the total amount of energy in
the process.
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1.1. Selective Comminution

New studies and techniques are emerging which provide an advance or benefit in
mineral production, especially for low-grade ores applications, as is the case with critical
metals. It has been established by other authors that depending on the processed material
and its physical and chemical properties, it could be possible to separate the material early,
such as a pre-concentration of the value mineral or by valueless gangue rejection at coarse
sizes at the earliest stage of the process flow [12–18]. The propensity of some ores to deport
metal into specific size fractions can allow for the early rejection of low-grade materials
by using selective comminution, grade by size or pre-concentrations during the coarse
comminution stage [14,19–25].

Selective comminution allows a pre-classification stage at an early comminution stage,
which reduces the amount to final product size and consequently reduces energy [15].
The selective comminution is based on the different properties and behaviours of the
minerals that form the ore. Understanding how compressional breakage influences mineral
liberation and value mineral concentration is an important first step to identifying ores with
suitable characteristics for preconcentration [25]. The good combination between selective
comminution and subsequent classification is a promising method for the treatment of
low-grade ores and old tailing dumps [15].

An early separation means that not all materials must follow all processes and ma-
chines [6,26]. By doing a pre-classification stage during an early stage of the process, it
is possible to reduce the handling and further size reduction of waste material, which
means reducing the mass flow rate in some parts of the process, and therefore, it will
reduce the amount of water and energy required in the whole process [27–29]. The early
pre-classification stage is a result of a comminution system that embraces appropriate
comminution parameters as operational parameters and material properties to achieve the
best process design [14,15,17]. Once the distribution of the valuable minerals and waste is
evaluated as a function of the particle size (grade-by-size distribution), as is described in the
previous work of the authors Leon et al. [25], it is possible to begin analyzing different plant
configuration options to increase mineral production and decrease the required energy.

1.2. Crushing Plants Parameters

The goal of crushing plants is to optimize the production of specifically sized rock
fractions and, in some cases, achieve a certain level of product quality to control the yield
and quality of the product and the production cost. Therefore, it is necessary to use a set of
several different crushers and mills whose primary purpose is to reduce the rock size to the
wanted dimensions but have a different impact on the quality [30].

The operator or the control system must consider all relevant process parameters
when controlling the plant. Some parameters influence the outcome greatly, while others
have a lesser effect on the product [31].

The process settings can vary to achieve specific product quality. The most common
change is in the crusher’s closed side setting (CSS), which enables the production of rock
products in the desired size range. Crusher parameters, such as stroke or eccentric speed,
are rarely changed because changing them is time-consuming. Instead, these parameters are
set when the crusher is initially commissioned in the crushing plant. Material characteristics
also influence the quality of the product and include parameters such as feed size and
distribution, which may be controllable [25].

1.3. Techno-Economic Parameters

In mineral processing, it is not uncommon to find operations that generate fewer prof-
its than the required cost in their production process; also, there is a significant reduction
in production due to the complicated conditions of the different mining companies [32].
Furthermore, many factors influence the cost of the process, such as natural factors and the
technological chain in mining and processing [33]. Therefore, techno-economic analysis
plays an essential role in plant design and operations. Nowadays, evaluating and decreas-
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ing the mining cost is even more critical due to the higher demand for critical metals and
the environmental regulations [34]. The technical analysis includes information about the
material and plant, such as the particle size distribution, plant yield optimization, plant
efficiency analysis, flowsheet design and liberation of minerals. On the other hand, the
economic analysis considers the investment and operation cost for equipment, installation,
maintenance, and replacements [34].

There is not much work investigating the effect of economic factors and criteria on the
optimality of the flowsheets in the mining sector [35–37]. To our knowledge, no paper has
presented a methodology to calculate cost parameters as a function of mass flow for each
piece of equipment and to calculate the production cost of the plant. This paper aims to
present a way to generate cost parameters for equipment so that they can be included in a
process simulation that can calculate the total production cost of a circuit.

