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Abstract: Carbon geo-sequestration (CGS), as a well-known procedure, is employed to reduce/store
greenhouse gases. Wettability behavior is one of the important parameters in the geological CO2

sequestration process. Few models have been reported for characterizing the contact angle of the
brine/CO2/mineral system at different environmental conditions. In this study, a smart machine
learning model, namely Gene Expression Programming (GEP), was implemented to model the
wettability behavior in a ternary system of CO2, brine, and mineral under different operating
conditions, including salinity, pressure, and temperature. The presented models provided an accurate
estimation for the receding, static, and advancing contact angles of brine/CO2 on various minerals,
such as calcite, feldspar, mica, and quartz. A total of 630 experimental data points were utilized
for establishing the correlations. Both statistical evaluation and graphical analyses were performed
to show the reliability and performance of the developed models. The results showed that the
implemented GEP model accurately predicted the wettability behavior under various operating
conditions and a few data points were detected as probably doubtful. The average absolute percent
relative error (AAPRE) of the models proposed for calcite, feldspar, mica, and quartz were obtained
as 5.66%, 1.56%, 14.44%, and 13.93%, respectively, which confirm the accurate performance of the
GEP algorithm. Finally, the investigation of sensitivity analysis indicated that salinity and pressure
had the utmost influence on contact angles of brine/CO2 on a range of different minerals. In addition,
the effect of the accurate estimation of wettability on CO2 column height for CO2 sequestration was
illustrated. According to the impact of wettability on the residual and structural trapping mechanisms
during the geo-sequestration of the carbon process, the outcomes of the GEP model can be beneficial
for the precise prediction of the capacity of these mechanisms.

Keywords: carbon capture and storage; GEP model; minerals; sensitivity analysis; wettability behavior

1. Introduction

Energy demands and industrial activities increase the amount of CO2 emissions,
the most specific greenhouse gas, into the atmosphere. To date, different methods, such as
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using biofuels as an alternative for fossil fuels, electrical energy as a clean source, and ge-
ological CO2 sequestration, have been considered to limit the production and emission
of CO2. Carbon geo-sequestration (CGS), as a well-known procedure, is employed to
reduce/store greenhouse gases [1]. Carbon geo-sequestration is contemplated as a rel-
atively new method by which carbon dioxide could be mitigated effectively. Therefore,
using this method’s untapped potential to reduce carbon emission to the atmosphere
is highly recommended by many scientists [1,2]. Utilizing a comprehensive numerical
method, Chen et al. [3] studied carbon capture and storage and its application in enhanced
water recovery (CO2-EWR) applications. Aiming to produce more brine while storing
a higher amount of CO2 underground, they applied different scenarios of CO2 injection.
They concluded that scenarios consisted in CO2 enhanced water recovery in which the
co-injection of brine and pre-injection of brine were used had a better performance due
to the fact that not only had more CO2 been stored, but pressure changes could also be
controlled more effectively. Furthermore, it was found that when more injection wells were
used, a larger amount of CO2 could be stored underground. However, it was concluded
that drilling more injection wells will significantly increase the costs of carbon capture
and storage (CCS) practice, and an implementation of this strategy is not cost-effective.
The possibility of the co-injection of impurities along with CO2 allows for the direct disposal
of flue gas, and hence a significant reduction in the cost of CO2 sequestration projects by
eliminating the separation process. Based on this, different studies have sought to examine
the feasibility of the sequestration of CO2-N2 or CO2-SO2 mixtures in saline aquifers [4,5].

The effect of dip angle and salinity of brine on the amount of stored CO2 has been in-
vestigated by Jing et al. [6]. In order to simulate the process, a three-dimensional model was
developed. It was found that as the salinity of underground water increased, the amount of
stored CO2 decreased. Regarding the dip angle, it was found that as the dip angle increased,
CO2 migration distance surged. To maximize the performance of a CO2 geo-sequestration
practice, a reservoir with a smaller dip angle and lower salinity should be given priority in
the selection process.

During CO2 geo-sequestration, natural and artificially introduced fractures could
impose a risk to the success of the operation on the grounds that CO2 could migrate
upward and return to the atmosphere. In order to control CO2 migration and trap the
injected CO2 forever, a wide range of physicochemical mechanisms have been investigated,
including structural trapping [7], mineral trapping [8], dissolution trapping [9], and residual
trapping [10]. Physical adsorption methods could also be used in CO2 storage in sandstones.
Using this approach, carbon dioxide can be stored in the interior layers or on the surface
of clays present in sandstone formations [11,12]. To ensure secure carbon sequestration,
the selection of appropriate geological formations must be made carefully. Otherwise,
carbon dioxide may not be trapped effectively.

