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Abstract: The Heilongjiang Duobaoshan area is located at the confluence of the Great Xing’an Range
and the Lesser Xing’an Range, and the area has undergone a complex magmatic and tectonic evolu-
tionary history resulting in a complex and diverse geological background for mineralization. As a
result of this geological complexity and the multi-period nature of mineralization, the geochemical
data of the area are usually not satisfied with a single statistical distribution form, so traditional statis-
tical methods cannot adequately explore and identify the distribution of deep-seated information in
the geochemical data. Based on the above problems, this paper adopts a multivariate component data
analysis method to process 14 mass fraction data elements, namely Ag, As, Au, Bi, Cu, Fe, Hg, Mn, Mo,
Ni, Pb, Sb, W, and Zn, in the 1:50,000 soil geochemical data from the Duobaoshan area of Heilongjiang.
The spatial distribution and internal structural characteristics of raw, logarithmic transformation and
isometric logarithmic ratio (ILR) transformed data were compared using exploratory data analysis
(EDA); robust principal component analysis (RPCA) was applied to obtain the PC1 and PC2 principal
component combinations associated with mineralization, and a spectrum–area (S–A) fractal model
was further used to decompose the geochemical anomalies of the PC1 and PC2 principal component
combinations as composite anomalies. The results show the following: (i) The data transformed by
the isometric logarithmic ratio (ILR) eliminate the influence of the original data closure effect, and
the spatial scale of the data is more uniform; the data are approximately normally distributed, based
on which RPCA can be applied to better explore the correlation between elements and the pattern
of co-associated combinations. (ii) The S–A method was further used to decompose the composite
anomalies of the PC1 and PC2 principal component combination in the study area. The anomalous
and background fields of the screened-out PC1 and PC2 principal component combinations reflect
anomalous information on mineralization dominated by Au mineralization. Moreover, the anomaly
and background information after extraction were in good agreement with the known Au deposits
(points), and many geochemical anomalies with prospecting potential were obtained in the periphery,
providing a theoretical basis and exploration focus for the next step in the searching and exploring of
the study area.

Keywords: component data; isometric logarithmic ratio transformation; robust principal component
analysis; spectrum–area fractal model; Duobaoshan region

1. Introduction

Geochemical exploration methods have been dominant in mineral exploration and
the quantitative prediction of mineral resources. Since the 1970s, geologists in various
countries have accumulated a large amount of multi-scale and multi-element geochemical
data in the process of mineral exploration [1–7], of which geochemical data processing is
particularly important, indispensable and decisive in reconnaissance geochemistry [8–11].
Zuo et al. [12] pointed out how to efficiently process geochemical survey data and em-
phasized that mining and identifying deep information in the past, present, and future
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has been a hot and cutting-edge area of research in survey geochemistry. In the current
research, several geochemical data processing methods were proposed for spatial pattern
recognition and anomaly extraction in the geochemical data models of surveys, such as
conventional statistical analysis [13], local Gap statistical methods [14], multivariate sta-
tistical analysis [15], data exploration analysis [16], geo-statistics [17], and fractal as well
as multifractal methods [18], among which the fractal and multifractal theory of anomaly
identification and extraction is a processing method that has been proposed and developed
rapidly as well as effectively in recent years.

Mandelbrot [19] created the concept of “fractal geometry” in 1983. This concept has
been applied to the analysis of complex phenomena [20,21], followed by several related
studies suggesting that the spatial distribution and frequencies of geochemical elements
may obey self-similarity in fractal models [22–24]. A series of fractal models has been
proposed for the extraction of geochemical anomalies; common fractal and multifractal
methods include the following: local singularity methods [25], the concentration–area
(C–A) fractal model [26], the concentration–volume (C–V) fractal model [27], the spectrum–
area (S–A) fractal model [28], the number of feature spaces–eigenvalues (N–λ) fractal
model [29], and the Walsh space counterpart fractal model [30]. These methods not only
consider the distribution of the deep-level information of geochemical fields, but also
consider the spatial correlation, geometric patterns, and scale invariance, thus enabling the
effective decomposition of complex in addition to deep background and superimposed
anomalies in composite geochemistry. Cheng [25] pointed out that, by studying and
quantitatively analyzing geochemical data with fractal and multifractal methods, weakly
retarded geochemical anomalies that are difficult to identify can be extracted from complex
geological conditions. The study and quantitative analysis of fractal and multifractal
geochemical data can extract information on weakly slowed geochemical anomalies that are
difficult to identify from complex geological conditions, thus enabling the understanding of
the geochemical element distribution patterns. Currently, fractal and multifractal methods
are widely used in exploration and geochemical data processing [15,18,31–33].

