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Abstract: The Qin-Hang Metallogenic Belt (QHMB), an important metallogenic belt in South China,
hosts Cu and W–Sn polymetallic deposits. The Tongshanling ore field in the QHMB is characterized
by the coexistence of Cu- and W-bearing polymetallic deposits, which are related to granodiorite and
granite porphyry. This study examined whole-rock geochemistry, geochronology, and Sr–Nd–Hf
isotopes to determine the genetic relationship between diverse ore-related granitoids (i.e., granodiorite
and granite porphyry) and Cu–W metallogeny in the Tongshanling ore field. Zircon LA-ICP-MS
U–Pb dating shows that the granodiorite and granite porphyry in the Tongshanling ore field were
emplaced at 163.7 ± 0.4 Ma to 154.7 ± 0.6 Ma and 161.1 ± 0.3 Ma, respectively. Geochemically,
the granodiorites are classified as oxidized I-type, while the highly evolved granite porphyry is
reduced A-type. The Lu–Hf isotopic composition of the granodiorites is characterized by εHf(t)
values ranging from –10.49 to –4.99 (average = –7.17), with corresponding TDM

C ages ranging from
1524 to 1877 Ma (average = 1682 Ma). In contrast, the granite porphyry has higher εHf(t) values
(–3.60 to –1.58, average = –2.78) and younger TDM

C (1310–1438 Ma, average = 1387 Ma). The εNd(t)
values of granodiorite are −8.06 to −7.37 and the two-stage model ages (TDM2) are 1543–1598
Ma, while the granite porphyry has higher εNd(t) values (−3.0 to −3.4) and younger TDM2 ages
(1195–1223 Ma). The results show that the granodiorite and granite porphyry were formed from
partial melting of different Mesoproterozoic basement rocks under varying degrees of crust–mantle
interaction. Granite porphyry underwent well-recorded fractional crystallization. Compared to the
Cu-forming granodiorite, the W-forming granite porphyry has a higher differentiation index, higher
crystallization temperatures of zircon (average = 708 ◦C versus 631 ◦C), and lower oxygen fugacity
(median ∆FMQ = –2.21 versus –1.77).

Keywords: I-type granite; A-type granite; Cu–W mineralization; W mineralization; Qin-Hang
metallogenic belt

1. Introduction

The Qinzhou-Hangzhou Metallogenic Belt (QHMB), located within the suture zone
of the Yangtze Block and Cathaysia Block (South China), underwent multiple tectonism
and magmatism in the Phanerozoic and hosts numerous Cu and W polymetallic deposits
(Figure 1a,b) [1–3]. Previous studies suggested that the ore-related granitoids in the QHMB
include I-type and A-type granitoids formed during the Mesozoic [4–8]. The weakly
fractionated and oxidized I-type granitoids are commonly associated with 170–150 Ma
Cu polymetallic mineralization [8–12]. In contrast, the highly fractionated and reduced
A-type granitoids have a stronger genetic relationship with W–Sn polymetallic miner-
alization [8,9,11–16]. Typical examples of the I-type granitoids include the granodiorite
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porphyry in the Baoshan Cu polymetallic deposit [17–20] and the granodiorite in the Tong-
shanling Cu polymetallic deposit [8,12,21–23], while the A-type granitoids are represented
by alkali-feldspar granites in the Xianghualing Sn (W) polymetallic deposit [18–20] and
biotite granites in the Shizhuyuan W (Sn) polymetallic deposit [12,24–26]. In addition, A-
and I-type granitoids can be present within a single deposit and are related to different
mineralization types, such as granite porphyry and quartz porphyry in the Huangshaping
Cu–Sn–W deposit [27–32]. Therefore, the ore-forming granites of the Cu and W deposits
in the QHMB have different geochemical characteristics, such as differentiation index
formation temperature, and oxygen fugacity.
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Figure 1. Distribution of (a) Triassic and Jurassic granitoids in South China, (b) the Cu and W-Sn ore
deposits location of the Qin–Hang ore belt (after [3,12,20]).

However, many researchers have found W mineralization in Cu deposits [33]. This
phenomenon is also present in the Tongshanling ore field, where W mineralization is
found in both skarn and quartz veins [34,35]. In addition, large W ore bodies have been
discovered from drill cores in the Tongshanling ore field (Figure 2). The magmatic rocks
in the Tongshanling ore field mainly include granodiorite and granite porphyry. Previous
work focused on the Cu mineralization age and source of ore-forming materials [8,21–23].
For example, Kong et al. (2018) [22] conducted U–Pb dating on Tongshanling granodi-
orites No. 1 (~166 Ma) and No. 3 (~148 Ma), which indicated that the Tongshanling
granodiorites have multi-stage emplacement. Based on the S and Pb isotopic compositions
of sulfides in different Cu–Pb–Zn deposits in the QHMB (e.g., Shuikoushan, Tongshan-
ling, Baoshan, and Qibaoshan deposits), Li et al. (2019) [23] believed that Cu came from
magmatic-hydrothermal solution, while Pb–Zn came from surrounding rock strata. Ding
et al. (2015) [8] compared the geochemical compositions of apatite from granitoids associ-
ated with Cu–Pb–Zn (e.g., Tongshanling and Baoshan deposits) and W–Sn mineralization
(e.g., Xintianling and Furong deposits) and suggested that the former were formed at high
oxygen fugacity. Furthermore, the magmatic source was rich in mantle-derived materi-
als [8–11]. W–Sn-mineralization-related granitoids were formed at low oxygen fugacity
from partial melting of metasedimentary sources [36–38]. The Tongshanling ore field is
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a wonderful window to understand the metallogenic specificity of Cu- and W-forming
granitoids and to identify the processes of W-mineralization-related granitoids, which are
currently not clear.
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Figure 2. Geological map of (a) the Tongshanling area in southern Hunan Province (after [21]).
Representative geological sampling location and cross–sections of (b) No. 11 exploration line and
(c) No. 13 exploration line of the Tongshanling ore field.