Regarding the performance of various mechanisms, it has been found that a profusion
of different factors, such as aquifer and cap rock properties, are of the utmost importance
to be considered carefully. Additionally, a widely held belief is that trapping mechanisms
could be either active or inactive in different periods. At the early stages of a sequestration
operation, not only are structural and residual trapping mechanisms salient, but it is
also believed that they are the only affecting mechanisms [13,14]. These mechanisms are
illustrated in Figure 1. In structural trapping, carbon dioxide is trapped below a seal
layer with an extremely low permeability, and residual trapping is relevant to the cases
in which there is no cap rock [15]. Other mechanisms for the storage capacity of CO2
sequestered in oil reservoirs is mineral trapping and solubility. The solubility of CO2
in remaining oil is much higher than that of formation water [16]. It should be noted
that the heterogeneity of rock permeability can strongly affect all trapping mechanisms,
the details of which can be found elsewhere [17]. In the residual trapping mechanism,
CO2 is not mobile due to capillary forces, which are highly dependent on certain salient
influencing factors, such as the initial saturation of CO2, the morphology of reservoir rock,
the interfacial tension between CO2 and brine, and the wettability of the reservoir rock.
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As a result, the role of wettability in CO2 sequestration capacity and prediction of CO2
leakage to the atmosphere has been investigated in the past [15,18,19]. The crucial role of
wettability in the mobility of different phases is one of the important research topics in
petroleum engineering, and its alteration according to any introduced variation in reservoir
conditions should be considered carefully.
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Figure 1. Illustration of the trapping mechanism in pore-scale for a water-wet condition. Reprinted/
adapted with permission from Ref. [20] 2022 Elsevier.

Several studies have dealt with wettability behavior by determining the contact angle
between brine and carbon dioxide on various minerals under different conditions, such as
pressure, the salinity of the brine, and temperature. Farokhpoor et al. [21] determined
the contact angle of a CO2/brine system on a range of different minerals, such as calcite,
feldspar, mica, and quartz. They found that, while the variation of pressure influenced
the wettability of mica and changed it from a strong water-wet material to a weaker
one, it had no impact on other minerals. In addition to that, it was found that some
minerals, such as feldspar, quartz, and calcite, had a maximum contact angle of 36 degrees
at critical pressure. Chen et al. [22] studied the contact angle of water on silica at various
temperatures ranging from 318 to 383 K and pressures between 2.8 and 32.6 MPa using
the molecular dynamic simulation method. It was found that to control and modify
the effect of pressure and temperature on the wettability of minerals, surface functional
groups could be employed successfully. They investigated various contact angles of the
CO2/brine system on quartz at different pressures, salinity ranges, and temperatures.
Wettability was simulated by the implementation of a molecular dynamic simulation.
It was concluded that while contact angle is not a strong function of temperature and
pressure, ionic strength has a direct influence on the contact angle of water. A comparison
between simulation and obtained experimental contact angles showed that the simulation
predicted the contact angles precisely. In another work, in order to calculate the interfacial
tension in a CO2-brine system, an empirical method was employed by Mutailipu [23].
Contact angles of supercritical, liquid, and gaseous CO2 on different minerals, such as
limestone, quartz, and Brea sandstone, were calculated in terms of salinity, temperature,
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and pressure. It was found that limestone and Berea sandstone experienced alteration to
less water wet rocks, whereas quartz remained relatively unchanged when supercritical
conditions were dominant.

Based on the above studies, investigating the wettability of carbon dioxide can be con-
sidered a contributing and paramount pathway for other related studies and investigations.
Hence, the amount of CO2 which could be stored in a reservoir by structural trapping and
the residual mechanisms could be predicted. Unfortunately, it was found that there are
a few comprehensive models in the literature by which the brine/CO2/mineral contact
angle could be calculated at different reservoir conditions. Additionally, large differences
and uncertainties in the studies have made it challenging to develop an appropriate model
to predict wettability in the above-mentioned system. This involves the development of
a precise and comprehensive model by which the CO2 contact angle can be calculated.
In recent decades, new models have been developed to solve complicated systems. Us-
ing soft computing methods, the profusion of different problems has been solved and many
outstanding methods have been proposed [24–29]. Although these smart models are very
useful in solving complicated systems, they typically encounter some limitations which are
intrinsic to them, such as over/under fitting problems and the existence of a “black box”,
which is a necessity of these methods.

In order to predict the contact angle in ternary systems of brine, CO2, and minerals,
intelligent models have been proposed, which are black box and need specific software,
such as Matlab or python for calculations [20,30]. The present study deals with some of
the above-mentioned limitations using a highly valuable method known as gene expres-
sion programming (GEP) to estimate the wettability in a brine/CO2 system on various
minerals, such as feldspar, mica, quartz, and calcite. It is worth mentioning that the use of
GEP method in this study in order to develop accurate models for predicting the wetta-
bility of brine/CO2/mineral is due to its advantages, mainly in terms of its accuracy and
ability to generate explicit and user-friendly correlations that can be integrated in other
applications. The wettability of various minerals regarding the brine and CO2 system has
a great importance in carbon dioxide geological storage since it can considerably affect
the residual and structural trapping. Consequently, simulating the wettability behavior of
the brine/CO2/mineral system is vital when operating conditions have an influence on
this system. Figure 2 is a general sketch of the methodology used in the present research.
To this end, a large dataset comprising 630 values of contact angles in various reservoir con-
ditions was gathered from the literature. Furthermore, the untapped potential of leverage
methods has been utilized to ensure the validity of the proposed model by considering the
influence of different variables on wettability, including pressure, temperature, and salinity.
The main contribution and novelty of this study consists of establishing a user-friendly
correlation for predicting contact angle of brine/CO2/mineral in a ternary system under
extensive operational conditions. To the best of our knowledge, no previous work has
implemented the GEP technique for predicting the wettability behavior of the ternary
system of brine/CO2/mineral.