With the development of digital earth science, the requirements for the ability to iden-
tify geochemical anomalies are gradually increasing. Aitchison [34] proposed the method
of log–ratio transformation to improve geochemical anomaly recognition capability, as geo-
chemical data are typically compositional data and the geometric space of compositional
data is Aitchison space [35]. In the geochemical data processing methods of surveys, as
mentioned above, their geometric space is based on Euclidean space, so the use of log-ratio
transformations to transform the component data into the corresponding space can assist in
more accurately identifying and decomposing geochemical anomalies [28]. Many studies
have shown [32,36,37] that the log-ratio transformation method can reveal the true spatial
distribution patterns of elements more effectively, and the elimination of the closure effect
of survey geochemical data by log-ratio transformation has gradually become an important
step in survey geochemical data processing. The common log-ratio transformation methods
include additive log-ratio (ALR) transformation, centered log-ratio (CLR) transformation
and isometric log-ratio (ILR) transformation.

The Duobaoshan area in Heilongjiang is located at the northern end of the East Ujimqin
Banner–Nenjiang polymetallic metallogenic belt, a shallow cut zone in the low to medium
mountains. After recent decades of searching for minerals, several deposits (points) with
a high mineralization potential have been identified in and around the area (Figure 1).
Due to the geological complexity of the area and the multi-phase nature of mineralization,
geochemical data are usually not satisfied with a single statistical distribution form, so
traditional statistical methods are not well suited to uncover and identify the distribution of
deeper information in geochemical data. Therefore, in this study, 14 elements, Ag, As, Au,
Bi, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Sb, W, and Zn in the 1:50,000 soil geochemical data from the
Duobaoshan area of Heilongjiang were processed based on multivariate component data
analysis, and the spatial distribution as well as the internal structural characteristics of the
original data, logarithmic data, and ILR-transformed data were compared using exploratory
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data analysis (EDA). Robust principal component analysis (RPCA) was applied to obtain
the PC1 and PC2 principal component combinations associated with the mineralization
of the study area. The spectrum–area(S–A) fractal model was further used to decompose
the composite anomalies of the combined PC1 and PC2 principal component geochemical
anomalies, thus revealing the true spatial distribution pattern of the geochemical elements
in the study area more effectively as well as providing ideas and directions for the further
search for minerals in the area.
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Figure 1. (a,b) Tectonic divisions of Northeast China and (c) a regional geological map of the Lesser
Xing’an Range.

2. Geological Profile
2.1. Regional Geological Background

The study area is located at the eastern end of the Central Asian Orogenic Belt
(Figure 1a), at the confluence of the Great Xing’an Range and the Lesser Xing’an Range in
Heilongjiang (Figure 1b). The northeastern Great Xing’an Range is a superimposed complex
tectonic zone that has undergone a long and complex magmatic and tectonic evolution,
with a complex series of microplate fits between the Siberian and North China plates in
addition to the tectonic evolution and eventual closure of the Paleo-Asian Ocean since the
Palaeozoic [38–40]. The Lesser Xing’an Range area is characterized by the development of
volcanic, metamorphic, and granitic rocks of different ages, and is the most complex and in-
tense area of tectonic–magmatic evolution in the northeast [41–43]. In recent years, with the
continuous exploration of minerals in the region, various large- and medium-sized deposits
have been discovered, such as porphyry copper–molybdenum deposits in Tongshan [44]
and DuobaoShan [45]; silica-type iron–copper (molybdenum) deposits, such as in Cuihong-
shan [46] and Xulaojiugou [47]; and shallow-forming low-temperature hydrothermal Au
deposits, such as in Zhengguang [48], Sandaowanzi [49], and Tuanjiegou [50] (Figure 1c).
This shows that this area has excellent metallogenic potential and a good metallogenic
geological background. Up to the present, a Yongxin Au deposit, a Mengdehe Au deposit,
a Bafenchang Ag-Au deposit, and many other mineralization points have been found in
the study area (Figures 1 and 2).
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2.2. Geological Background of the Study Area

