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Abstract: The Shizhuyuan ore field has three mineralized zones around the Qianlishan granite
complex with a radius of ~6 km: W-Sn-Mo-Bi (inner zone), Pb-Zn (middle zone), and Hg-Sb (outer
zone). However, whether Pb-Zn and Hg-Sb mineralization is genetically related to the Qianlishan
granites is still debated. Here, we conducted in situ pyrite trace element analysis to study the
combinations and distributions. The Bi concentration gradually decreases from the inner zone to
the outer zone, while the Mn and Sb contents show the opposite trend. Pyrites from each zone are
distributed in distinct zones in the binary plot of Co/Ni-Bi, which is an effective discrimination
diagram indicating the degree of hydrothermal alteration. Collectively, the gradual changes in
pyrite trace element characteristics among the three ore-forming zones provide evidence to indicate
that these zones probably compose a whole magmatic-hydrothermal system associated with the
Qianlishan granite complex.

Keywords: mineralized zones; Shizhuyuan ore field; pyrite trace elements; ore-forming hydrothermal
system

1. Introduction

The Nanling Range in SE China is renowned worldwide for its voluminous Meso-
zoic granites, which are associated with W, Sn, Pb, Zn, and rare earth element (REE)
deposits [1–11]. Among these deposits is the Shizhuyuan tungsten polymetallic deposit,
which contains 80 Mt of W, 40 Mt of Sn, 20 Mt of Bi, and 10 Mt of Mo [12–14]. The skarn-
greisen type of mineralization in Shizhuyuan has been suggested to be genetically related
to the QGC (Qianlishan granite complex) [10,11,13,15,16].

Around the QGC, a series of mineralization zones are continuously distributed, such
as W-Sn-Mo-Bi in Chaishan; Pb-Zn-(Ag) in Chaishan, Shexingping and Zongshupo; and
Hg-Sb in Wutongping. Pb-Zn mineralized veins in Chaishan and Shexingping are located
hundreds to thousands of meters to the southwest of the QGC [14]. Hg-Sb veins in
Wutongping are approximately 6 km south of the QGC. Although the QGC is closely
related spatially to the surrounding mineralized veins, their genetic relationship is still
debated. Wu et al. [17] suggested that these veins are genetically related to the QGC on
the basis of fluid inclusion and S-O isotope studies. Mao et al. [14] argued that Pb-Zn
mineralization in Jinshiling represents a sedimentary deposit due to the absence of contacts
with the granites. Few investigations have been carried out on the Hg-Sb mineralization
in Wutongping. Therefore, the genetic relationship between the QGC and the Pb-Zn and
Hg-Sb deposits is still debated.
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Pyrite trace elements are an effective tool to reflect the type of metal mineralization [18],
discriminate distinct mineralization stages [19], and investigate depositional environments
(e.g., distinguish between magmatic-hydrothermal and sedimentary environments) [20].
Pyrite is ubiquitous in the Shizhuyuan ore field and occurs in all of the mineralized veins
(W-Sn-Mo-Bi, Pb-Zn and Hg-Sb) around the QGC. Here, we conducted in situ pyrite trace
element analysis to reveal the distinct element combination and distribution characteristics
in each mineralized zone, in order to investigate the genetic association between the QGC
and the surrounding mineralization.

2. Geological Setting
2.1. Tectonic Setting

As shown in Figure 1, the Nanling Range, which is located in the southern part
of the South China Block (SCB), comprises the Yangtze Block and the Cathaysia Block;
these blocks amalgamated during the early Neoproterozoic along the Qin-Hang deep
fault zone [6,21,22]. This collision zone was reactivated in the middle and late Mesozoic,
leading to the formation of numerous nonferrous and rare metal mineralizations, including
tungsten, tin, lead, zinc, uranium, copper, gold, silver, and REEs [23]. The Shizhuyuan
ore field is located approximately 16 km southeast of Chenzhou city, Hunan Province
(Figure 1).