The remaining sections of this study are outlined as follows: First, the theoretical
background involving data collection and the principles of the applied soft computing
approach, namely gene expression programming, is presented. Then, the implementation
procedure is highlighted, and the results of the effect of operational parameters on contact
angles, applicability domain, and sensitivity analysis are presented and discussed. Next,
the application of the proposed model for calculating the CO2 column height in the sub-
surface is illustrated. The study ends with conclusions, which recap the main results of
the investigation.
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Figure 2. An illustration of the methodology used in this study.

2. Theoretical Background
2.1. Data Collection

To develop a representative model for the brine/CO2/minerals system, we utilized
an extensive dataset comprising 630 values of contact angles at various reservoir conditions.
Recently, numerous attempts have been made to investigate this issue and many contact
angles in receding, static, and advancing stages have been reported. Many of the contact
angles are unreliable because the values obtained were significantly different although
the conditions were similar. The differences in measurements reported could be a result
of surface contamination by other minerals or even the roughness of the surface [31,32].
Contaminants on the surface could be a major source of the problem. As a result, a wide
range of genuine approaches have been invented and utilized to clean the surface of
minerals from contamination. Problems which are due to surface roughness should also be
addressed properly. Hysteresis, the surge of contact angle on hydrophobic surfaces and its
dip on hydrophilic surfaces, also represents a major problem caused by increased surface
roughness [33,34].

Using the above-mentioned studies [31–34], a large set of data points was gathered
from the literature, which is utilized in the current study. In order to make calculations
more precise and take previously mentioned factors into account, we used the factor (θ0)
proposed by Daryasafar et al. [20]. Theta zero represents the wettability of minerals when
considering the impact of surface contamination and roughness. This factor is expressed as
below [20]:

θ0 = round
(

θi
10

)
(1)

where θi indicates the contact angle between brine, mineral, and carbon dioxide in an
environment with a salinity equal to zero at ambient temperature and pressure. As expected,
a direct relationship between the proposed factor and the system’s contact angles is evident.
Additionally, knowing that the contact angle is highly dependent on surface features,
we believe that theta zero, which shows the impact of surface roughness and contaminants,
must be studied carefully.

The present study sheds light on the development of accurate paradigms for estimating
contact angles. In order to develop the models, valuable information about salinity (M),
minerals (calcite, quartz, mica, and feldspar), temperature (K), pressure (MPa), type of
contact angles, and the defined factor (θ0) was collected and introduced to the presented
model as input variables, similar to the work of Daryasafar et al. [20]. As described below,
the contact angle is a function of the above-mentioned variables:

θ(adv or rec or st) = f (P, T, mineral type, salinity, θ0, contact angle type) (2)
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Various types of contact angle can be introduced to the developed model using 1 for
static contact angle, 2 for advancing, and 3 for receding type. Additional information
representing the data bank is given in Table 1.

Table 1. Statistical description of the employed database.

Pressure
(MPa)

Temperature
(K)

Salinity
(M)

Number
(sta/adv/rec) Theta. zero Contact

Angle

Minimum 0.04 296 0 1 0 6.84
Average 9.59 320.52 1.27 1.95 1.73 36.85
Maximum 40.05 373 12.88 3 4 122.32
Median 9.02 318 0.2 2 2 32.59
Mode 10 308 0 1 3 68.03
Kurtosis 3.05 1.09 7.73 −1.74 −1.22 0.96
Skewness 1.32 1.17 2.65 0.08 −0.16 0.96

It is worth mentioning that to ensure the highest degree of accuracy and robustness in
the generated GEP-based correlations, the amassed database was split into four groups ac-
cording to mineralogy, namely calcite, feldspar, mica, and quartz. Besides, it is necessary to
add that for each mineralogy group, another splitting of the data was performed randomly
into training (80% of the data) and testing (20% of the data) sets.

Figure 3 indicates the box plots of the input parameters, including pressure, tem-
perature, salinity, contact angle type and theta zero. The number of input data for each
mineral involve 73, 30, 145, and 382 for calcite, feldspar, mica, and quartz, respectively.
These plots were drawn vertically to obtain a better comparison between the data set
groups. For the pressure input (Figure 3a), the median values of all minerals are close to
each other, and feldspar has a wide variation domain without any outlier data, while the
others possess one or more outlier data. For the temperature parameter (Figure 3b), the box
height of quartz mineral data indicates the largest distribution in comparison to the other
minerals, especially feldspar. Both quartz and feldspar have one outlier datum. The most
outlier data was obtained for salinity input with the narrow size of the box heights for all
minerals (Figure 3c). The box plots of the minerals for contact angle type input showed
different distributions without any outlier data (Figure 3d). The results also showed that sig-
nificant differences were found between feldspar and mica data for the theta zero parameter
(Figure 3e). The middle quartile domain or box height for mica was large, which confirms
that it is the most divergent toward other minerals.

2.2. Gene Expression Programming (GEP)

Gene expression programming (GEP), which is very useful in developing white-box
models, could be used in expanding computer programs. This evolutionary-based and
advanced approach is an appropriate method by which different systems could be described
using inputs and desirable outputs. The GEP was first developed and introduced by
Ferrera [35,36] and has been contemplated as a new variation of genetic programming [37].
In the older version of GEP, problems, such as faulty explorations and a limited number
of regression methods, have been addressed [35,36]. Regarding the fundamentals of
this method, the expression tree (ET) and the chromosome should be deemed as the
GEP’s conceptualization and data processing basis [38,39]. Utilizing previously obtained
data from experimental works or simulations, the GEP method can derive real solutions
(i.e., ET) from the chromosomes. As illustrated in Figure 4, the genes comprise a fixed-
length symbolic inventory in which mathematical operators and terminal variables are
depicted [40].