In this contribution, we report the whole-rock geochemistry, Sr–Nd isotopes, zircon
U–Pb dating, and zircon Hf isotopes of the granodiorites and granite porphyry in the
Tongshanling ore field. This study aims to determine the petrogenesis of the granitoids
(petrogenetic type, magma source, oxygen fugacity, temperature, and emplacement age)
and address the relationship between different magmatic rocks and metallogenic processes
in order to shed new light on coupled Cu–W metallogeny in the QHMB.
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2. Geological Setting
2.1. Regional Geology

The QHMB is located at the suture zone of the Yangtze Block and the Cathaysia Block
(Figure 1a) [1–3]. This belt, which has a NE-trending inverse S shape (Figure 1b), extends
from Qinzhou in the southwest, through southeast Hunan and central Jiangxi to Hangzhou
in the northeast, with a total length of ~2000 km and a width of 100–150 km [39–41]. Sedi-
mentary strata of Preambrian, Cambrian, Ordovician, Devonian, Carboniferous, Permian,
Triassic, Jurassic, and Cretaceous ages are exposed in this area. The initial enrichment or
formation stage of mineralization in this belt occurred before the Paleozoic. The Triassic was
a stage of further enrichment of ore-forming materials. During the Jurassic, a large-scale
lithospheric extension resulted in granitic magmatism and intrusion, and the accumula-
tion of ore-forming materials finally contributed to mineralization in the QHMB [39–42].
The mineralization is represented by Cu polymetallic deposits (e.g., Tongshanling, Dex-
ing, and Baoshan) [8,12,17,21–23], W (Sn) polymetallic deposits (e.g., Xianghualing and
Shizhuyuan) [12,18–20,24–26,43], and Cu and W (Sn) polymetallic deposits (e.g., Huang-
shaping) [27–32], which are porphyry-, skarn-, and hydrothermal-type deposits. The
contemporaneous granitoids generally have weakly peraluminous and high-K calc-alkaline
compositions, except for the high-Mg characteristics of granodiorite porphyry in Dex-
ing [8,12,17]. In the QHMB, granitoids associated with mineralization have relatively high
εNd(t) (>–8) and low TDM (<1.5 Ga), reflecting mantle–crust interaction [44].

2.2. Ore Field Geology

The Tongshanling ore field is located in the central-western QHMB and is composed
of multiple granodiorites (e.g., No. 1, No. 2, and No. 3) from the east to the west (Figure 2a).
Quartz porphyry occurs in the vicinity of Maozaiwan in the NE segment of Tongshanling
and Monzogranite outcrops in the NE part of No. 1. The total outcrop area of the granitoids
is about 13 km2, and it intrudes into the surrounding rock in the shape of a jellyfish
(Figure 2a). In addition, this study found that there are granite porphyries at depth in the
Tongshanling ore field. The regional strata are mainly Devonian and Carboniferous, and the
lithology is mainly limestone, argillaceous limestone, dolomitic limestone, and dolomite.
Sedimentary rocks are exposed on top of upper Paleozoic and Cenozoic sediments. The
north of the mining area is composed of gray, thick, siliceous concretions, mica, and
argillaceous limestones. The south part consists of black, medium, silty mudstone, gray
calcarenite, thin argillaceous limestone, and dark-gray micrites intercalated with dolomite,
with a thickness of 350 m.

The compound folds of the ore field include the Dayuanling anticline, Beihoushan
syncline, and Niuyanjing anticline, among which the Beihoushan syncline is closely related
to ore bodies. The Beihoushan syncline is located between faults F2 and F1 and is com-
posed of lower Carboniferous and Permian strata, which are the main rock formation and
ore-controlling structures in the Tongshanling ore field. The Tongshanling granodiorite is
intruded along the synclinal axis, and irregular polymetallic ore bodies are distributed in
the contact zone between the synclinal Devonian strata and the granodiorite. The edge
facies of Tongshanling granitoids contains disseminated mineralization. Fault structures
are developed in which the granodiorites and orebodies are controlled by NNE trending
faults in the Tongshanling ore field. There are abundant Cu–Pb–Zn orebodies around the
faults [45]. The skarn-type Cu (W) polymetallic mineralization related to Jurassic gran-
odiorite is emplaced into the upper carbonate limestone. Skarn-type Cu (W) ore bodies
and quartz-vein-type W (Cu) ore bodies are controlled by the Tongshanling granodiorite
contact zone. Skarn-type ore bodies are developed in the contact zone between gran-
odiorite and Devonian strata. Quartz-vein-type bodies are distributed in granodiorite,
skarn orebodies, and wall rock, which are in a tangential relationship with wall rock. In
recent years, a medium-large scheelite deposit was found in the Weijia area (northeast
of Tongshanling) [46,47], and large W(Mo) ore bodies have been verified at depth in the
Tongshanling ore field (Figure 2b,c). The W ore body, which is stratified with an average
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dip of 35.5◦, mainly occurs in the skarn interlayer in the Devonian wall rock in the contact
zone of granite porphyry. This W ore body is only controlled by two boreholes, ZK1101
and ZK1301, and its size remains to be further determined.

The Tongshanling No. 1 granodiorite is grayish-white with medium-grained, massive,
and porphyritic texture, and is composed of plagioclase (~35%), potassium feldspar (~25%),
quartz (~25%), biotite (~10%), and hornblende (~5%). Plagioclase (~5 mm), potassium
feldspar (~5 mm), quartz (~15 mm), biotite (~3 mm), and hornblende (~1 mm) are phe-
nocrysts, and the same set of minerals constitutes the matrix (<0.02 mm) (Figure 3a,b). The
Jiangyong granodiorite is grayish-white and is characterized by medium-fine grained, mas-
sive, and porphyritic texture, and is composed of plagioclase (~35%), potassium feldspar
(~25%), quartz (~20%), biotite (~13%), and hornblende (~7%). Plagioclase (~5 mm), potas-
sium feldspar (~5 mm), quartz (~10 mm), biotite (~3 mm), and hornblende (~1 mm)
comprise the porphyry, and the same minerals from the matrix (<0.02 mm) (Figure 3c,d).
The Tongshanling No. 3 granodiorite is gray with fine-grained, massive texture, and is
composed of plagioclase (~35%), potassium feldspar (~25%), quartz (~18%), biotite (~15%),
and hornblende (~7%). The phenocrysts in the No. 3 granodiorite are small, with grain sizes
of about 3 mm and 1 mm for the felsic minerals, respectively (Figure 3e–f). Granodiorites
from No. 1, Jiangyong, and No. 3 are accompanied by a small amount of sericitization
and chloritization; from east to west, the particle size gradually becomes fine, and felsic
mineral content increases. Quartz porphyry outcrops in the NE of the Tongshanling ore
field and is intensely altered. This study collected fresh granite porphyry by drilling in
the Tongshanling ore field (Figure 2b). The granite porphyry is gray-green, has massive
and porphyritic texture, and contains ~70% felsic matrix and ~30% porphyritic crystals, in
which there is ~10% plagioclase, ~7% K-feldspar, quartz ~5%, and ~3% biotite (Figure 3g,h).
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3. Sampling and Analytical Methods

The samples used for the analysis of the main elements in the whole rock were fresh.
A total of 11 granodiorite samples were collected from Tongshanling and Jiangyong (five
from the Jiangyong, three from the No. 1, and three from the No. 3). Due to the intense
weathering of No. 2 granodiorite in the Tongshanling area, only zircon U–Pb dating of
No. 2 granodiorite was performed. A total of three granite porphyry samples were collected
from drilling, with all sample locations given in Supplementary Table S1. The granitoids
collected in this study for zircon U–Pb dating include granodiorite No. 1, Jiangyong, No. 2,
No. 3, and the granite porphyry.