2.2. Stratigraphy

The Shizhuyuan ore field comprises Sinian metasedimentary rocks, Carboniferous
rocks, Devonian clastic sedimentary and carbonate rocks, and Quaternary sediments
(Figure 2) [24]. The Sinian metasedimentary rocks are present only on the eastern edge of
the ore field and represent weakly metamorphosed clastic sediments that comprise mainly
gray-green to gray-black, moderately thick, fine-grained quartz-rich sandstones, feldspathic
sandstones, siltstones, phyllites, and slate [25]. Lower Carboniferous rocks (C1, >538 m)
are located in the southern regions of this ore field, containing consist of silty shale and
limestone. Middle and Upper Devonian clastic sedimentary and carbonate rocks, which
have been intensely altered by magmatic activity and fracturing, are the main host rocks.
From bottom to top, the Middle Devonian rocks have been subdivided into the Tiaomajian
and Qiziqiao formations, and the Upper Devonian rocks have been subdivided into the
Shetianqiao and Xikuangshan formations [26]. The Tiaomajian Formation (D2t, >358 m
thick), which is distributed in both the eastern and western regions of the ore field, is
dominated by pebble-bearing and quartz-rich sandstones with subordinate rocks, such
as conglomerates, slates, and silicic sandstones. The Qiziqiao Formation (D2q, >520 m
thick), which is located in the middle and southern sections of the ore field, contains mainly
gray-white dolomites, limestones, and dolomitic limestones that are interlayered with thin
slates and siltstones. The Shetianqiao Formation (D3s, >296 m thick), which is located in
the Shizhuyuan, Dongpo and Chaishan areas, consists mainly of banded micrite limestones.
The Xikuangshan Formation (D3x, >363 m thick) comprises thick-bedded limestones and
dolomitic limestones containing flint concretions [24]. Quaternary sediments (~10 m thick),
which represent slope wash, are rare; they occur only on the sides of the river in the
northern part of the Shizhuyuan ore field.
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Figure 1. Geological map of the Nanling Range, South China (modified after [2,27]). Faults: (1) 

Jiangshan–Shaoxing–Pingxiang Fault; (2) Zhenghe–Dapu Fault; (3) Changle–Nan’ao Fault; (4) 

Chenzhou–Linwu Fault; (5) Changlin–Guangchang buried Fault; (6) Wuzhou–Sihui buried Fault. 

Figure 1. Geological map of the Nanling Range, South China (modified after [2,27]). Faults:
(1) Jiangshan–Shaoxing–Pingxiang Fault; (2) Zhenghe–Dapu Fault; (3) Changle–Nan’ao Fault;
(4) Chenzhou–Linwu Fault; (5) Changlin–Guangchang buried Fault; (6) Wuzhou–Sihui buried Fault.
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Figure 2. Schematic geological map of the Qianlishan district showing the Qianlishan granite complex
(modified after [10,14]).

2.3. Geology and Mineralization of the Three Zones

A series of deposits transect the Shizhuyuan ore field southward from the Qianlishan
granites: the supergiant Shizhuyuan W-Sn-Mo-Bi deposit, Jinchuantang Sn-Bi deposit,
Jinshiling Pb-Zn deposit, and Hengshanling Pb-Zn deposit and the small Hg-Sb deposit
(Figure 3). In general, three mineralized zones are distinguished based on the distribution
of these deposits: (1) W-Sn-Mo-Bi; (2) Pb-Zn; and (3) Hg-Sb (Figure 3).

The temperature of mineralization gradually increases from the inner zone to the outer-
most zone. The inner zone (W-Sn-Mo-Bi) includes two types of mineralization: (1) complex
skarn, which is skarn overprinted by greisenization, and (2) simple skarn, which formed
during the retrograde metamorphism process [14]. Based on the homogeneous temper-
atures of fluorite fluid inclusions, the simple skarn formed in the temperature range
of 202–288 ◦C, while complex skarn was generated in the higher temperature range of
270–400 ◦C [14,24]. Wu et al. [17] carried out a fluid inclusion study on sphalerite, flu-
orite, carbonate and quartz in the Hengshanling, Baibulong, and Shexingping deposits.
Their results suggested that fluorite inclusions in the Chaishan district (S3-2, S8-2) reached
homogeneity at 299–344 ◦C and the those in the Shexingping district (QX-1) reached homo-
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geneity at temperatures of 187–362 ◦C. Half of Sb3+ will participate if the fluid temperature
decreases from 350 ◦C to 200 ◦C by heat conduction [28].
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Figure 3. Mineralizing zones in the Shizhuyuan ore-field. Inner zone: W-Sn-Mo-Bi; Middle zone:
Pb-Zn; and Outer zone: Hg-Sb (modified after [14]).