The stratigraphic units exposed in the study area are numerous and widely dis-
tributed, mainly including Palaeozoic, Mesozoic, and Cenozoic strata. The Palaeozoic
strata are widely distributed in the north-western part of the area, the Mesozoic strata are
concentrated in the south-western part of the area, and the Cenozoic strata are mainly
distributed in the eastern part of the area. The Palaeozoic strata in the region include
the Duobaoshan Formation (O1-2d), the Luohe Formation (O3l), the Niqiuhe Formation
(S3D2n), and the Yaosangnan Formation (D2y); the Mesozoic strata include the Longjiang
Formation (K1l), the Guanghua Formation (K1gn), the Jiufengshan Formation (K1j), and
the Ganhe Formation (K1g); and the Cenozoic strata in the region are mainly Quaternary
high and low river floodplain deposits (Qh) (Figure 2). The intrusive rocks are widely
distributed, and the rock types are complex, ranging from neutral to acidic rocks, with
granites of medium-to-deep formations predominating. The formation age is in the follow-
ing order: Middle Ordovician, Carboniferous, Middle Jurassic, and Early Cretaceous. The
Palaeozoic Duobaoshan Formation, Mesozoic Guanghua Formation, Longjiang Formation,
and Early-to-Late Carboniferous granites are the host rocks for several significant Au and
polymetallic ore deposits, including the Zhengguang Au deposit, Sandaowanzi Au deposit,
and Yongxin Au deposit [45,51,52]. The alteration of the surrounding rocks of the deposit
mainly includes actinolitization, chloritization, epidotization, propylitization, silicification,
sericitization, carbonatization, pyritization, etc. Most of the deposits (sites) are located at
the intersection of NE-oriented and secondary NW-oriented fracture structures, and hy-
drothermal alterations such as silicification, pyritization, chloritization, and carbonatization
are commonly developed.
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3. Methods
3.1. Data Collection and Analysis

The geochemical data are from the 1:50,000 soil geochemical survey in the “Hei-
longjiang Duobaoshan Area Mineral Vision Survey Project”, covering an area of 1334 km2,
with 10,314 soil samples collected. Sample collection strictly adhered to the requirements
of the Geochemical Census Specification (1:50,000) (DZ/T0011-2015). The soil samples for
this soil survey were collected at 333 × 333 m designed sampling points with a sampling
point error of less than 15 m, and sampling was taken point-by-point by line. The sample
sampling density was 9 points/km2 of grid sampling. The sampling layer is the deposition
layer (B layer), the sampling depth was 30–80 cm, mostly 40–50 cm, and the sampling
media were sand, clay, and subclay. Each sample was delivered at a weight of 150 g and
sieved with a −10 to +60 mesh. Samples were processed to 200 mesh by fine-grinding the
collected samples according to the requirements specified by the laboratory. To prevent
sample contamination, the preparation of samples using a nonpolluting sample grinder
and partially by hand-grinding in an agate emulsion bowl, and the processing of the chem-
ical probe samples, needed to be completely separate from the processing of the ore in
the laboratory.

This sample was analyzed and tested by the Testing Centre of the Heilongjiang Geo-
logical Survey Research Institute and the Testing Centre of the Qiqihaer General Institute
of Mineral Exploration and Development. Fourteen elements, Ag, As, Au, Bi, Cu, Fe, Hg,
Mn, Mo, Ni, Pb, Sb, W, and Zn, were quantitatively analyzed and tested, and the analytical
methods [53] and detection limits of the elements are shown in Table 1.

Table 1. Analysis methods and parameters.