Whole-rock major and trace element compositions were analyzed at ALS Laboratory,
Guangzhou, China. The samples were crushed in a milling machine to pass 200 mesh before
major element contents were measured using a PANanalytical PW2424 X-ray fluorescence
(XRF) instrument made in the Netherlands, with analytical accuracy of about 1%–5%. Trace
element compositions were measured using ICP–MS (Agilent 7900 made in the America
with analytical accuracy of better than 5%.

Zircon cathodoluminescence (CL) images were conducted at Beijing Zhongke Kuangyan
Test Technology Co. Ltd. The coarsely selected zircon grains were manually selected
under a binocular microscope, and zircon grains with intact crystal shape, large particle
size, and developed oscillatory belts were selected for target preparation. Before the
analysis, the zircon was observed by reflected and transmitted light microscopy, the internal
structure was identified by CL imaging, and the type of zircon was roughly identified
to determine the analysis point. Zircon U–Pb dating and trace element analyses were
conducted at the Key Laboratory of Metallogenic Prediction of Nonferrous Metals and
Geological Environment Monitor of Ministry of Education, Central South University, China,
on a Teledyne Photon Machines Analyte He Excimer made in the America, coupled with an
Analytik Jena PlasmaQuant MS Ellite made in the America. The beam spot diameter was
35 µm, the laser pulse frequency was 5 Hz, the energy was 70 mJ, the denudation time was
60 s, and the background measurement time was 40 s. The laser ablation beam diameter
and ablation depth are 32 µm and 20–40 µm, respectively. The sample standard bracket
(SSB) method was performed to correct laser-induced fractionation. Zircon 91500 and GJ-1
were used as external standards for U–Pb dating. An NIST SRM610 standard silicate glass
was used for external standardization for trace element analysis, and 29Si was used for
internal standardization (32.8% SiO2 in zircon). Common Pb correction was conducted by
using the model of Stacey and Kramers (1975) [48]. The Isoplot R version 4.4 program was
used for plotting of zircon concordant and weight mean age diagrams [49].

Experiments of in situ Hf isotope ratio analysis were conducted using a Neptune Plus
MC-ICP-MS in combination with a Geolas HD excimer ArF laser ablation system that was
hosted at the Wuhan Sample Solution Analytical Technology Co. Ltd., Hubei, China. All
data were acquired on zircon in single spot ablation mode at a spot size of 44 µm. The
ablation spots for the Hf isotope analyses were situated adjacent to the U–Pb age analysis
positions on each grain. The energy density of laser ablation that was used in this study
was ~7.0 J/cm2. Each measurement consisted of 20 s of acquisition of the background
signal, followed by 50 s of ablation signal acquisition. In order to ensure the reliability of
the analysis data, three international zircon standards of Plešovice, 91500, and GJ-1 are
analyzed simultaneously with the actual samples. Plešovice is used for external standard
calibration to further optimize the analysis and test results. 91500 and GJ-1 are used as the
second standard to monitor the quality of data correction.

Sr–Nd isotope composition was determined on whole-rock samples. The samples
were pretreated by the acidification digestion method. After chemical separation in an
ultra-clean chamber, MC-ICP-MS was used for testing at the Beijing GeoAnalysis Co. Ltd.,
Beijing, China. BCR-2 standard was measured together with the samples, giving a 87Sr/86Sr
ratio of 0.705074 ± 0.000009 (2σ) and 143Nd/144Nd ratio of 0.512626 ± 0.000006 (2σ), in
agreement with the referenced values of 0.70501 [50] and 0.51263 [51], respectively.
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4. Results
4.1. Major and Trace Elements of Granitoids

Whole-rock major and trace element compositions of the four granodiorites and
granite porphyry are presented in Supplementary Table S2. All the samples have low loss
on ignition (LOI) values (<3.0%), suggesting a weak weathering influence.

The granodiorites have variable contents of SiO2 (63.11%–68.48%, average = 65.95%), TiO2
(0.38%–0.59%, average = 0.50%), FeOT (2.86%–4.67%, average = 3.97%), MgO (1.18%–1.90%,
average = 1.56%), CaO (2.85%–4.83%, average = 3.61%), and Na2O (1.99%–3.08%, aver-
age = 2.77%) but constant contents of Al2O3 (14.26%–16.02%, average = 15.15%), MnO
(0.08%–0.10%, average = 0.09%), K2O (3.50%–4.51%, average = 4.00%), and P2O5 (0.16%–0.22%,
average = 0.19%) (Figure 4a–i). The granite porphyry has higher SiO2 (71.24%–73.78%, aver-
age = 72.80%) and K2O (4.82%–6.51%, average = 5.42%), moderate Al2O3 (13.70%–14.78%,
average = 14.09%) and Na2O (0.81%–3.32%, average = 2.39%), and lower TiO2 (0.21%–0.23%,
average = 0.22%), FeOT (2.13%–2.38%, average = 2.26%), MnO (0.06%), MgO (0.55%–1.11%,
average = 0.75%), CaO (0.54%–0.71%, average = 0.62%), and P2O5 (0.07%–0.08%, average = 0.08%)
than those of granodiorites (Figure 4a–i).
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Based on the calculation of the CIPW norm for chemical compositions, four granodior-
ites and granite porphyry are classified as granitoids. On the TAS diagram and R1 vs. R2
diagram (Figure 5a,b), the No. 1, Jiangyong, and No. 3 granitoids plot in the granodiorite
field, whereas the granite porphyry plots in the granite field. The A/CNK values (molar
Al2O3/(CaO + Na2O + K2O)) of granodiorites are characteristic of metaluminous to peralu-
minous composition and the granite porphyry shows peraluminous A-type granite affinity
(Figure 5c). On a SiO2 vs. K2O diagram (Figure 5d), all rocks fall in the high-K calc-alkaline
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field. The Tongshanling granite porphyry (85.3–91.3) has relatively high values of differ-
entiation index (DI), which are higher than the Jiangyong (71.7–76.5) and Tongshanling
(No. 1 = 69.7–72.8; No. 3 = 70.3–81.1) granodiorites, respectively (Supplementary Table
S2). The granite porphyry is high-K calc-alkaline. In contrast, the granodiorites are high-K
calc-alkaline and quasi-aluminous to peraluminous, and the contents of Al2O3, CaO, MgO,
TiO2, and P2O5 are negatively correlated with SiO2 (Figure 4a,b,e,f).
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Figure 5. Geochemical classification diagrams for the Tongshanling granitoids: (a) TAS diagram
(after [52]); (b) A/CNK vs. A/NK plot (where A = Al2O3, C = CaO, N = Na2O, and K = K2O
in molar values, after [53]); (c) SiO2 vs. K2O plot (after [54]). Normalized trace-element patterns:
(d) chondrite-normalized rare earth element patterns; (e) primitive-normalized trace-element pat-
terns (normalization after [55]).