In summary, based on the mineralization temperatures, the Shizhuyuan ore field can be
classified into three parts: (1) a high-to moderate-temperature part, including complex skarn
mineralization in Shizhuyuan (W-Sn-Mo-Bi zone) and sphalerite-galena mineralization in
Chaishan (Pb-Zn zone); (2) a moderate- to low-temperature part, composing simple skarn
in Shizhuyuan (W-Sn-Mo-Bi zone) and sphalerite-galena mineralization in Shexingping
(Pb-Zn zone); and (3) low-temperature stibnite mineralization in Wutongping (Hg-Sb zone).

3. Sampling and Analytical Methods

This study collected six samples from three mineralization zones (Table 1). Samples
490-28, 490-13, and S3-2 were obtained from the W-Sn-Mo-Bi zone. Samples 490-28 and
490-13 were acquired from Tunnel 490 of the Shizhuyuan W-Sn-Mo-Bi deposit. The former
is a complex skarn (skarn overprinted with greisenization), and the latter is a skarn. Sample
S3-2, a complex skarn, was collected from the Chaishan deposit ~1 km from the Qianlishan
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granite. In the Pb-Zn zone, Sample QX-1 represents the Pb-Zn ore in the Shexingping
deposit. In the Hg-Sb zone, Sample WTP-4 is a Hg-Sb ore in the Wutongping deposit
located ~6 km from the Qianlishan granites.

Table 1. Samples collected from three mineralizing zones in the Shizhuyuan ore-field.

Sample Mineralizing Zone Location Location Longitude Latitude Sample

490-28
W-Sn-Mo-Bi

Shizhuyuan Tunnel 490–516 25◦44′ 113◦10′ Complex Skarn
490-13 Shizhuyuan Tunnel 490 P2C2 eastern 10 m 25◦44′ 113◦10′ Simple Skarn
S3-2 Chaishan Tunnel 500 in Chaishan 25◦43′ 113◦09′ Complex Skarn

S8-2
Pb-Zn

Chaishan Tunnel 640 in Chaishan 25◦43′ 113◦09′ Pb-Zn Ore
QX-1 Shexingping 81-3 Ore Tunnel 450 in Shexingping 25◦43′ 113◦08′ Pb-Zn Ore

WTP-4 Hg-Sb Wutongping Wutongping 25◦40′ 113◦09′ Hg-Sb Ore

In Situ Trace Element Analyses of Pyrite

These six samples were cut into 25-mm-wide circular pucks. They were set in epoxy
and polished for in situ analyses of pyrite. Before in situ analysis, three samples (490-28,
490-13, and S8-2) were etched by NaOCl (sodium hypochlorite solution, 6–14% w/v active
chlorine) to reveal the internal texture. The sample surface was soaked in the solution for
30–120 s. Once a noticeable color change occurred on the surface, the samples were rinsed
with cold tap water. After rinsing, they were allowed to dry. The color on the pyrite surface
varied according to the pyrite composition and the time of etching. In situ trace element
analyses of pyrite were carried out using laser ablation inductively coupled plasma mass
spectrometry (LA-ICP-MS) at the Center of Excellence in Ore Deposits (CODES), University
of Tasmania, Hobart, Australia. For a detailed description of the analysis, please refer
to [29]; a brief introduction to the methodology is presented below.

The laser ablation spot diameter was 19 µm, and the repetition rate was 5 Hz. The
laser beam energy ranged between 4 and 5 J/cm2. The analysis time for each sample was
100 s, including background analysis (30 s with the laser off). The acquisition time was
mostly set to 0.02 s with a total sweep time of ~1.5 s. Data reduction followed the method
of [30], with an internal standard of Fe. The calibration was conducted using standards
STDGL2, GSD-1G, and PeruPy [29,31].