Element Analysis Method Detection Limit Precision (RSD%)

Ag ES 0.02 mg/kg 5.32
As AFS 0.20 mg/kg 4.98
Au GAAS 0.30 mg/kg 4.39
Bi AFS 0.03 mg/kg 4.71
Cu XRF 1.00 mg/kg 4.54
Hg AFS 0.01 mg/kg 6.72
Mn XRF 5.60 mg/kg 2.49
Mo ES 0.24 mg/kg 6.99
Ni XRF 2.80 mg/kg 1.31
Pb XRF 1.50 mg/kg 3.67
Sb AFS 0.05 mg/kg 5.37
W POL 0.31 mg/kg 4.92
Zn XRF 3.00 mg/kg 2.59
Fe XRF 0.05 mg/kg 2.22

Note: AFS—atomic fluorescence spectrometry; ES—emission spectrography; GAAS—gallium arsenide; POL—
polarography; and XRF—X-ray fluorescence.

3.2. Data Processing
3.2.1. Log-Ratio Transformation and Robust Principal Component Analysis

Since the 1980s, a large number of mathematical geologists have begun to establish
methods and theories for compositional data analysis [35,54]. Since geochemical data are
distributed in a limited area and obey units as well as constraints, they are typical compo-
sitional data. The sum of all elemental contents in compositional data is a constant value
known as the “closure effect”. The closure effect can lead to pseudo-correlations between
geochemical variables, making the results of data processing methods based on correlations
between elements uncertain. Most compositional data do not follow the characteristics of a
normal distribution; in traditional geochemical studies, log-transformation is often chosen
to make them follow the characteristics of a normal distribution. However, the closure effect
affects the log-transformed data and cannot obtain mineralogical element combinations
with a clear indication of mineralization. Aitchison [35] proposed the ALR and CLR trans-
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formations to overcome the effects of closure in compositional data. Egozcues et al. [55]
proposed the ILR transformation, which is based on the assumption that the sample space
is given Euclidean geometry. The log-ratio transformation addresses the effects of closure
in compositional data by transforming the original data (e.g., geochemical data) from the
geometry of the compositional data into Euclidean space [7].

Compared with the non-isometric transformations, ALR and CLR, the variables in the
Euclidean space will change after the transformation; the ILR transformation can ensure
that the relative distance between the variables before and after the transformation of
the component data remains unchanged [13], and is more suitable for the processing of
component data. However, this method is asymmetric, and the correspondence between
the variables will be disrupted after the ILR transformation, so the transformed variables
cannot be directly interpreted. Filzmoser proposed a combination of the ILR transformation
and robust principal component analysis (RPCA) [56–58], in which the ILR transforms
the original data which are then analyzed using the RPCA method to obtain the principal
component scores as well as loadings and then converted them into a CLR coordinate
system by using a standard orthogonal basis inverse. The data are then transformed into
the CLR coordinate system to establish the relationship with the original variables. The
problem of mismatched variables after the ILR transformation is thus solved. Moreover,
compared with the traditional principal component analysis, RPCA is based on robust
statistics, which can suppress the influence of outliers in geochemical data on the results of
the principal component analysis by constructing a robust covariance matrix or correlation
matrix. The present study involves the ILR transformation formula as shown below:

CLR(x) = ln
xi{

∏D
j=1 xj

} 1
D

, i = 1, 2, · · · , D

ILR(x) =

√
i

i + 1
ln

i
√

∏i
j=1 xj

xi+1
, i = 1, 2, · · · , D − 1

3.2.2. Spectrum–Area Fractal Model

Geochemical data are generally influenced by elements such as mineralization and
regional geology, giving them the advantage of complexity and diversity. Cheng et al. [59]
proposed a fractal method for decomposing composite and superimposed anomalies
developed based on the principle of generalized self-similarity, which is also known as the
spectrum–area (S–A) fractal model or fractal filtering method. The geochemical field obeys
self-similarity between indices and scales, and specific geological processes or phenomena
of spatial relevance usually respond to the fraction with self-similarity. In frequency
domain space, the S–A method is based on this self-similarity to construct a fractal filter
and invert the fractal-filtered information back into the spatial domain using a Fourier
transform transformation to obtain the decomposed background and anomaly maps. The
S–A expression is shown below [28]:

A(≥S)∝S−β

where S reflects the spectrum density; A(≥S) reflects the area in the spatial region where
the energy spectrum density is greater than S; and β is the exponential factor. When the
energy spectral density (S) is larger than the spectral density (A(≥S)) in the spatial region
obeying the exponential relationship, then they are simultaneously taken logarithmically
and plotted on a logarithmic graph. On the plotted lnS-lnA(≥S), different linear and fractal
relationships can be reflected according to the differences between the intervals where S
is taken and the differences between the straight-line segments while using the intervals.
The distribution of the demarcation points is used to determine the threshold of the fractal
filter [60,61].
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4. Results and Discussion
4.1. Multivariate Component Data Analysis

The elemental analysis results of the 10,314 soil samples collected within the study
area were analyzed using SPSS and R software. The geochemical characteristics of the
14 elements were discussed according to their means and standard deviations (Table 2), and
the raw data, log-transformed data, and ILR-transformed data were statistically analyzed
to identify statistical patterns between the elements. An exploratory data analysis (EDA)
method was also used to visualize the data using box plots, density histograms, and double-
labeled plots so that the internal structure and dispersion characteristics of the data could
be obtained quickly and accurately.

Table 2. Statistics of the raw data, logarithmically transformed data, and isometric log-ratio transfor-
mation data of samples from the study area.

Element Ag As Au Bi Cu Hg Mn Mo Ni Pb Sb W Zn Fe

Minimum 0.04 1.00 0.10 0.05 3.20 0.01 85.00 0.25 3.10 9.00 0.04 0.27 15.00 0.59
percentiles 25% 0.07 8.30 0.70 0.30 18.90 0.03 658.00 0.80 22.40 23.20 0.49 1.76 62.70 3.57

50% 0.08 9.80 1.00 0.34 22.50 0.03 972.00 0.96 25.70 25.60 0.57 1.96 73.50 3.96
75% 0.10 12.10 1.50 0.38 25.90 0.04 1228.00 1.18 29.60 28.40 0.69 2.17 84.60 4.34

Maximum 3.58 151.20 1309.50 23.04 193.50 1.22 6865.00 108.90 194.20 228.60 12.89 50.86 347.00 8.67
Std 0.08 5.35 17.60 0.36 8.57 0.02 455.00 1.50 8.85 5.94 0.30 1.11 18.80 0.63

Mean 0.09 10.70 1.74 0.37 23.40 0.03 977.00 1.11 26.70 26.20 0.62 2.06 75.30 3.93
Raw Skew 17.77 9.22 66.50 37.28 4.82 22.19 1.42 42.38 5.20 8.55 13.11 22.75 2.32 −0.27

Kurt 547.06 169.66 4655.68 1966.62 55.15 930.34 9.08 2682.53 68.48 195.55 379.33 765.61 17.65 2.28
MAD 0.02 2.67 0.59 0.06 5.19 0.01 418.09 0.28 5.34 3.85 0.13 0.31 16.16 0.58

log10 Skew 2.27 0.44 1.41 2.13 0.16 0.64 −0.76 2.04 −0.17 1.17 0.96 1.68 0.16 −1.58
Kurt 9.72 6.05 7.40 19.70 4.03 5.89 0.60 13.43 5.32 9.64 7.87 19.51 2.63 7.41
MAD 0.10 0.11 0.23 0.07 0.10 0.13 0.18 0.13 0.09 0.06 0.11 0.07 0.10 0.06

ILR Skew 1.78 0.50 1.45 2.43 0.66 0.77 −0.73 1.86 0.67 0.12 0.94 1.87 0.41 −0.66
Kurts 7.32 4.38 8.30 20.50 4.11 5.52 0.42 12.05 6.63 2.30 8.69 15.45 0.85 4.22
MAD 0.24 0.26 0.49 0.15 0.19 0.28 0.44 0.28 0.17 0.18 0.22 0.16 0.23 0.15

Note: Std—standard deviation. Skew—skewness. Kurt—kurtosis. MAD—median absolute deviation. All of the
element content values are expressed in an exponential form but with the exponential part (10−9 for Au and 10−6

for all the other elements) omitted from the Table for convenience.