Trace element compositions (including rare earth elements) of all samples are listed
in Supplementary Table S2. Among the granodiorites, No. 3 has the highest ΣREE values
(152–173 ppm, average = 160 ppm), followed by Jiangyong granodiorite (142–157 ppm, av-
erage = 151 ppm) and No. 1 Tongshanling granodiorite (98.0–129 ppm, average = 110 ppm).
The granite porphyry generally has higher ΣREE values (153–166 ppm, average = 156 ppm)
than granodiorite. The Jiangyong and No. 3 granodiorites in the Tongshanling ore field
are enriched in light rare earth elements (LREE) relative to HREE. The LREE/HREE ratios
of the Jiangyong and No. 3 granodiorites are 7.69 to 9.88, while the No. 1 granodiorite
ratios are lower, between 4.21 and 7.72. The LREE/HREE ratios of granite porphyry are
higher than those of granodiorite, ranging from 14.28 to 17.11. Both lithologies show weak
negative Eu anomalies (Figure 5e). The granodiorites are characterized by depletion of
Nb, P, Ti, and Sr, while the granite porphyry shows more intense depletion of Sr, Ti, and P
and enrichment of Nb (Figure 5f). On the chondrite-normalized REE diagrams, all samples
display small Eu anomalies (Figure 5e). Granodiorites are characterized by enriched LREE
and depleted HREE, whereas the granite porphyry HREE is even more depleted. On the
primitive mantle-normalized trace element diagram, all samples show similar patterns
characterized by enrichment in Rb, Th, U, Hf, Y, and Sm and depletion in Ba, Sr, P, Ti, and
Eu (Figure 5e,f).

4.2. Zircon Morphology and U–Pb Geochronology

Zircon U–Pb dating (concordance >90%) and trace element compositions are presented
in Supplementary Table S3.
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Zircon grains in granodiorite samples are mainly euhedral, with lengths of 100–200 µm
and aspect ratios of 1:1–3:1, and their morphologies are mainly granular and columnar.
Samples have high Th/U ratios (No. 1 = 0.17–0.73, Jiangyong = 0.22–0.54, No. 2 = 0.14–0.27,
and No. 3 = 0.17–0.54), which are consistent with a magmatic origin [56,57]. CL im-
ages of the zircons are shown in Figure 6. Zircon crystals in the granite porphyry are
mainly euhedral, with lengths of 50–150 µm and aspect ratios of 1:1–3:1, and have high
Th/U ratios (1.90–2.27), which are consistent with a magmatic origin [58]. Their mor-
phologies are mainly granular and columnar, showing a magmatic signature of internal
oscillatory zoning.
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No. 2, and No. 3 granodiorites, and granite porphyry in the Tongshanling ore field.

The LA-ICP-MS analytical results for U–Pb dating of zircons in the granitoids are
shown in Supplementary Table S3. A concordia age of 163.7 ± 0.4 Ma (MSWD = 0.8,
Figure 7a) was obtained for 14 zircon grains, which is the best estimate for the crystallization
age of No. 1 granodiorite. An analysis of 19 zircon grains from Jiangyong granodiorite
yields a 206Pb/238U concordia age of 159.4 ± 0.6 Ma (MSWD = 0.26, Figure 7b). The
206Pb/238U ages of 16 zircon grains from No. 2 granodiorite plot on or close to the concordia
curve with a 206Pb/238U concordia age of 157.8± 0.6 Ma (MSWD = 0.2, Figure 7c). A total of
20 zircons yielded a concordia age of 154.7 ± 0.6 Ma (MSWD = 0.07, Figure 7d), indicating
that the crystallization ages of the samples from No. 3 granodiorite are about 155 Ma.
There are some differences in the 206Pb/238U age of granodiorite and granite porphyry. In
total, 17 zircon grains yielded a 206Pb/238U concordia age of 161.1 ± 0.3 Ma (MSWD = 1.9,
Figure 7e), representing the crystallization age of the granite porphyry.
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colors of error ellipses reflect the Th/U ratios of zircons as shown on the right side of each diagram.

4.3. Zircon Lu–Hf Isotopic and Trace Element Compositions

The zircon Lu–Hf isotopic results and age model parameters for the granite in the
study areas are shown in Supplementary Table S4.

The Jiangyong and No. 1, No. 2, and No. 3 granodiorites have similar zircon Hf
isotopic characteristics. The Lu–Hf isotopic signature of the granodiorite zircons are charac-
terized by variable 176Yb/177Hf (0.026182–0.110557) and 176Lu/177Hf (0.000926–0.004045).
The initial 176Hf/177Hf values are 0.282378–0.282565, and εHf(t) values range from –10.49 to
–3.98 (average = –7.40), with crustal model age (TDM

C) range from 1524 to 1877 Ma (average
= 1678 Ma) (Figure 8). The granite porphyry has variable 176Yb/177Hf (0.043409–0.070181)
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and 176Lu/177Hf (0.001229–0.002505) ratios, with initial 176Hf/177Hf and εHf(t) values rang-
ing from 0.282577 to 0.282631 and from –3.60 to –1.58 (average = –2.78), respectively. The
granite porphyry has higher εHf(t) values than the granodiorites and an average crustal
model age (TDM

C) of 1387 Ma.
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(b) (87Sr/86Sr)i vs. εNd(t). (Sr–Nd isotopic composition fields of the Jurassic Cu-forming and W-
forming granitoids in the QHMB are after [59]).