Minerals 2022, 12, 760 7 of 29
Minerals 2022, 12, x FOR PEER REVIEW 7 of 30 
 

 

 

 

Figure 3. Cont.



Minerals 2022, 12, 760 8 of 29
Minerals 2022, 12, x FOR PEER REVIEW 8 of 30 
 

 

 

 

Figure 3. Cont.



Minerals 2022, 12, 760 9 of 29
Minerals 2022, 12, x FOR PEER REVIEW 9 of 30 
 

 

 

Figure 3. Boxplots of inputs. (a) Pressure, (b) Temperature, (c) Salinity, (d) Contact angle type and 

(e) Theta. Zero. 

2.2. Gene Expression Programming (GEP) 

Gene expression programming (GEP), which is very useful in developing white-box 

models, could be used in expanding computer programs. This evolutionary-based and 

advanced approach is an appropriate method by which different systems could be 

described using inputs and desirable outputs. The GEP was first developed and 

introduced by Ferrera [35,36] and has been contemplated as a new variation of genetic 

programming [37]. In the older version of GEP, problems, such as faulty explorations and 

a limited number of regression methods, have been addressed [35,36]. Regarding the 

fundamentals of this method, the expression tree (ET) and the chromosome should be 

deemed as the GEP’s conceptualization and data processing basis [38,39]. Utilizing 

previously obtained data from experimental works or simulations, the GEP method can 

derive real solutions (i.e., ET) from the chromosomes. As illustrated in Figure 4, the genes 

comprise a fixed-length symbolic inventory in which mathematical operators and 

terminal variables are depicted [40]. 

In almost all genetic strategies, it is of the utmost importance to initialize the program 

using a logical process by which the GEP will start moving towards a solution. Employing 

a fitness function and genetic operators, the GEP can evaluate the newly created genes 

and, resultantly, it could find appropriate candidates. To complete the task, the GEP 

implements a wide range of genetic operators, e.g., tournament-based selections, 

mutation operators, and crossover. Furthermore, transposition and recombination 

operators are also worthwhile, and all operators will be reused endlessly and iteratively 

unless the cease criterion is met. Figure 5 represents the main steps for designing a GEP 

structure to obtain the best model. 

Figure 3. Boxplots of inputs. (a) Pressure, (b) Temperature, (c) Salinity, (d) Contact angle type and
(e) Theta. Zero.

Minerals 2022, 12, x FOR PEER REVIEW 10 of 30 
 

 

 

Figure 4. A two-gene chromosome illustrated in the form of tree codification. 

 

Figure 5. Flow chart diagram of the GEP algorithm. 

2.3. Model Development 

In the present work, the selected experimental database was randomly divided into 

two parts, namely training and testing data sets, for developing the GEP model. Hence, 

80% of the total data was used as the train set, while the remaining 20% was considered 

Figure 4. A two-gene chromosome illustrated in the form of tree codification.

In almost all genetic strategies, it is of the utmost importance to initialize the program
using a logical process by which the GEP will start moving towards a solution. Employing
a fitness function and genetic operators, the GEP can evaluate the newly created genes
and, resultantly, it could find appropriate candidates. To complete the task, the GEP
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implements a wide range of genetic operators, e.g., tournament-based selections, mutation
operators, and crossover. Furthermore, transposition and recombination operators are also
worthwhile, and all operators will be reused endlessly and iteratively unless the cease
criterion is met. Figure 5 represents the main steps for designing a GEP structure to obtain
the best model.
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2.3. Model Development

In the present work, the selected experimental database was randomly divided into
two parts, namely training and testing data sets, for developing the GEP model. Hence,
80% of the total data was used as the train set, while the remaining 20% was considered
as test set. In addition, Table 2 represents the considered key parameters of the applied
evolutionary algorithm.

To evaluate the accurateness and performance of the improved models, certain statisti-
cal parameters were utilized consisting of average percent relative error (APRE), average
absolute percent relative error (AAPRE), root mean square error (RMSE), standard devia-
tion error (STD), and coefficient of determination (R2). Definitions and equations of those
parameters are given below:

A. Average percent relative error (APRE). It measures the relative deviation from the
experimental data and is defined by:

%APRE =
100
M

M

∑
i=1

(
θiexp − θipre

)
θiexp

(3)

B. Average absolute percent relative error (AAPRE). It measures the relative absolute
deviation from the experimental data and is defined as:
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%AAPRE =
100
M

M

∑
i=1

∣∣∣∣∣∣
(

θiexp − θipre

)
θiexp

∣∣∣∣∣∣ (4)

C. Root mean square error (RMSE). It measures the data dispersion around the zero
deviation and is defined by:

RMSE =

√√√√∑M
i=1

(
θiexp − θipre

)2

M
(5)

D. Standard deviation (SD). It is a measure of dispersion, and a lower value shows
a smaller degree of scattering. It is defined as:

STD =

√√√√ 1
M− 1

M

∑
i=1

(
(θiexp − θipre)

θiexp

)2

(6)

E. Coefficient of determination (R2). It is a simple statistical parameter that exhibits how
a good model matches the data. The closer the R2 value is to 1 confirms the better
fitting of the model. It is defined as:

R2 = 1−
∑M

i (θiexp − θipre)
2

∑M
i (θipre − θiexp)

2 (7)

In the above equations, θ points out the wettability values, the subscripts exp and pre
denote the experimental and predicted values, θ is the average value of the wettability,
and M is the number of data points.