This assessment considers the crushing plant’s economic and technical aspects. How-
ever, in this paper, the analysis will focus on predicting a plant configuration’s yield,
product quality, and process cost. This paper analyses the existing plant from a techni-
cal, economic perspective. The survey is represented by examining two cases: case 1, an
existing plant (Figure 1), and case 2, showing a proposed change in the process using
selective comminution techniques to achieve an early separation and classification which
will improve capacity (Figure 2). The survey has analyzed the process performance as well
as the economic investment. An initial economical analysis is calibrated using the survey’s
measurement before predicting the direct cost in case 2.
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Figure 1. The configuration of the plant in Case 1.
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2. Cost Analysis Bases for the Mineral Process of a Tantalum Ore
2.1. Main Application Focus

There are multiple applications for the use of the presented cost model. In this paper,
the focus application will demonstrate the reduction in the energy and cost related when
using a different operating scenario with varying capacities and feed size distributions, as
shown in Figure 1 (traditional process flow) and Figure 2 (using selective comminution).
In this paper, the principal studied application is for a tantalum low-grade ore plant, but
using the same proposed methodology is possible to apply to analyze any other type of
materials, being critical metals or not.

2.2. Methodology

This paper describes the methodology to evaluate the cost and production of different
plant designs, considering the possibility of using selective comminution. The benefits of
operating cost and production models to predict the size, mineral composition, capacity,
and profit of products originates from the work by Bengtsson [38] and Leon et al. [39].
In the work of Asbjörnsson et al. [40], the importance of including the different process
dynamics with the process simulation is presented. The technical and economic processes
are modeled to see how the product size, capacity, and profit are affected by changes in
the process parameters and process variations. The purpose is to describe the complexity
of quality-driven production and to demonstrate a process model that can be used for the
multi-objective optimization of a crushing plant. The process layouts used in the following
simulations are shown in Figures 1 and 2.

The paper refers to previous cost functions, but more importantly, the article presents
an approach so that an arbitrary cost function can be added for any equipment. Comparing
the two cases assumes a linear cost model, i.e., the production cost is proportional to
capacity. Furthermore, we argue that the economic model must follow the same causality
as a technical model, i.e., that there must be a financial balance in the same way as, e.g.,
mass balance.

2.3. Theoretical Cases Analysis

The paper analyses two cases of mass flow and production cost to show how the
model allows educated or well-based estimations of how a plant should be designed. Case
1 represents the traditional flowsheet of a mineral extraction process, and case 2 illustrates
the use of selective comminution, where some specific size particles will be discarded
during the comminution process. It is considered that all input materials and amounts
are the same in each case. The only difference between these cases will be the equipment
arrangement and the material division.

When analyzing the process shown in Figure 1 concerning capacity, size distribution,
and energy, the feed to the ball mill contains a significant amount of 0–1 mm fraction.
When isolating the size distribution of the 0–1 mm fraction in the feed distribution, the
distribution bears similarities with the ball mills product. From the previous work of
the authors Leon et al. [25] it is already known that in the case of the evaluated ore, the
columbite-group minerals are already liberated due to the pattern of interfacial breakage,
which allows the easy liberation of the minerals present in the brittle matrix.

Before the ore passes through the ball mill, it goes through a cone crusher equipped
with a fine chamber, i.e., the design of that chamber. It yields a fine material that contains a
high degree of liberated minerals [25]. Regarding the energy perspective, it is well known
that the use of ball mills results in significant energy consumption, and therefore it would
be of considerable interest to balance the overall process so that a more substantial amount
of processable material can be classified prior to entering the ball mill.

2.4. Calibration Using Survey Data for Case 1

A process simulation of Case 1 was calibrated against measured data from a survey.
Figure 3 compares simulated psd curves and measurements for the ball mill product (stream
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Q6) and the hydro-cyclone product (stream Q7). The mass flow of stream Q7 simulation
value was 59 tph, and the measured mass flow 53 tph. The discharge of the hydro-cyclone
represented by stream Q8 had a simulated value of 26 tph, and the estimated mass flow
was 24 tph. The hydro-cyclone used in the plant had a cut size of 0.5 mm.
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3. Materials

The material used for the case study evaluation was a low-grade Sn-Ta greisen-type
mineralization ore from the Penouta deposit located in Penouta village, in the municipality
of Viana do Bola, Ourense, Galicia, in the northeast of Spain. The mineralization is hosted
in leucogranite affected by greisen processes [25].