Because the main ore-forming granitoids are No. 1 granodiorite and granite porphyry,
they were used for analysis of trace elements in zircon in this study. The results of the
zircon trace element and Ce4+/Ce3+ analyses are presented in Supplementary Table S5.
Zircon grains from No. 1 granodiorite have lower variable Ti (1.3–7.1 ppm) than granite
porphyry (1.8–5.4 ppm). The crystallization temperature of granodiorite is 624–747 ◦C,
which is higher than that of granite porphyry (658–753 ◦C). In addition, they have higher
Ce4+/Ce3+ and ∆FMQ values of 17–492 and –2.73 to –0.08 than those of the zircon grains
from granite porphyry (27–266 and –2.74 to 0.31) (Figure 9).
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data of Nanling Sn–W granitoids came from [13]; zircon data of Nanling Cu–W granitoids came
from [9]; zircon data for Cu–Mo granitoids in SW China came from [7]; zircon data of Weijia granitoids
came from [35].

4.4. Whole-Rock Sr–Nd Isotopes

The initial ratios of 87Sr/86Sr, εNd(t) values, and two-stage Nd model ages were
calculated based on the zircon U–Pb ages in this study, and the isotopic data are listed in
Supplementary Table S6.

The granodiorites have fairly constant initial 87Sr/86Sr values (0.710269–0.711499) and
initial 143Nd/144Nd values (0.512025–0.512061). They also display relatively consistent
εNd(t) (−7.37 to −8.06, average = –7.69) and two-stage Nd model ages (TDM2) (1543–1598
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Ma, average = 1571 Ma). Granite porphyry has relatively consistent initial 143Nd/144Nd
values (0.512282–0.512302) and εNd(t) values (–3.02 to –3.37, average = –3.20), with younger
TDM2 ages (1195–1223 Ma, average = 1209 Ma) than the granodiorites (Figure 8).

5. Discussion
5.1. Contrasting Petrogenesis of the Granodiorite and Granite Porphyry
5.1.1. Genetic Types of the Granites

I-, S-, and A-types are common criteria for classifying granitoids [60,61]. Microscopic
observation shows that the Tongshanling granodiorites possess typical minerals of I-type
granitoids (Figure 10, e.g., biotite and hornblende) and lack aluminum-rich minerals, such
as muscovite, garnet, and cordierite [62], suggestive of an I-type origin. Geochemically,
the Tongshanling granodiorites have high CaO content (>3%) and low A/CNK values
(0.87–1.11) (Figure 5c). In addition, the granodiorites are characterized by notable fractiona-
tion between LREEs and HREEs, with slight negative Eu anomalies (Eu/Eu* = 0.66–0.97).
On the Zr vs. 10,000 Ga/Al, Nb vs. 10,000 Ga/Al, and Al-Na-K vs. Ca vs. Fe+Mg dia-
grams (Figure 10a–c), the granodiorites fall within or along the boundary of I- and S-type
granitoids, arguing against an A-type origin [63,64]. In addition, the negative correlation
of Rb and Y further confirms that the rocks are likely of I-type rather than S-type affinity
(Figure 10d) [65]. Many studies suggested that A-type granitoids are characterized by high
total alkali contents (K2O + Na2O > 7.0 wt.%) and 10,000 Ga/Al ratios (mostly > 2.6) [63].
Compositionally, the Tongshanling granite porphyry has high total alkali metal contents
(K2O + Na2O = 7.32–8.14 wt.%) and high 10,000 Ga/Al ratios (>2.7). These geochemical
features of A-type granitoids represent significant differences from I- and S-type grani-
toids [63]. Previous studies have found that there is an A-type aluminum granite belt
with a high εNd(t) (>–8) and low TDM (<1.5 Ga) in QHMB [44], and a large number
of W–Sn deposits occur along this belt (e.g., the Xianghualing and Shizhuyuan W–Sn
deposits [12,18–20,24–26]). It can be seen that the Tongshanling granite porphyry may be
part of the A-type granite belt.

Minerals 2022, 12, x FOR PEER REVIEW 13 of 25 
 

 

5. Discussion 
5.1. Contrasting Petrogenesis of the Granodiorite and Granite Porphyry 
5.1.1. Genetic Types of the Granites 

I-, S-, and A-types are common criteria for classifying granitoids [60,61]. Microscopic 
observation shows that the Tongshanling granodiorites possess typical minerals of I-type 
granitoids (Figure 10, e.g., biotite and hornblende) and lack aluminum-rich minerals, such 
as muscovite, garnet, and cordierite [62], suggestive of an I-type origin. Geochemically, 
the Tongshanling granodiorites have high CaO content (>3%) and low A/CNK values 
(0.87–1.11) (Figure 5c). In addition, the granodiorites are characterized by notable fraction-
ation between LREEs and HREEs, with slight negative Eu anomalies (Eu/Eu* = 0.66–0.97). 
On the Zr vs. 10,000 Ga/Al, Nb vs. 10,000 Ga/Al, and Al-Na-K vs. Ca vs. Fe+Mg diagrams 
(Figure 10a–c), the granodiorites fall within or along the boundary of I- and S-type gran-
itoids, arguing against an A-type origin [63,64]. In addition, the negative correlation of Rb 
and Y further confirms that the rocks are likely of I-type rather than S-type affinity (Figure 
10d) [65]. Many studies suggested that A-type granitoids are characterized by high total 
alkali contents (K2O + Na2O > 7.0 wt.%) and 10,000 Ga/Al ratios (mostly > 2.6) [63]. Com-
positionally, the Tongshanling granite porphyry has high total alkali metal contents (K2O 
+ Na2O = 7.32–8.14 wt.%) and high 10,000 Ga/Al ratios (>2.7). These geochemical features 
of A-type granitoids represent significant differences from I- and S-type granitoids [63]. 
Previous studies have found that there is an A-type aluminum granite belt with a high 
εNd(t) (>–8) and low TDM (<1.5 Ga) in QHMB [44], and a large number of W–Sn deposits 
occur along this belt (e.g., the Xianghualing and Shizhuyuan W–Sn deposits [12,18–20,24–
26]). It can be seen that the Tongshanling granite porphyry may be part of the A-type 
granite belt. 