Imaging was performed using a set of parallel lines arranged in a square. The laser
beam was 13 to 20 µm in size, and the repetition rate was 10 Hz with a constant speed
(covering the size of the beam in 1 s). The sweep time was ~0.2 s, and the image speed was
15 or 25 µm/s. The acquisition time for most elements was set to 0.002 s, while those for
Ag, Te, and Au were strongly prolonged (0.04 s) to improve their detection limits. Similarly,
Se was measured for 0.004 s. Background and sulfide standards were measured at the
start and end of each image. Images could be corrected for drift using standard analysis;
however, sensitivity drift was negligible due to the long duration of analysis (1–2 h). The
effect of redeposition was insignificant due to the pre-ablation of each line.

4. Results
4.1. Petrography

Previous studies have indicated that the QGC (~10 km2) comprises two parts: the
QGC and a series of mafic dikes. The mafic dikes are much younger (~10 Ma) than the
QGC and the associated W-Sn-Mo-Bi mineralization; thus, they are not genetically related
to the mineralization. The QGC, which is closely related spatially and temporally to the
W-Sn-Mo-Bi mineralization, can be subdivided into five sections [1,2,14,15,24–26,32]. The
first section (S1) is a fine-grained porphyritic biotite granite (GL-13, Figure 4) located on the
northern edge of the plutons, with an outcrop area of ~4.0 km2. The second section (S2) is a
gray-white, microfine-grained porphyritic biotite granite (315-36, Figure 4) that occurs in
the southern part of the pluton, with an outcrop area of ~1.1 km2. The third section (S3) is
a gray-white, medium- to coarse-grained (mainly 0.3–0.8 mm in diameter) equigranular
biotite granite (490-21, Figure 4) with an outcrop area of 4.4 km2. The fourth section (S4) is



Minerals 2022, 12, 489 7 of 28

a gray-white, fine-grained (mostly 0.1–0.3 mm in diameter) equigranular biotite (two-mica)
granite (~0.1 km2) (490-10, Figure 4). This section has intruded into the first three sections,
and pegmatite belts are often found on its top. The fifth section (S5) represents a series of
NE-striking (25–65◦) granite porphyry dikes (490-2, Figure 4).
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Figure 4. Photographs of the Qianlishan granites. S1 (Sample GL-13): porphyritic biotite granite; S2

(Sample 315-36): microfine-grained porphyritic biotite granite; S3 (Sample 490-21): middle- to large-
grained equigranular biotite granite; S4 (Sample 490-10): fine-grained equigranular biotite granite;
S5 (490-2): granite porphyry dikes (Sample 490-2). Abbreviations [33]: Qz, Quartz; Pl, Plagiarize; Bt,
Biotite; Ms, Muscovite; Kfs: potassium feldspar.

4.2. Mineralization

The samples and mineralization assemblage of each mineralized zone are presented
in Figure 5 and Table 2.

The mineralization assemblage of the W-Sn-Mo-Bi zone contains pyrite, molybden-
ite, and scheelite (chalcopyrite in Sample 490-28) (Figure 5b). Sample 490-28 includes
molybdenite, pyrite, chalcopyrite, and scheelite. Molybdenite consists mostly of fine- to
medium-grained (50–200 µm) gray lamellar aggregates. They are commonly bent and
kinked. It appears to be pale yellow to deep reddish brown in transmitted light. Pyrite
is ubiquitous in this zone and occurs as yellow, subhedral to anhedral grains with sizes
of 50–300 µm. By comparison, chalcopyrite is rare. These grains are brassy, lamellar, and
50–150 in size. Sample 490-13 and Sample S3-2 have metal mineral assemblages similar
to that of 490-28, while the total content is less. This assemblage comprises molybdenite
and minor pyrite. Pyrite is distributed sporadically as yellow, subhedral grains with sizes
ranging from 30 to 150 µm. Molybdenite is present as gray lamellar aggregates with widely
ranging sizes of 50–200 µm.
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Figure 5. The samples (a) and their mineral assembly (b) collected from three mineralizing zones.
W-Sn-Mo-Bi zone: 490-28, 490-13 and S3-2; Pb-Zn: S8-2; and QX-1; Hg-Sb: WTP-4. Abbreviations: Py:
pyrite; Mol: molybdenite; Ccp: chalcopyrite; Sp: sphalerite; Gn: galena; Stb: stilbite.
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Table 2. Trace element characteristic of pyrites from the Shizhuyuan ore-field.