The Penouta leucogranite is hosted by metamorphic rocks, composed mainly of
gneisses and mica schists [41]. The essential minerals are quartz, albite, K-feldspar, mus-
covite, and kaolinite. Accessory minerals are garnet, cassiterite, apatite, monazite, zircon,
columbite-tantalite, and uraninite. Main valuable minerals are cassiterite (SnO2) and
columbite-group minerals (CGM), which general formula (Fe,Mn)(Nb,Ta)2O6 and four
end members: columbite-(Fe), (FeNb2O6), columbite-(Mn), (MnNb2O6), tantalite-(Fe),
(FeTa2O6) and tantalite-(Mn), (MnTa2O6) [42,43]. More data and characterization of this
ore are presented and described by different papers as a part of multi-partner research
collaboration (OPTIMORE, project number 642201) [8,25,44–52]. The sampling and charac-
terization method which is based on these results is described in the previous work of the
authors Leon et al. [25].

The case study was performed on two ~1 ton samples from the Penouta open pit
mine, by collected by the OPTIMORE team of the Universitat Politècnica de Catalunya
during January 2015, as a part of a multi-partner research collaboration. Due to potential
mineralogical variations, samples of the mineralized leucogranite were collected from
different parts of the open pit. Splits of 100 kg from the original samples were received to
Chalmers University in Gothenburg during 2015. Geochemical analysis [25] indicated that
valuable minerals in Penuota samples were relatively small and homogenously distributed,
and it was therefore assumed that 500 g grams of starting materials would be sufficient for
representative geochemical analysis. More information is presented in the previous work
of the authors Leon et al. [25].

Earlier research works by Leon et al. [25,39] show that grade-by-size distribution
detected a strong fractionation of metal-bearing particles into the size range of 0.125 to
1 mm, by means that the concentration of the extracted mineral will be located in that size
fraction, making possible the use of selective comminution in the processing of this ore. As
an example, Table 1 and Figure 4 show the mineral concentration with respect to fraction
size for tantalum [39].



Minerals 2022, 12, 1057 6 of 15

Table 1. Tantalum content in different size fractions of the Penouta ore after compression breakage at
30, 20 and 10% compression ratios for samples 1 and 2 [25].

Metal (ppm) Sample No. Compression Ratio (%)
Size Particle (mm)

5.6 4 2 1 0.5 0.25 0.125 0.063

Ta
±0.1

1
30 125 82 89 132 167 142 94 71
20 146 109 103 163 206 135 58 52
10 103 97 98 176 208 194 52 83

2
30 83 72 77 136 179 132 81 80
20 89 91 102 122 197 182 91 97
10 111 99 112 133 201 164 84 89
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Figure 4. Representative trace elements content of the Penouta ore after compression breakage for
tantalum for sample 1 (a) and sample 2 (b) from experimental data [25].

Case Study Analysis

It was established previously that depending on the processed material and its physical
and chemical properties, it could be possible to use selective comminution by carrying out
an early separation of the material [6,26–28]. A model for determining the cut point can be
introduced if the data presented in Figure 4 is transformed into a cumulative representation
shown in Figure 5. Equation (1) shows the cumulative concentration of minerals concerning
the particle size x. The value b represents the slope of the exponential function. A larger b
will result in a smaller top size in the screened fraction. For the experimental data presented
in Figure 4, the value of b equals 1.2, i.e., the approximate top size should be 1/b = 0.833.
The value b can be determined using the linear regression model by evaluating the values
for small particle sizes. This is an approximation to determine the value b. Hence, a
suitable fraction of 0–1 mm will result in 67% of the minerals in this fraction. The model
in Equation (1) serves as a guide for choosing a suitable fraction size for maximizing the
desired mineral content; this should be combined with the requirements for the appropriate
feed size for the hydro cyclone for a feasible operating condition.

y =
(

1 − e−bx
)

(1)
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If the 0–1 mm fraction could be screened and classified, as shown in Figure 5, the
use of selective comminution would decrease energy usage. If selective comminution
is conducted by discarding material with a low quantity of the desired mineral before
entering the ball mill, a significant amount of energy can be saved. Although this process is
related to the tertiary cone crushing stage, a considerable amount of liberated minerals can
be harvested using a hydro cyclone.