 
Figure 10. Petrogenetic discrimination diagrams of the studied granitoids: (a) 10,000 Ga/Al vs. Zr; 
(b) 10,000 Ga/Al vs. Nb; (c) Al–Na–K–Ca–Fe+Mg; (d) Rb vs. Y. (a,b) are after [63]; (c) is after [64]; 
and (d) is after [65]. 

Figure 10. Petrogenetic discrimination diagrams of the studied granitoids: (a) 10,000 Ga/Al vs. Zr;
(b) 10,000 Ga/Al vs. Nb; (c) Al–Na–K–Ca–Fe+Mg; (d) Rb vs. Y. (a,b) are after [63]; (c) is after [64];
and (d) is after [65].



Minerals 2022, 12, 892 13 of 24

5.1.2. Magma Generation and Evolution of the Granitoids

The petrogenesis and magma evolution of I-type melts include: (1) magmatic mixing
of mantle-derived basaltic and crust-derived felsic melts [66–68]; (2) assimilation and
fractional crystallization (AFC) of mantle-derived melts [69,70]; and (3) partial melting
of metamorphosed mafic-intermediate rocks in the crust [71–73]. The εHf(t) values of
granitoids formed by magmatic mixing usually vary from negative to positive [74], while
the εHf(t) values of the Tongshanling granodiorites do not vary, indicating that the melts
were not formed by magmatic mixing. Magma evolution would cause the values of La
and La/Sm ratios to be inversely proportional, but Figure 11c does not show a trend of
magma mixing. The lower crust is more basic and contains less Si- and Rb-rich minerals
(such as quartz and feldspar) than the middle and upper crust. Therefore, AFC increases
the SiO2 and Rb/Sr of magma [75]. In addition, the SiO2 and Rb/Sr are usually positively
correlated [75]. However, the Rb/Sr ratios of the Tongshanling granodiorites are similar
(mostly 0.31 to 0.80) and there is no positive correlation between SiO2 and Rb/Sr, indicating
that AFC was not extensive during the magma emplacement. The influence of fractional
crystallization should also be considered. It is generally believed that only a limited quantity
of granitic magmas (about 12%–25%) can be produced by fractional crystallization of mantle-
derived mafic melts [76]. Therefore, the I-type granitoids formed by this process should
be accompanied by large-scale contemporaneous mafic rocks around them. However, no
large-scale mafic rocks were found either on the geological map or in our field survey,
ruling out the possibility that the Tongshanling granodiorite was a highly fractionated
product of mantle-derived melt. Together with their negative εHf(t) values, this indicates
that the granodiorites were formed by partial melting of crustal basement. Additionally,
due to the similar distribution coefficients, the abundances of HFSE strongly correlate in
the process of partial melting but have no apparent correlation in fractional crystallization,
which makes them useful for monitoring magma evolution [55]. The discrimination
plots (Figure 11) indicate that the Tongshanling granite porphyry underwent fractional
crystallization without significant crustal contamination during magmatic evolution. On
SiO2 vs. (87Sr/86Sr)i, La vs. La/Sm, and Rb/Sr vs. K/Rb diagrams (Figure 11b–d), the
Tongshanling granodiorites show a partial melting trend.
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5.1.3. Granite Fractionation Signatures

The high differentiation of the granite porphyry can be further documented by the high
SiO2 content (>70%), low K/Rb (<170), Zr/Hf (<36), and high DI value (>80). The contents
of Sr, Ba, and Eu in the granite porphyry are depleted, indicating that the granite porphyry
underwent fractional crystallization of plagioclase and K-feldspar and the presence of
remnant feldspar (Figure 12a–c). The negative P anomaly indicates apatite fractionation.
A positive correlation between Eu and Ba (Figure 12b) is characteristic of fractionation of
plagioclase and K-feldspar. Ti, Nb, and Ta are commonly found in biotite and titaniferous
minerals, such as ilmenite, rutile, and ilmenite [77], but their fractional crystallization can
lead to different changes in the Ti, Nb, and Ta. Among them, the fractional crystallization
of titaniferous minerals leads to a sharp drop in the Ti, Nb, and Ta in magma, while the
fractional crystallization of biotite reduces the Ti and Nb but increases the Ta [78]. The FeOT,
MgO, Ti, and Nb in Tongshanling granite porphyry are low and there is no obvious Ta
anomaly, indicating that biotite is present in the porphyry rather than titaniferous minerals
formed by fractional crystallization.
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The geochemical characteristics of granitoids are of great significance for determining
the source of magma [64,79]. The Tongshanling granitoids are enriched LILE and depleted
in Ba, Sr, P, and Ti, indicating that they are crust-derived granitoids [80]. The SiO2 in
the Tongshanling granodiorite is inversely proportional to MgO and FeOT (Figure 4c,e),
indicating that melts were generated by hornblende-rich source rocks in the middle-lower
crust [81]. The basement metamorphic rock series of Cathaysia generally experienced meta-
morphism from greenschist facies to amphibolite facies, and some were metamorphosed
from amphibolite facies to granulite facies [82,83]. The Tongshanling granodiorite is mainly
distributed in the hornblende area (Figure 13a–d), indicating that it is closely related to the
metamorphic basement of amphibolitic facies. The negative εNd(t) (–8.06 to –6.69) and
εHf(t) (–10.49 to –2.59) and older two-stage model age of Nd (TDM2 = 1498–1598 Ma) and
Hf (TDM

C = 1370–1877 Ma) indicate that Tongshanling granodiorites are the molten product
of the Mesoproterozoic crust basement. Due to the high degree of differentiation of the
granite porphyry, Figure 13a–d does not represent its initial magma. The granite porphyry
is characterized by high SiO2 (71.2%–73.1%) and εNd(t) (–3.02 to –3.37), and younger TDM2
age (1195–1223 Ma). In addition, large-scale outcrops of contemporaneous mafic rocks
have not been found in the field, suggesting that the Tongshanling granite porphyry is the
product of partial melting of the middle-lower crust [63,84]. The A-type granitic magma
crustal source area is widely believed to have the characteristics of being anhydrous and
having a high temperature. Therefore, the Mesoproterozoic granulite facies basement in
South China (usually anhydrous minerals) is the potential source area for the formation
of the Tongshanling A-type magma. Compared with the Tongshanling granodiorite, the
higher εNd(t) values and younger TDM2 indicate that it is the product of partial melting of
the Mesoproterozoic crustal basement.
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(c,d) are after [86]).