Table 2. The utilized setting parameters for the implemented correlations in this study.

Parameters Value/Setting

Population size 60
Crossover’s probability 90%
Mutation’s probability 15%
Elitism 10%
Type of selection Linear ranking
Max. number of generations 100

3. Results and Discussion
3.1. Model Implementation

In this study, the performance of the implemented correlations, the GEP model,
was evaluated to predict the contact angle (advancing, receding, and static) of brine/carbon
dioxide/rocks under various operating conditions, including pressure, temperature, and salin-
ity. To establish an accurate correlation to predict the contact angle in the brine/CO2/minerals
ternary system using the GEP approach, the control parameters were appropriately tuned.
In addition, the generated correlations for all four minerals are listed in Table 3.
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Table 3. Final explicit correlations for estimating the brine/CO2/mineral wettability.

Mineral/Parameters Correlations

Calcite

θ A1 × P + A2 + A3 + A4 + 472.2

A1 56.28− 0.09045× (T + θo)− 0.006978× P2 × ln(θo)− 4.365× N × tanh(θo)

A2

(
N
P

)
×
(

9.537× 10−5 × N2

P2 − 5.1
)
− 25.01× P

N
+

2314
T

+
0.01692× T × N

tanh(P)
A3 −2.808× S− 17.13× N − 2.292× θo × (1− S)

A4 −24.68× tanh(S× N)− 78.51× ln(T) + 22.29× (tanh(S) + ln(θo))

Feldspar

θ A1
P

+ A2 + A3 + A4 − 16.72

A1 2.434×
√

T + 19.51× ln(P)− 37.74× tanh(P)

A2
6.679×

√
T

4.504× P− 35.67
− 7.525× P2

18.01× P− 142.4
A3

462.3× P
T

− 1.6683× P2

P + S
A4 0.05923× T × tanh(P) + 4.81×

√
P + 0.0004529× P× T × exp(S)

Mica

θ A1 × θ3
0 × (N − θ0) + A2 × P + A3 + A4 + A5 + 2554

A1 1.482− 0.04563× P

A2 664.6− 68.71×
√

T − 0.02321× P× θ2
0

A3 1.807× (S + T × P) + 0.9754× N × (N + S× θ0) + 1.234× N × θ0 × (N + P)

A4 34.58×
√

P− 12.37× tanh
(

P2 × S
)
− 2564× tanh(P + N)

A5 −15.56× θ0 ×
√

P× ln(P)
N

− 4959× (P + N)

T
Quartz
(T > 300 K)

θ A1 ×
√

T + A2 ×
√

S + A3 × T + A4 × P + A5 + A6 + 3749

A1 53.05× P− 3.406×
√

S×
√

θ0 − 611.1×
√

N

A2 40.25× θ0 + 12.93× N − 23.62

A3 34.26×
√

N − 5.966× N − 11.69

A4 1909− 496.1× ln(T)− 0.02984× P× S× N

A5 0.2824× S× (P− θ0)× ln(P)− 0.5521× θ0 × (P + θ0)× tanh(N)

A6 1886× N +
1712.597× (P + θ0)

(P + T)

Quartz
(T < 300 K)

θ A1 × θ0 × N2 + A2 + A3 + A4 + 276.2

A1 P× N × (0.09477× N − 0.2665× tanh(P))− 0.7928× θ0 × tanh(N)

A2 8.188× P− 0.7642× (T + ln(P)) + 3.523× (S + N × (1− S))

A3 18.22× (θ0 − ln(T))− 7.106× P
N

− 1.082× P× N
3
2

A4
49.59× tanh(N) + 15.23× tanh(6.112× T × S)− 11.87× tanh(P× S× N) + 15.03×
tanh(P× S× θ0)

The contact angle prediction capability of the proposed model was confirmed by
preparing different measurements indexes, such as APRE, AAPRE, RMSE, STD, and R2.
Both statistical evaluation and graphical analyses were performed to show the correctness
and performance of the developed model. The statistical parameters are listed in Table 4 for
calcite, feldspar, mica, and quartz (below 300 K and over 300 K). A graphical comparison
between different minerals in predicting contact angle is shown in Figure 6. Table 4 and
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Figure 6 demonstrate that the results estimated by the presented models are in good
accordance with the experimental data. It is evident from the statistical evaluation that
the GEP correlations have excellent prediction performance with overall AARE% values of
5.66%, 1.56%, 14.44%, and 13.93%, for calcite, feldspar, mica, and quartz, respectively.
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Table 4. Statistical evaluation of the implemented correlations.