Figure 6 shows an evaluation of the size distribution of the feed tantalum material
and the resultant product in the ball mill from MATLAB simulation results using the third
theory of comminution presented by Bond [53]. According to Bond, a decrease in mass flow
to the ball mill by X% would directly result in an energy decrease of the same magnitude.
Due to this, it suggests that there could be significant improvements by conducting a
multidisciplinary process evaluation using the proposed cost model in this paper and by
combining existing process simulations for PSD capacity and energy.
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4. Modelling

Balancing investment costs versus circuit performance is a challenging task that relies
on many different sources of information. One of these sources is process circuit simulations
in which classification and screening models play an essential role. If a simple process
circuit is considered, as shown in Figure 7, the cost increase per ton due to the circulating
load can be derived according to work by Bengtsson et al. [54]. It is an economic benefit to
keeping the recirculation of material to a minimum as it allocates costs when recirculating
loads. For example, suppose the crushing stage before the ball mill is configured for optimal
reduction, i.e., generates the desired number of finer particles that can be directly processed
in a hydro cyclone. In that case, less material needs to be processed in the ball mill. Due to
the removal of fines in the ball mill feed, it is plausible that the ball mill configuration may
need to be tuned to compensate for the loss. Hence, a change in circuit design should be
evaluated using process simulations to detect possible problems with size reduction due
to redesign.
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4.1. Mass Flow Equations from a Production Perspective

A product is always associated with an undesirable action that reduces throughput.
In crushing, it is often necessary to maintain certain product quality. The cost of reworking
the material balances the operating cost of the crusher, screen and conveyors. On the other
hand, minimizing the cost of maintenance would reduce the amount of finalized products.

Mass flow balance is performed considering the flow that goes in and out from a
selected area or equipment. All material flow passing through a circuit must be the same
for a steady-state, as illustrated in Equation (2).

Qin − Qout = 0 (2)

The two cases are evaluated and stated below as an example of the mass flow equa-
tions. The operator γ represents the proportion of the feed that is split to capacity Qi. In
Equation (3), the summation γn represents the analytic description of calculating the power
Q1 entering the screen for a closed comminution circuit. The γ values are gathered from
the particular comminution model used in the process.
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Case 1:
The capacity Q1 to Q3 shown in Equations (3)–(5) represents the mass flow for the

closed circuit of the tertiary cone crusher and the screen.

Q1 =
m

∑
n=0

γn
1 Qin (3)

Q2 = γ1Q1 (4)

Q3 = (1 − γ1)Q1 (5)

The capacity Q4 represents the feed to the ball mill. Product passes a hydro cyclone
and screen there will be an γn

2 and γn
3 multiplied within the same manner as for the closed

circuit of the cone crusher and the screen.

Q4 =
m

∑
n=0

γn
2 γn

3 Q3 (6)

Since the process is assumed to be steady-state, the feed’s mass flow will be the same
as the product, as shown in Equation (7). Therefore, Equations (8) and (9) follow the same
calculation pattern as presented previously, and Equations (10) and (11) represent the
method for calculating the remaining mass-flow using (1 − γ).

Q6 = Q4 (7)

Q8 = γ2Q6 (8)

Q5 = γ3Q8 (9)

Q7 = (1 − γ2)Q6 (10)

Q9 = (1 − γ3)Q8 (11)

Qout = Q7 + Q9 (12)

Case 2:
The mass flow calculation of case 2 follows the same principles as case 1, but there will

be an additional set of mass flows Q4 to Q8 see the red dotted box in Figure 2. For example,
the mass flows for Q4 to Q8 are shown in Equations (13)–(17).

Q4 = (1 − γ2)Q3 (13)

Q5 = γ2Q3 (14)

Q6 = Q5 + Q8 (15)

Q7 = (1 − γ3)Q6 (16)

Q8 = γ3Q6 (17)

4.2. Cost Calculation

The cost calculations are based in the work by Bengtsson et al. [54]. The general cost
equation has been presented in Equation (18) for the simple process circuit of Figure 7. The
general equation was introduced in the work of Bengtsson et al. [54].

C f = Ctot

(
1 +

Qre

Q f

)
=

n

∑
i=1

Ci

(
1 +

Qre

Q f

)
(18)

The cost calculations for Cases 1 and 2 are presented in Equations (19) and (20). The
difference between the two cases is denoted by Cbm. Ccc is the cost of the cone crusher, and
Cbm refers to the cost of the ball mill.