5.2. Emplacement Age and Tectonic Implications

Jiang et al. (2009) [87] and Zhao et al. (2016) [21] conducted zircon U–Pb on Tong-
shanling No. 1 granodiorite at 163.6 ± 2.1 Ma and 160.7 ± 0.5 Ma, respectively. Zircon
dating of the Tongshanling No. 1 granodiorite in this study gives consistent U–Pb ages
of 163.7 ± 0.4 Ma (Figure 7), which are in accordance with the ages of previous studies.
The metallogenic ages of the Tongshanling Cu polymetallic deposit obtained by Wu et al.
(2021) [35] by cassiterites U–Pb age are 161.4 ± 3.3 Ma. The metallogenic ages are consistent
with zircon U–Pb ages of the Tongshanling No. 1 granodiorite. Previous studies indicated
that the No. 1 granodiorite is related to Cu–Pb–Zn polymetallic mineralization in the
Tongshanling area [45,87–89], but the evolutionary relationship of No. 2 and No. 3 gran-
odiorites to No. 1 is unclear. In this study, zircon U–Pb dating of No. 1, Jiangyong, No. 2,
No. 3 granodiorites, and granite porphyry discovered in the Tongshanling area was carried
out. The No. 1, Jiangyong, No. 2, and No. 3 granodiorites show a progressively younger
emplacement trend from east to west (164 Ma→ 159 Ma→ 157 Ma→ 155 Ma.). The results
of the field investigation also show regularity, that is, the contents of mafic minerals, such
as hornblende and biotite, in the four granodiorites decrease from east to west (Figure 3).
This phenomenon observed in the field is consistent with the trend of U–Pb ages. With the
evolution of magma, the mafic minerals in the magma decrease, while the felsic minerals
increase. Geochemically, the Nb/Ta ratios of Jiangyong (average = 9.99), No. 1 (average
= 10.39), and No. 3 (average = 10.65) granodiorites are different from those of primitive
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mantle (17.5, [55]) and continental crust (12.0–13.0, [90]). These differences suggest that
the formation of four granodiorites took place under varying degrees of crust–mantle
interaction. Furthermore, the granodiorites have sequential Lu–Hf isotopic composition,
which is characterized by εHf(t) values of –7.59, –7.63, –6.47, and –7.00 for No. 1, Jiangyong,
No. 2, and No. 3 granodiorites, respectively. The above evidence indicates that the degree
of crust–mantle interaction gradually weakens from east to west.

At ~178 Ma, the subduction of the Paleo-Pacific plate extended to the location of
southern Hunan and, from 174 Ma, slab rollback reinitiated [91]. Regional magmatism
and mineralization of the Jurassic in South China are related to asthenospheric mantle
upwelling induced by subduction and rollback of the Paleo-Pacific plate [3,92–100]. High-K
calc-alkaline I-type granitoids are mainly formed in two tectonic settings: (1) similar to the
Andean epicontinental arc, the subducting plate dehydrates, which initiates fluid metaso-
matism of the mantle wedge and the formation of parent magma; (2) in post-collisional
environments similar to the Caledonian orogenic belt, the parent magma originates from
crustal thickening during the collision, followed by post-collision decompression [101]. In
the discriminant diagram of the tectonic setting (Figure 14a–c), the Tongshanling granodior-
ite falls within the post-collision field. The slab rollback triggered partial melting of mantle
wedge and the formation of basaltic magmas [91]. The basaltic magmas can provide the heat
necessary to partially melt the lower crust to produce late Jurassic I-type granitoids [102]. At
the same time, due to lithospheric extension and thinning, the underplating of basaltic mag-
mas caused partial melting of lower-crustal rocks and formed A-type granites in the Late
Jurassic (163–153 Ma) [87,91,102]. The geochemical signatures of all granitoids in this study
fall within the range of a post-collisional environment (Figure 14a–c), in good agreement
with an extensional setting. Therefore, the Tongshanling granitoids may record magmatic
activity in the context of extension caused by the subduction of the Paleo-Pacific Plate.
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5.3. Metallogenic Specificity and Ore Genetic Model

Studies have shown that the degree of evolution of magma is an important index
for studying the mineralization specificity of granitoids [105,106]. In general, Cu-rich
polymetallic mineralization is associated with less evolved granitic magmatism, and
W-rich polymetallic mineralization is associated with highly evolved granitic mag-
matism [9,105–107]. Geochemical characteristics show that the granite porphyry is
alkali-rich and calcium-poor, and the differentiation index (DI = 85.3–91.2) is higher
than the granodiorite (DI = 70.1–81.1), showing the characteristics of high differentiation.
The ratio of Rb/Sr and K/Rb is usually used to measure the degree of magma crystal
differentiation [106]. The high Rb/Sr (0.96–3.44) and low K/Rb (138–168) values of gran-
ite porphyry indicate that more intense fractional crystallization occurred during the
magmatic evolution, which is accompanied by high W contents (Figure 11f). At the same
time, the Th/U value of zircon in the granitoids can reflect the degree of differentiation.
The Th/U value of zircon decreases with progressive crystallization and differentiation
of magma [108]. The Th/U values of zircons in the two types of granitoids in the ore
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field indicate that the granite porphyry (0.21–0.41) in the mining area underwent more
intense fractional crystallization than the granodiorite (0.15–0.52). The granodiorite is
less fractionated, with high Cu contents and low Sn contents (Figure 11e,f). In summary,
granite porphyry is more differentiated than the granodiorite, indicating that the W
mineralization potential of the granite porphyry is higher than that of granodiorite.

Zircon has high U and Th contents, low ordinary Pb content, and high Pb diffusion
sealing temperature (~900 ◦C), making zircon an ideal mineral to determine the crystal-
lization age of magmatic rocks [109,110]. Zircon crystallizes in the early stage of magma
cooling, and its crystallization temperature is higher than most other magmatic minerals,
close to the temperature of magmatic emplacement. Many studies show that zirconium
saturation temperature calculated from whole-rock Zr content can effectively represent the
crystallization temperature of granitic magma. Based on the formula given by Watson and
Harrison (1983) [111], we used the chemical composition of zircons from the ore-forming
No. 1 granodiorite and granite porphyry to calculate their crystallization temperatures. The
crystallization temperatures of zircon in granodiorite are 602–666 ◦C (average = 631 ◦C),
while those in granite porphyry are 657–752 ◦C (average = 708 ◦C). The crystallization
temperature of hydrothermal zircon (<500 ◦C) is much lower than magmatic zircons, so
the crystallization temperatures of the zircons obtained in this study indicate that they are
typical magmatic zircons.