Calcite Feldspar Mica Quartz
(T > 300 K)

Quartz
(T < 300 K)

Training set APRE (%) −0.5 0.71 14.71 23.62 13.45
AAPRE (%) 4.4 1.69 14.71 27.54 14.28
RMSE 1.81 0.37 7.340 10.97 3.2
STD 0.004 0.0004 0.026 0.110 0.037
R2 0.996 0.972 0.983 0.806 0.951

Test set APRE (%) −7.12 −0.001 13.38 21.11 12.54
AAPRE (%) 10.55 1.01 13.38 27.71 12.54
RMSE 3.29 0.23 7.020 10.49 3.180
STD 0.04 0.0002 0.022 0.112 0.020
R2 0.985 0.974 0.965 0.678 0.978

Total APRE (%) −1.86 0.57 14.44 23.12 13.26
AAPRE (%) 5.66 1.56 14.44 27.57 13.93
RMSE 2.2 0.340 7.280 10.87 3.190
STD 0.013 0.0004 0.025 0.110 0.034
R2 0.994 0.972 0.980 0.780 0.956

A clear explanation for the accuracy and proficiency of intelligent models can be
achieved through visual comparison between predicted and actual experimental data.
For this purpose, the anticipated contact angles of the brine/carbon dioxide system on
various mineral surfaces were plotted versus actual values for both train and test sub-
sets, as shown in Figure 7. This depiction indicates that the cloud of estimated values of
brine/CO2 contact angle by the GEP model is accumulated around the bisector line of
y = x, which confirms the acceptable accuracy of the proposed model. Based on this fact,
the developed GEP model is accurate and has an excellent capability for simulating the
behavior of brine/CO2/mineral wettability. For additional confirmation, the relative devia-
tion of predicted data was plotted versus the experimental contact angles data. As shown
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in Figure 8, the low ranges of distribution around the zero-line error express the good
capacity and proficiency of GEP as an estimative tool.
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According to the above-mentioned statistical analyses, the GEP models can show
significant compatibility between the estimated and experimental values since there is
excellent overlap between the predicted and target data points. To establish a better
description of the absolute relative errors of the implemented model, the depiction of
cumulative data frequency against absolute percent relative error is drawn in Figure 9.
This plot is described as the percent of total data points used and illustrates that more than
80% of the estimated contact angles have an absolute relative error less than 25%.
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(a) 

Figure 9. Cumulative frequency of absolute relative error for total data.

For further verification of the proposed models’ validity and investigation of the aver-
age absolute relative error over various input parameters, Figure 10 is presented. According
to this figure, the proposed GEP model can accurately estimate the experimental data within
different ranges of input parameters. This indicates the robustness and smartness of the pre-
sented model for broad domains of operating conditions. The amount of AAPRE is less than
22% for almost all ranges of input variables, except pressure over 30 MPs and theta zero = 1,
thus confirming the above statement. On the other hand, choosing a reliable model is one
of the main issues for estimating any parameter within a specific range of input variables.
Figure 10 demonstrates the capability of the GEP model in predicting the wettability of
brine/CO2/rocks for various ranges of operating conditions with high precision.
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3.2. Effect of Operational Parameters on Contact Angles

In this study, many attempts have been made out to show the ability and accuracy
of the proposed GEP model in trend to estimate brine/CO2 contact angles for different
minerals under wide rages of pressure, temperature, and salinity. Figure 11 illustrates
a comparison of the contact angle with experimental data by considering the variation
of influencing parameters in the proposed models. As can be observed in Figure 11a,
the measured values for contact angles versus pressure indicate that the implemented
model has high accuracy in the prediction of the process trend. In addition, the depic-
tion demonstrates that the brine/CO2 contact angle decreases with increasing pressure.
The influence of temperature on wettability behavior was investigated as well and the
estimation ability of the developed model was confirmed based on Figure 11b. The GEP
model shows sufficient precision in estimating brine/CO2 contact angle, where it decreases
with temperature up to 340 K and increases at high temperatures.

Salinity is another operating parameter that affects the performance of the proposed
model in the trend estimation of brine/CO2 contact angle. According to the used datasets,
the GEP model is excellent for the trend predictions of wettability behavior versus salinity.
It is evident from Figure 11c that contact angles increase by enhancing NaCl concentra-
tion. Results obtained by other researchers confirm this trend [20]. However, different
results for these trends are reported by researchers, e.g., for the effect of temperature on
brine/CO2/quartz [41]. Based on the results of the developed intelligent model, one can
conclude that the GEP has good performance and shows reliable and accurate results.
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Figure 11. Comparison of the contact angle variation for the correlation implemented in this study
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(c) Contact angle versus salinity.

3.3. Applicability Domain and Sensitivity Analysis

Some outliers are typically included as an intrinsic feature of almost any dataset.
Outliers show a behavior different from the rest of the data points in a dataset. Believing
that the model will return more precise and reliable results provided that the outliers
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are detected, we have implemented the leverage algorithm in the current study. In this
approach, the deviation of model outputs from its corresponding experimental data is
named as standardized residuals. In addition, Hat matrix is described as follows [42–44]:

h = X
(

XTX
)−1

XT (8)

In this equation, X represents the p× q matrix (in which p and q stand for the number
of actual data points and dimension of the model, respectively) and XT represents the
transpose matrix. Hat vector is determined by the diagonal elements of the Hat matrix.
In addition, the leverage limit (h∗), as a warning value, is defined by [45]:

h∗ =
3(q + 1)

p
(9)