The median absolute deviation (MAD) value reflects the median of the absolute value
of the new data obtained by subtracting the median from the original data [62]. The mean
and standard deviation of the data is susceptible to outliers and is less stable, whereas the
MAD based on robust statistics is less affected by outliers, more stable, and more accurate
in presenting the data center and the degree of dispersion of the data. In Table 2, it can be
seen that the MAD values of the raw data are highly variable in the mean and standard
deviation of the elemental content. This result also reflects the difference in the spatial
distribution of various elements due to the influence of various geological elements in the
study area.

From Table 2 and the box plot (Figure 3a), it can be seen that the skewness and kurtosis
of the raw dataset are too high to meet the requirements of a normal distribution; the spatial
scale of the raw dataset is large, the data are scattered, and some elements have a large
number of high-value discrete points. Compared to the raw dataset, the log-transformed
and ILR-transformed data (Table 2 and Figure 3b,c) show substantially less variability in
the scale of the distribution of the elements, and the data for each element lie essentially
at the same order of magnitude; the elements’ skewness and peak state were significantly
improved, with the bias and kurtosis of the elements closer to the normal distribution. The
density curve (Figure 4) also shows a single-peaked distribution. In contrast, the original
data do not show a corresponding density curve due to the large differences in scale; the
transformed elemental data are homogeneous, and the data tend to be centered, which is
more in line with the requirements of multivariate statistical analysis.
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In order to better explore the correlation and co-association patterns among the ele-
ments in the study area, the principal component analysis (PCA) results are visualized in
this study by combining the label plots of the EDA method. From Figure 5a,b, it can be
seen that the original data and the log-transformed data have positive loadings on all of the
elements in the PC1 principal component, and no information on the correlation between
the elements can be derived. In contrast in the PC2 principal component, the two only
show minor differences, and the results of the principal component analysis are bounded
by the data closure effect. For the data based on the ILR transformation (Figure 5c,d), after
PCA and RPCA, the variables were radioactive, the closure effect was obviously eliminated,
and the relationship between the transformed data was much clearer. They also indicate
that the principal components obtained by this method are more representative, with Au,
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As, Cu, Fe, Hg, Pb, and Sb showing positive loadings in the PC1 principal component and
Au, Ag, Mn, and Zn showing positive loadings in the PC2 principal component, with Au
being the most discrete element as well as having high loadings in both the PC1 and PC2
principal components, indicating that Au is the main-ore forming metal, and that the PC1
and PC2 principal components may reflect a combination of elements associated with Au
mineralization.
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Based on the biplot analysis, this study will plot the principal component score point
plots for the PC1 and PC2 principal component s’ score data obtained from the RPCA
using ILR transformed data. According to the principal component score point map
(Figure 6), it can be seen that the PC1 principal component scores in the western part of
the study area are lower compared to the eastern part. In contrast, the higher scoring areas
in the east are concentrated over the Daxiongshan Basalt, indicating that there may be
a higher background of influence by the Daxiongshan Basalt in this area. At the same
time, this high background generated by the eastern Daxiongshan Basalt may inhibit the
identification of weak anomalies in the western part of the study area. In the PC2 principal
component score, the high-scoring zones are relatively discrete, mostly overlying Early
Cretaceous volcanic–subvolcanic rocks and Carboniferous granites with good coincidence
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and spatial correlation with known deposits (points), possibly as a result of magmatic–
hydrothermal mineralization.
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4.2. Spectrum–Area Fractal Model Analysis