Redox states also play a crucial role in the migration of metals from magmatic sources
to melts [112]. Many granite porphyry and quartz porphyry veins have been identified
in the Weijia area. The results show that skarn-type Cu polymetallic ore is closely related
to oxidized granitic magma, while W(Sn) mineralization is mostly related to reduced
granitic magma [36–38]. It is generally believed that the granite porphyry is related to
the W polymetallic mineralization in Weijia [21]. The ∆FMQ of Weijia W-forming granite
porphyry (median = –2.66, [35]) is lower than that of nonmineralized quartz porphyry
(median = –1.65, [35]), while the Tongshanling granite porphyry (median = –2.21) is similar
to Weijia W-forming granite porphyry (Figure 9b). The ∆FMQ in ore-forming No. 1
granodiorite (–2.73 to –0.08, median = –1.77) is higher than the Tongshanling granite
porphyry, indicating that the granodiorite is related to Cu mineralization, whereas the
granite porphyry plays an important role in the late W mineralization. Ce4+/Ce3+ in
zircon is also used to indicate the redox state of magma [112]. The I-type granodiorite has
higher Ce4+/Ce3+ (average = 182.9) than the A-type granite porphyry Ce4+/Ce3+ (average
= 146.7). In recent years, a growing body of research has found that the W-polymetallic
mineralization in the Nanling area is related to the A-type granites with high differentiation
and low oxygen fugacity (reduction), while the Cu-polymetallic mineralization is related to
the I-type granites with weak differentiation and high oxygen fugacity (oxidation) [8–11,15].
Therefore, the granodiorite is associated with Cu mineralization, while the granite porphyry
is associated with W mineralization in the Tongshanling ore field.

The following model explains the genesis and relationship of different types of grani-
toids in Tongshanling ore field. The Tongshanling granodiorite and granite porphyry were
formed in a post-collision extensional environment (Figure 14a–c), which is consistent with
lithospheric extension in the QHMB during the Mesozoic. The extension of the Middle
Jurassic lithosphere resulted from the upwelling of the asthenospheric mantle, leading to
heating and partial melting of the amphibolite-facies crust to form I-type granodioritic
magma (~163 Ma). The high oxidation state of the magma prevented the precipitation of
Cu-bearing phases. The environment of the magmatic–hydrothermal systems changed
when the magma rose and reacted with the sedimentary country rock, which facilitated the
precipitation of Cu–Pb–Zn ore bodies. With further extension of the lithosphere, the deep
magma chamber kept pumping out magma, leading to the formation of the No. 2 and 3
granodiorites (156–160 Ma) in the late stage. After ~2 Ma, accompanying asthenosphere
upwelling, crust–mantle interaction is further intensified. The magmatic source region
underwent more partial melting, forming an A-type granite porphyry (~161 Ma). The
reduced magma was conducive to the transport of W–Mo elements from the magmatic
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source region to the shallow crust for mineral deposition. The ore bodies may have been
formed when hydrothermal fluid exsolved from the late granite porphyry magma and
passed through the granitoids (such as granodiorite and skarn). This model is consistent
with the geological phenomena observed in the Tongshanling ore field, in particular, that
the quartz-vein-type ore bodies cut through the early granodiorite and skarn-type ore
bodies (Figure 15).
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Figure 15. Schematic demonstrating multiple metallogenesis in the Tongshanling ore field: at
~163 Ma, amphibolite facies metamorphic basement partially melted to form I-type granodiorite
magma, which reacted with carbonatite to form skarn Cu–Pb–Zn ore bodies. As the extension contin-
ued, magma was continuously pumped out of the cold storage, and No. 2 and No. 3 granodiorites
(156~160 Ma) were formed in the late stage. Due to the magmatic activity at ~163 Ma, magmatic
chambers were activated in a cold storage near the source area of granodiorite. After ~2 Ma, greater
partial melting of the magmatic source region resulted in formation of granite porphyry (~161 Ma),
and W ore bodies were formed when the exsolved hydrothermal fluid flowed through the felsic rock
mass (such as granodiorite and skarn).

Similar to the Tongshanling ore field, Cu–Pb–Zn and W deposits are also present
in the QHMB. For instance, in the Baoshan deposit, the granodiorite porphyry that is
related to the Cu-forming ore body has a similar genesis as the I-type granodiorite in
Tongshanling [17–20]. In the Huangshaping deposits and Xitian ore field, the A-type
granite belongs to the same type as the Tongshanling granite porphyry that is related to
the W-forming ore body [27–32,113]. These examples show that Cu- and W-dominated
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mineralization is related to the emplacement of different I-type and A-type granites in the
extensional setting triggered by asthenosphere mantle upwelling [114]. These patterns of
metallogenic specificity are in great accordance with characteristics of the Tongshanling
ore field, which hosts skarn-type Cu ores and quartz-vein-type W ores that are related to
granodiorite and granite porphyry, respectively.

6. Conclusions

(1) The Tongshanling granodiorite is I-type and was produced by partial melting of
the Mesoproterozoic crustal basement. The granite porphyry has an A-type affinity,
was derived from partial melting of the Mesoproterozoic basement, and underwent
fractional crystallization of plagioclase and K-feldspar during its formation.

(2) The No. 1, Jiangyong, No. 2, and No. 3 granodiorites were emplaced at 163.7 ± 0.4 Ma,
159.37 ± 0.6 Ma, 157.8 ± 0.6 Ma, and 154.7 ± 0.6 Ma, respectively. The granite por-
phyry was emplaced at 161.1 ± 0.3 Ma. All granitoids are classified as post-collision,
in good agreement with an extensional setting.

(3) The granodiorite has a low differentiation index and formation temperature, and high
oxygen fugacity, which are related to Cu mineralization in the Tongshanling ore field.
The granite porphyry has a high differentiation index, and formation temperature,
significant crust–mantle interaction, and low oxygen fugacity, which are related to W
mineralization granite porphyry in the Tongshanling ore field.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/min12070892/s1, Table S1: Sample information in the Tongshanling
ore field, Table S2: The whole-rock major and trace elements compositions of Tongshanling granitoids,
Table S3: Zircon LA-ICP-MS U–Pb isotopic compositions of Tongshanling granitoids, Table S4:
Zircon Lu–Hf isotopic compositions for the Tongshanling granitoids, Table S5: Zircon trace elements
compositions of Tongshanling granitoids, Table S6: The whole rock Sr–Nd isotopic compositions of
Tongshanling granitoids.
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