Clarification of the doubtful data points was investigated by a Williams plot, in which
standardized residuals are plotted versus hat values, as shown in Figure 12. The leverage
limits (h*) corresponded to 0.25, 0.4, 0.125, and 0.047 for calcite, feldspar, mica, and quartz,
respectively. Six data points had hat values above these thresholds. It is evident from
Figure 12 that just five outlier data points were laid out of the reliable zone (outside the
range −3 to 3) for all minerals. Although these data points appear differently from others,
they did not show a strong effect on the performance of the proposed model. Therefore,
all the experimental data were used.
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To study the sensitivity analysis, the so-called Pearson correlation coefficient ri was
utilized to show the influence of input parameters on the prediction of the contact angle
of the brine/CO2/minerals system. This relevancy factor (ri) is defined for each input
parameter, i, as follows [46,47]:

ri =
∑M

k=1
(

Ai,k − Ai
)
(Bk − B)√

∑M
k=1
(

Ai,k − Ai
)2

∑M
k=1
(

Bk − B
)2

, (i = 1, . . . , 5) (10)

where Ai,k, A, N, Bk, and B represent input parameters, average of inputs, number of
the data points, output parameter, and average of output, respectively. The value of ri is
located within −1 to 1 and the large values correspond to the strong correlation. Moreover,
the increasing or decreasing output parameter with variations in Mi attribute to a positive
or negative sign, respectively.

Figure 13 shows the identified relevancy factors for all five input parameters, which af-
fect the amount of wettability in CO2, saline water, and minerals. All these parameters have
a significant contribution to the value of the contact angle. Temperature possessed the least
amount of influence compared to the others, negatively (r~0.035). The r-value of salinity
shows the utmost significant dependence (r = 0.23), followed by pressure (r = 0.183). Due to
the obtained values for relevancy values, it can be concluded that salinity and pressure are
the utmost impressive parameters, and temperature is the least significant for identifying
the amount of contact angle in the brine/CO2/mineral system.



Minerals 2022, 12, 760 24 of 29Minerals 2022, 12, x FOR PEER REVIEW 25 of 30 
 

 

 

Figure 13. Sensitivity analysis on contact angle behavior. 

3.4. Application of the Proposed Model for CO2 Sequestration 

In the context of showing the impact of estimating wettability using the proposed 

GEP-based correlation on the trapping mechanisms, we performed a comparison between 

the different storage heights associated with the structural trapping capacity in mica 

mineral type. The illustration of the trapping mechanism can be found elsewhere [27,48]. 

The following expression was used for calculating the CO2 column heights in 

underground conditions [27,49]: 

𝐻 =
2𝛾 cos(𝜃)

∆𝜌𝑔𝑅
 (11) 

where g is the gravitational acceleration, R denotes the pore throat radius, 𝛾  is the 

interfacial tension (IFT) of the system CO2–brine, 𝜃 points out the contact angle between 

CO2, brine, and the rock surface, and ∆𝜌 represents the density difference between CO2 

and brine. 

The compared storage heights included the real values of height calculated by 

considering the wettability measurements reported in the study of Arif et al. [49], the 

values of height calculated by considering the estimations of wettability using the 

suggested GEP-based correlation, and the values of height calculated by neglecting 

wettability (i.e., 𝜃 = 0°). The calculations were carried out at two different temperatures 

(323 K and 343 K) and various pressure values. The IFT values considered in Equation (11) 

under the associated conditions of pressure and temperature were obtained from Arif et 

al. [49]. It is worth mentioning that for the calculation of wettability using GEP-based 

correlations for the considered conditions, we assumed the following parameters: 𝜃𝑜 = 0, 

receding contact angle (𝑁 = 3), and Salinity = 3.42 M (20 wt% NaCl brine [49]). The results 

of the comparison are shown in Table 5 and Figure 14. As can be seen, the estimation of 

brine/CO2/mineral wettability using the GEP-based correlations yields acceptable values 

for CO2 column height compared with the case when brine/CO2/mineral wettability was 

neglected. It is necessary to add that in many published studies [27], this vital parameter 

was neglected in the calculation of CO2 column height, and this has a significant effect on 

this calculation as reported in Table 5 and Figure 14. Therefore, the newly proposed 

correlations for predicting brine/CO2/mineral wettability in this study are of great interest 

to several calculations related to carbon geo-sequestration. 

Figure 13. Sensitivity analysis on contact angle behavior.

3.4. Application of the Proposed Model for CO2 Sequestration

In the context of showing the impact of estimating wettability using the proposed
GEP-based correlation on the trapping mechanisms, we performed a comparison between
the different storage heights associated with the structural trapping capacity in mica
mineral type. The illustration of the trapping mechanism can be found elsewhere [27,48].
The following expression was used for calculating the CO2 column heights in underground
conditions [27,49]:

H =
2γ cos(θ)

∆ρgR
(11)

where g is the gravitational acceleration, R denotes the pore throat radius, γ is the interfacial
tension (IFT) of the system CO2–brine, θ points out the contact angle between CO2, brine,
and the rock surface, and ∆ρ represents the density difference between CO2 and brine.