In order to eliminate the influence of factors such as mineralization and regional
geology and thus more accurately decode the geochemical anomaly information, the PC1
and PC2 principal components’ data from the ILR transformation–based RPCA score
will be further selected for kriging interpolation processing and S–A decomposition. In
this study, the S–A model is implemented with the Geodas quantitative mineral resource
prediction system developed by the China University of Geosciences. The data of the PC1
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and PC2 principal components’ scores were transformed into the frequency domain by
Fourier transform, and the relationship between the energy spectral density (S) and the
cumulative area (A) was obtained on the plotted lnS-lnA(≥S) curve. According to the
variation pattern of both, a line fit based on fewest squares was performed to divide the
energy spectral density values of the data into different value intervals according to the
slope of the fit (number of sub-dimensions). In the lnS-lnA(≥S) plot of the PC1 principal
component (Figure 7a), the line y = −2.09x + 17.10 represents the noise field, the line
y = −1.69x + 14.98 represents the anomaly field, and the line y = −1.55x + 14.06 represents
the background field. In the lnS-lnA(≥S) plot of the PC2 principal component (Figure 7b),
the line y = −2.21x + 17.05 represents the noise field, the line y = −1.76x + 14.86 represents
the anomalous field, and the line y = −2.10x + 17.05 represents the background field.
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The background field obtained by S–A decomposition mainly reflects the background
composition of elemental mass fractions; high-background areas may be favorable for
polymetallic mineral exploration; variations in the background strength reflect the presence
of elements in a favorable geological context for mineralization, and the anomaly field
mainly reflects local anomalous mass molecules of elements and noise generated during
data processing. Accordingly, the background and anomaly maps corresponding to the
PC1 and PC2 principal components of the RPCA score were drawn based on the anomalies
and background fields defined above. After decomposition, the background map of the
PC1 principal component (Figure 8b) reflects the differences between the east and west
of the Duobaoshan area, and, combined with the geological conditions of the study area
(Figure 2), it can be seen that the high-background area is located above the Daxiongshan
Basalt. In contrast, the known deposits (points) are located above the low-background area.
The remaining anomalies of the PC1 principal component (Figure 8a) were obtained after
the background anomalies were removed, not only reducing the extent of the anomalies in
the eastern part of the study area but also increasing the strength of the local anomalies
in the western part of the study area, highlighting the weak anomalous information that
is hidden in the low-background area in the western part of the study area. At the same
time, the known deposits (points) are located near the high-value areas of the anomalies.
Combined with the geological conditions of the study area (Figure 2), the background map
of the decomposed PC2 principal component (Figure 8d) shows that the background area is
controlled by fractures and intrusive rocks. The high-background anomaly is located above
the Late Carboniferous granitic mylonite; the decomposed anomaly (Figure 8c) is closely
related to the rocks, and the distribution of the decomposed PC2 principal component
anomaly is somewhat similar to that of the PC1 principal component anomaly in the
middle- and high-anomaly areas; both are distributed near known Au deposits (points)
and have some spatial correlation. This further illustrates the anomalous mineralization
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information reflected in the PC1 and PC2 principal components, which are dominated
by Au mineralization. Regarding the plotted lnS-lnA(≥S), the slope of the fitted curve
reflects the different self-similarity characteristics. At the same time, the energy spectrum
distribution in the study area is linear, which reflects the fact that the anomalies distributed
in the study area are self-similar in the frequency domain and belong to the same fractal
distribution, with a high probability of being the products of the same process, further
demonstrating that the anomalies and background fields extracted by the S–A method are
more consistent with actual geological conditions and can more effectively indicate the
location of occult deposits.
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5. Conclusions

1. Geochemical data are typical compositional data with a closure effect. Before the data
can be statistically analysed, an ILR-transformed of the data is required. This method
can effectively eliminate closure effects in geochemical data while revealing the true
spatial distribution pattern of elements.

2. The PC1 and PC2 principal components associated with mineralization were obtained
by robust principal component analysis of the ILR-transformed data from the study
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area. The PC1 and PC2 principal components reflect a combination of elements
associated with Au mineralization.

3. The S–A method takes into account the spatial geometry and frequency distribution of
geochemical patterns. It provides an effective means for characterizing geochemical
anomaly fields and decomposing diverse geochemical fields.

4. The S–A method was used to decompose the composite anomalies of the PC1 and PC2
principal component combinations in the study area, and the decomposed anomalies
and background information were in good agreement with the known Au deposits
(points). At the same time, a number of geochemical anomalies with prospecting
potential were obtained in their periphery, which provided a theoretical basis and
exploration focus for the next instance of ore prospecting and exploration in the
study area.
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