Zone Sample Rock Mineral
Assembly

Extreme
Enrichment

(1000–500 ppm)

Strong
Enrichment

(500–100 ppm)

Middle
Enrichment

(100–10 ppm)

Slight Enrichment
(10–1 ppm)

W-Sn-
Mo-Bi

490-28 Complex Skarn Py+Cpy+Mo As-Bi -Co-Pb-Ni-
Cu-Sn-Mn-Ti

Sb-Cr-Se-Zr-Te-Tl-
Ag-Zn

490-13 Simple Skarn Py+Mo As Ni Pb-Co-Sb-Mn-Mo-
Bi-Cu

Ti-Se-Tl-Cr-Zn-W-Te-
Sn-Ag

S3-2 Complex Skarn Py+Mo As Cu Pb-Th-Bi-Co Mn-Te-Se-Mo-Sb-Ti-
Ag-Ni-Zn-Zr-U

Pb-Zn
S8-2 Ore Py+AsPy+Ga+Sp Ta Cu-Co-Mn-

Sn-As
Ti-Zn-Th-Bi-W-

Se-Ni Pb-Mo-Cr-V-Ag-Te

QX-1 Ore Ga+Sp+Py Mn Pb -Ti-Zr-Ag-Se-Cu-
As-Sn

Hg-Sb WTP-4 Ore Ga+St+Py As-Mn-Ni Cu-Sb-Co-Ti-Pb-
Zn-Cr-Se Mo-Zr-V-Tl

Notes: Py denotes pyrite; Ccp denotes Chalcopyrite; Mol denotes Molybdenite; Gn denotes Galena; Sp: Sphalerite;
Stb: stibnite.

The metal mineral assemblage of Sample S8-2 and Sample QX-1 (the Pb-Zn zone) is
composed of pyrite, galena, and sphalerite. Additionally, minor arsenopyrite is found
in Sample S8-2. Pyrite in S8-2 is yellow, euhedral to subhedral, and 50–230 µm in size.
Arsenopyrite consists of pale-yellow grains with sizes of 50–120 µm. It shows strong
anisotropy (red-violet). Pyrite, present as anhedral grains, is rare in Sample QX-1. The
ores in the Hg-Sb zone include stibnite, galena, and pyrite. Stibnite is gray-white, lamellar
and elongated, metallic luster, and <20 µm in size. It is opaque with perfect cleavage
on [10], showing strong anisotropy. Pyrite is rare, subhedral to anhedral, and <100 µm
(mostly < 20 µm, ); it is disseminated and dispersed.

4.3. In Situ Spot Analysis

Pyrite is the shared mineral of the three mineralized zones; therefore, it is chosen as the
target mineral for in situ analysis to reveal its compositional features in each zone. Analyz-
ing their genetic relationship will promote interpreting the formation of the mineralization
zones in the Shizhuyuan ore field.

After etching with the NaOCl solution, none of the pyrites collected from the three
zones exhibited color zones (Figure 5b: 490-28, 490-13 and S8-2), which suggests that pyrite
has no obvious overgrowths.

The results of the pyrite in situ analyses are presented in Tables 2–4.

Table 3. Co/Ni ratio of pyrites.

Sample No Minimum Maximum Average Median

490-28 37 0.3 10 4 4
490-13 20 0.02 3 0.4 0.2
S3-2 23 1 535 69 15
S8-2 20 0.04 289 21 2
QX-1 19 0.04 0.4 0.2 0.1

WTP-4 29 0.01 3 0.4 0.09
Note: No denotes the number of the analyzed spots.