The compared storage heights included the real values of height calculated by consid-
ering the wettability measurements reported in the study of Arif et al. [49], the values of
height calculated by considering the estimations of wettability using the suggested GEP-
based correlation, and the values of height calculated by neglecting wettability (i.e., θ = 0◦).
The calculations were carried out at two different temperatures (323 K and 343 K) and
various pressure values. The IFT values considered in Equation (11) under the associated
conditions of pressure and temperature were obtained from Arif et al. [49]. It is worth
mentioning that for the calculation of wettability using GEP-based correlations for the
considered conditions, we assumed the following parameters: θo = 0, receding contact
angle (N = 3), and Salinity = 3.42 M (20 wt% NaCl brine [49]). The results of the comparison
are shown in Table 5 and Figure 14. As can be seen, the estimation of brine/CO2/mineral
wettability using the GEP-based correlations yields acceptable values for CO2 column
height compared with the case when brine/CO2/mineral wettability was neglected. It is
necessary to add that in many published studies [27], this vital parameter was neglected in
the calculation of CO2 column height, and this has a significant effect on this calculation as
reported in Table 5 and Figure 14. Therefore, the newly proposed correlations for predicting
brine/CO2/mineral wettability in this study are of great interest to several calculations
related to carbon geo-sequestration.



Minerals 2022, 12, 760 25 of 29

Table 5. Comparison between CO2 column height values of the considered cases.

Consideration of the wettability
measurements reported in the

study of Arif et al. [46]

Temperature
(K)

Pressure
(MPa) ∆ρ (kg/m3)

IFT, γ
(mN/m) θ (◦) CO2 column

height (m)

323

5 1031 55 29 952
10 755 43 50 747
15 445 38 67 681
20 359 36 74 562
25 320 33 79 402

343

5 1032 58 26 1031
10 881 45 41 786
15 625 40 58 691
20 474 38 68 613
25 380 36 74 533

Temperature
(K)

Pressure
(MPa) ∆ρ (kg/m3)

IFT, γ
(mN/m)

GEP
estimated

θ (◦)

CO2 column
height (m)

Consideration of the estimations
of wettability using the suggested

GEP-based correlation

323

5 1031 55 14.04 1056.18
10 755 43 36 940.34
15 445 38 51 1096.73
20 359 36 61 992.16
25 320 33 70 719.81

343

5 1032 58 13.62 1114.72
10 881 45 32 884.02
15 625 40 44 939.55
20 474 38 52 1007.28
25 380 36 57 1053.01

Temperature
(K)

Pressure
(MPa) ∆ρ (kg/m3)

IFT, γ
(mN/m) θ (◦) CO2 column

height (m)

Neglecting wettability
(i.e., θ = 0 ◦)

323

5 1031 55 0 1088.699
10 755 43 0 1162.319
15 445 38 0 1742.72
20 359 36 0 2046.501
25 320 33 0 2104.592

343

5 1032 58 0 1146.97
10 881 45 0 1042.41
15 625 40 0 1306.12
20 474 38 0 1636.10
25 380 36 0 1933.40

Lastly, it should be highlighted that the newly proposed GEP-based correlations for the
modeling of brine/CO2/mineral wettability are recommended for cases that fall within the
ranges of application. Indeed, these explicit correlations can be applied for cases described
by conditions that are outside of this applicability realm, but with careful attention as its
accuracy can vary from one case to another. Nevertheless, as an extensive database with
wide-ranged conditions was involved in the development of the correlations, these correla-
tions can be invoked for predicting the wettability of many brine/CO2/mineral systems
having proprieties located within the range of the input parameters mentioned above.
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4. Summary and Conclusions

In the present study, a machine learning algorithm, the so-called GEP technique,
was developed to predict contact angles of carbon dioxide and saline water on different
minerals under a wide range of environmental conditions. Pressure, temperature, salinity,
mineral type (calcite, quartz, mica, and feldspar), type of contact angles, and the defined
theta zero factor were used as input parameters and the contact angles of brine/CO2
constituted the model output. The obtained values from the GEP model were compared
with actual experimental data and the following important conclusions can be drawn based
on the achieved outputs:

• Different measurements indexes, such as APRE, AAPRE, RMSE, STD, and R2, con-
firmed the reliability and accuracy of the implemented model.

• Average absolute percent relative errors of the implemented model proposed for
calcite, feldspar, mica, and quartz were obtained 5.66%, 1.56%, 14.44%, and 13.93%,
respectively, which confirms the significant performance of the GEP algorithm.

• The GEP correlation was able to predict more than 80% of the considered data points
with ARE less than 25%.

• The applied data points did not show significant outliers, and the proposed GEP
model was successful in the trend estimation of brine/CO2 contact angles for different
minerals under wide ranges of pressure, temperature, and salinity.

• Investigation of sensitivity analysis indicated that the contact angles of brine/CO2 on
various minerals could be positively affected by salinity and pressure and negatively
by temperature.

• According to the impact of wettability on the residual and structural trapping mecha-
nisms during the carbon geo-sequestration process, the outcomes of the GEP model in
this study can be beneficial for the precise prediction of these mechanisms’ capacity.
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Nomenclature

Acronyms Variables

AAPRE average absolute percent relative error θ0 wettability of minerals
APRE average percent relative error θi contact angle with zero salinity
adv advancing Calc. (i) predicted value
CGS carbon geo-sequestration exp. (i) actual value
ET expression tree h Hat matrix
EWR enhanced water recovery h* leverage limit
GEP gene expression programming X p × q matrix
P pressure XT transpose matrix
rec receding p number of actual data points
R2 coefficient of determination q dimension of the model
RMSE root mean square error ri relevancy factor in sensitivity analysis
STD standard deviation error Ai,k input parameter in sensitivity analysis
st static A average of inputs
T temperature M number of the data points
Superscripts Bk output parameter
0 zero B average of outputs
H CO2 column height
Subscripts S (Table 3) salinity
i counter of data N (Table 3) contact angle type
k counter of data
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