Minerals 2022, 12, 1057 10 of 15

Case 1:

Cprod = C1 + C2 + (C1 + C2)
Q2

Qp︸ ︷︷ ︸
Ccc

+C3 + C3
Q5

Qp
+ C4

Q6

Qp
+ C5

Q8

Qp︸ ︷︷ ︸
Cbm

(19)

Case 2:

Cprod = C1 + C2 + (C1 + C2)
Q2

Qp︸ ︷︷ ︸
Ccc

+C3 + C4
Q4

Qp
+ C5

(Q5 + Q8 + Q10)

Qp
+ C6

Q9

Qp
+ C7

Q13

Qp︸ ︷︷ ︸
Cbm

(20)

4.3. Mass Flow Equations

The modelling of the cost factors C for the comminution devices in Cases 1 and 2 is
based on the survey data presented below. By isolating the investment costs and Power
costs for each device, an estimate of the cost factor can be made. The cost factor for the
ball mill resulted in a value of 13.1 $/tonne; for the combined circuit consisting of the
hydro-cyclone and the screen, the value is 6.9 $/tonne. An assumption is made that the
cost factor for the hydro- cyclone and the screen is split equally since they are placed in a
serial configuration nearby each other. This results in a cost factor value of 3.45 $/tonne
for the hydro-cyclone and screen separately. In Table 2, simulation results for the cost
factor Cbm for Case 1 and Case 2 are presented. The mass flow through the ball mill in
Case 1 was 85.3 tonnes/h, and for Case 2, 68.5 tonnes/h. Therefore, if the ball mill in Case
2 should have the exact utilization as in Case 1, the plant’s capacity can be increased to
93.6 tonnes/hour compared to 76.3 tonnes/h in Case 1, i.e., an increase in capacity of 23%.
Table 3 presents the mass flow Q for Cases 1 and 2.

Table 2. MATLAB simulation results of Cbm stage for Case 1 and Case 2.

US $/Tonne Case 1 Case 2

C3 13.1 3.45
C4 3.45 3.45
C5 3.45 13.1
C6 - 3.45
C7 - 3.45

Cbm (calculated) 20.33 18.19
Cbm (survey) 20.03 17.87

Table 3. MATLAB simulation results of mass flow Q for Case 1 and Case 2.

Tonnes/h Case 1 Case 2

Qp 76.3 76.3
Q4 87.1 27.2
Q5 10.8 49.1
Q8 31.9 11.9
Q9 - 68.5

Q10 - 7.26
Q13 - 25.1

4.4. Direct Cost Comparison

In Swart et al. [55] research, direct cost comparison for a ball mill circuit is presented.
These data have been used to calibrate the cost model for each piece of equipment. However,
the development in recent years of COVID and the conflict in Ukraine has affected the modelling
accuracy due to the increase of the need of the metals and at the same time the increase in the
cost, which affect the sector in the short and long term. Gałaś et al. [56] pointed out that the cost
of production has increased due to the unpredicted costs of COVID-19, including the higher
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costs of concentrate processing. Furthermore, the production’s economic effect has been
impacted both by COVID-19 and the lower metal prices [56].

In Table 4, the Equipment cost for Case 1 is presented. The dominant investment
cost is in the ball mill, representing 80% of the investment cost. Conveyors, Screens and
Hydro-cyclones are about 8% of the investment cost.

Table 4. The equipment cost for Case 1.

Equipment Cost (US$) Wet Ball Mill Circuit Case 1

Feed conveyors 186,381
Feed weightometer 18,954

Mill (including motor) 2,482,974
Mill relining machine 325,377

Mill discharge 37,908
Hydrocyclone cluster 63,180

Total equipment cost (US$) 3,114,774

In Table 5, the equipment cost for case 2 is presented. The increase in infrastructure
will increase the proportional cost for conveyors, screens and hydro-cyclones to 11% of the
total cost and in absolute values with approximately $100,000.

Table 5. The equipment cost for Case 2.

Equipment Cost (US$) Wet Ball Mill Circuit Case 2

Feed conveyors 223,657
Feed weightometer 18,954

Mill (including motor) 2,482,974
Mill relining machine 325,377

Mill discharge 37,908
Hydrocyclone cluster 126,360

Total equipment cost (US$) 3,215,230

In Table 6, the direct costs for Cases 1 and 2 are presented. The production cost for the
complete ball mill circuit was 20 $/tonne for Case 1 and 17.9 $/tonne for Case 2.

Table 6. A direct cost comparison between Case 1 and Case 2.