Samples 490-28, 490-13, and S3-2 were obtained from the W-Sn-Mo-Bi zone.
Pyrites from Sample 490-28 are moderately enriched (with contents of 10–1000 ppm)

in Bi > As > Co > Pb > Ni > Cu > Sn > Mn and slightly enriched (with contents of 1–10 ppm)
in Ti > Sb > Cr > Se > Te > Tl > Zr > Ag (Table 2). In the time-solved profile (Figure 6), the
trends of the counts for Co, Ni, and As are parallel to those of Fe and S, suggesting that they
enter pyrite crystals via stoichiometric substitution. The counts of Co are approximately
one order of magnitude higher than those of Ni, revealing that the content of Ni is much
higher than that of Ni. This result is consistent with the Co/Ni ratio of 4, indicating its
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magmatic origin [34] (Table 3). The spikes of Bi, Pb, Ag, Tl, and Te are similar to each other
(Figure 7), indicating that they are probably present as Bi-Pb-Tl-Te inclusions in pyrite.
Similarly, Figure 8 shows the presence of Pb-Tl-Sb inclusions. These inclusions might be
galena enriched in Tl and Sb. The enrichment in Tl is likely due to the replacement of Pb2+

by 2Tl+ [35].
Minerals 2022, 12, 489 11 of 31 
 

 

 

Figure 6. Time-resolved depth profiles of Co, Ni and As in Sample 490-28. 

 

Figure 7. Time-resolved depth profiles of Bi, Pb, Tl, Te, and Ag in Sample 490-28. 

Figure 6. Time-resolved depth profiles of Co, Ni and As in Sample 490-28.

Minerals 2022, 12, 489 11 of 31 
 

 

 

Figure 6. Time-resolved depth profiles of Co, Ni and As in Sample 490-28. 

 

Figure 7. Time-resolved depth profiles of Bi, Pb, Tl, Te, and Ag in Sample 490-28. Figure 7. Time-resolved depth profiles of Bi, Pb, Tl, Te, and Ag in Sample 490-28.



Minerals 2022, 12, 489 11 of 28

Table 4. Trace element content of pyrite from each zone (unit: ppm).

Sample Parameter Ti V Cr Mn Fe Co Ni Cu Zn As Se

490-28 Median 2 0.04 0.5 0.9 465,341 48 13 1 0.7 3 7
Average 12 0.12 7 15 464,380 54 27 21 1 79 7

Minimum 0.1 0.01 0.03 0.04 458,563 0.3 0.07 0.02 0.2 0.02 0.3
Maximum 247 0.87 136 193 465,431 429 432 348 4 494 13

490-13 Median 1.5 0.06 1.3 2 464,733 8.7 39 12 2 288 8
Average 9.8 0.07 4.5 26 464,233 67 348 16 5 654 8

Minimum 0.3 0.01 0.23 0.36 460,809 1 4 0.58 0.01 20 3
Maximum 158 0.23 32 187 465,410 462 3466 51 15 4294 17

S3-2 Median 3 0.01 0 2 464,921 30 0.5 174 0.6 167 7
Average 3 0.04 0.26 11 464,245 47 2 270 2 1045 7

Minimum 0.12 0.01 0.02 0.15 454,416 0.1 0.07 0.01 0.02 0.28 0.32
Maximum 6.8 0.16 1.4 134 465,461 254 16 1348 15 5914 16

S8-2 Median 9 0.5 0.48 6 462,168 3.6 1 2 5 58 13
Average 53 2 2.3 261 457,515 275 11 289 45 109 12

Minimum 1 0.02 0.03 0.04 408,641 0.1 0.09 0.02 0.3 1.8 2.4
Maximum 624 18 15 2152 465,448 3803 142 2699 364 817 19

QX-1 Median 1 0.03 0 21 465,450 0.04 0.2 1 0.34 1 2
Average 3 0.14 0.29 62 465,104 0.04 0.3 2 0.55 1 2

Minimum 0.3 0.01 0.07 5 459,566 0.01 0.09 0.1 0.01 0.06 0.1
Maximum 7 0.5 2.08 485 465,467 0.07 0.77 5.1 2.2 3 2.9

WTP-4 Median 24 0.3 3.02 2 464,997 8.8 101 11 0.64 43 9.8
Average 42 2 12 185 463,936 43 119 76 15 188 10

Minimum 1 0.01 0.02 0.02 457,672 0.04 1.1 1.1 0.01 10 0.66
Maximum 306 14 133 1687 465,407 387 473 1490 214 2801 19