Component Cost (US$) Wet Ball Mill Circuit Case 1 Case 2

Purchased equipment 3,146,700 3,248,186
Purchased equipment installation 1,295,700 1,337,488

Control and Instrumentation (installed) 370,200 382,140
Piping (installed) 925,500 955,349

Electrical (installed) 370,200 382,140
Buildings (including services) 925,500 955,349

Site improvements 277,650 286,605
Service facilities (installed) 1,758,450 1,815,163

Land 185,100 191,070
Total Direct Cost (US$) 9,255,000 9,553,488

Indirect Cost (US$) 2,000,000 2,064,503
Power (7 c/kWh) 1,627,000 1,271,678
Mill drive (kW) 1200 938
Power Mill kWh 2,040,000 1,594,483

Mill (kWh/tonnes) 16 16
Mill (US$/tonnes) 11.2 11.2
Power Mill (US$) 1,428,000 1,116,138

Production cost ($/tonnes) 20.0 17.9
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4.5. Sensitivity Analysis

The energy costs will drive production costs linearly since the ball mill uses the
dominating energy. However, the investment cost for the new screen and hydro cyclone
will be sensitive to the fluctuations in manufacturing costs. In recent years the prices have
increased rapidly, and if the worst-case scenario was an increase in investment cost by
50% in new equipment, the expected production cost for case 2 would be 18.3 $/tonnes
compared to 17.9 $/tonnes. Still, additional equipment investment would lower production
costs by 8% compared to Case 1.

5. Results

When analyzing the processes in Cases 1 and 2, the equipment supporting the ball
mill is assumed to have a significantly lower production cost than the ball mill. This
is supported by the survey data presented in Section 4.4 of the direct cost comparison.
Furthermore, the dominating production cost is located in the energy consumption of the
ball mill. Therefore, case 1 is used as a reference case, and Case 2 represents a modification
of Case 1 to enable pre-classification of 0–1 mm fraction from the cone crushing stage.

In case 2, bypassing 0–1 mm will result in a 10% decrease in production cost with the
same mass flow as in Case 1.

6. Discussion

Selective comminution can be utilized when the economic perspective of new invest-
ments can be adequately evaluated. Selective comminution has demonstrated a valuable
tool for reducing the energy requirements and cost during the mineral extraction of tanta-
lum ore.

Penouta material has established an enrichment of the tantalum content in the size
fractions corresponding to 0–1 mm by Leon and Bengtsson [25,39]. Using a theoretical
framework allows one to analyze and understand the different plats configurations in terms
of equipment, capacity, and material flow and compare them in their production cost.

Once the distribution of the valuable minerals and waste is evaluated as a function
of the particle size, it is possible to begin analyzing different plant configuration options
to increase mineral production and decrease the required energy. Nonetheless, there is no
available tool that allows measuring the reduction in the power necessary or the cost-saving
of the new process design. The proposed framework combines cost calculation analysis
with existing process simulations. The combined technical and economic model helps
optimize production and could be used as a tool to evaluate future investments.

By using selective comminution and bypassing 0–1 mm using a hydro-cyclone before
the ball mill, the production cost decreased by 10%. The idealization used for calculating
production capacity may result in a more positive change than in real-life situations. How-
ever, steady-state mass balance models for predicting the process’s ability are considered
reliable. Therefore, the production cost estimates may differ between the cases, and it is
recommended to investigate the driving mechanisms further before using the presented
technical cost analysis.

Regarding the technical cost analysis, it has been demonstrated that by insolating each
direct cost, of screen, hydrocyclone and ball mill, and then calculating cost parameters of
each equipment, where the parameters is a function of the mass flow. In addition, the paper
presents a way to isolate each direct equipment cost by calculating a cost parameter that is
used as a scaling constant in a linear function that has mass flow as a variable.

7. Conclusions

It has been shown that the implementation or evaluation of the presented technical-
economic analysis considering the mass flow model in conjunction with the cost model
provides a better estimation of the process performance and allows a better assessment of
the equipment used in capacity and cost. Therefore, the developed theoretical framework
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mining tool can analyze, optimize and evaluate the structural design regarding operating
expenses and mass flow.

Two cases were presented with similar amounts of equipment but differently arranged
in the process flow in the proposed study case. It was established that the different
arrangements in the plant would influence the production cost. It was shown that using
selective comminution and bypassing 0–1 mm using a hydro-cyclone before the ball mill
can decrease the production cost by 10% and increase the mineral extraction capacity by
23% if the ball mill utilization should be the same for Case 1 and Case 2.

Selective comminution has been demonstrated to be a valuable tool for reducing the
energy requirements and cost during the mineral extraction of tantalum ore.
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