Sample Parameter Zr Nb Mo Ag Cd Sn Sb Te Gd Hf Ta

490-28 Median 0.04 0.1 0.08 0.4 0.09 0.2 0.2 0.2 0.06 0.03 0.01
Average 7 1 0.2 2 0.1 17 9 5 0.06 0.4 0.07

Minimum 0.02 0.03 0.03 0.03 0.05 0.01 0.02 0.03 0.04 0.01 0.01
Maximum 56 4 0.6 11 0.2 330 243 83 0.06 2 0.18

490-13 Median 0.04 0.01 0.2 0.7 0.06 0.2 9 0.3 0.02 0.01 0.01
Average 0.5 0.1 26 1 0.07 2 35 3 0.03 0.04 0.01

Minimum 0.01 0.01 0.01 0.07 0.01 0.04 0.3 0.03 0.02 0.01 0.01
Maximum 1.8 0.60 217 6 0.17 33 295 20 0.05 0.11 0.01

S3-2 Median 0.2 0.02 0.05 1 0.1 0.5 3 3 0.2 0.03 0.03
Average 2 0.07 6 2 0.1 0.7 5 10 1 0.3 0.04

Minimum 0.03 0.01 0.01 0.02 0.02 0.01 0.08 0.01 0.02 0.01 0.01
Maximum 4 0.2 35 11 0.4 2 39 113 3 0.71 0.09



Minerals 2022, 12, 489 12 of 28

Table 4. Cont.

Sample Parameter Zr Nb Mo Ag Cd Sn Sb Te Gd Hf Ta

S8-2 Median 0.2 0.09 0.07 0.3 0.1 1 0.2 1 0.1 0.02 0.01
Average 0.4 0.2 3 2 0.2 135 0.4 1 0.11 0.04 613

Minimum 0.04 0.04 0.03 0.02 0.05 0.03 0.02 0.01 0.05 0.02 0.01
Maximum 1 0.7 10 6 0.54 1425 2 4 0.20 0.08 4900

QX-1 Median 0.1 0.02 0.1 0.9 0.1 0.1 0.4 0.3 0.15 0.2 0
Average 2 0.02 0.1 2 0.1 1 0.8 0.3 0.15 0.2 0

Minimum 0.03 0.02 0.02 0.13 0.08 0.01 0.06 0.01 0.15 0.09 0
Maximum 8 0.02 0.2 8 0.3 7 3 0.56 0.15 0.3 0

WTP-4 Median 0.3 0.08 0.7 0.07 0.3 0.2 2 0.2 0.05 0.05 0.02
Average 6 0.1 9 0.7 0.6 0.6 47 0.2 0.2 0.5 0.02

Minimum 0.02 0.01 0.02 0.01 0.05 0.01 0.2 0.03 0.04 0.01 0.01
Maximum 115 0.6 136 7 4 2 736 0.43 0.9 4 0.05

Sample Parameter W Pt Au Tl Pb206 Pb207 Pb208 Bi Th U

490-28 Median 0.04 0.02 0.03 0.2 2 2 2 3 0.01 0.01
Average 0.3 0.02 0.05 4 41 35 37 79 0.04 0.1

Minimum 0.01 0.01 0.01 0.01 0.05 0.01 0.1 0.09 0.01 0.01
Maximum 3 0.02 0.21 90 403 378 386 937 0.27 0.7

490-13 Median 0.1 0.02 0.06 1 31 30 30 5 0.03 0.03
Average 4 0.02 0.08 8 76 71 74 17 0.03 0.1

Minimum 0.01 0.01 0.01 0.02 0.5 0.3 0.6 0.05 0.01 0.01
Maximum 26 0.06 0.29 88 519 488 496 131 0.04 0.4

S3-2 Median 0.03 0.02 0.06 0.4 38 27 19 24 0.17 0.02
Average 0.1 0.02 0.11 0.4 73 59 60 47 66 1

Minimum 0.01 0.01 0.02 0.01 0.4 0.01 0.02 0.05 0.01 0.01
Maximum 0.69 0.03 0.34 0.95 456 361 397 288 372 6.2

S8-2 Median 0.05 0.01 0.03 0.09 2 2 2 5 2 0.03
Average 16 0.01 0.03 0.3 6 9 8 21 26 0.1

Minimum 0.01 0.01 0.01 0.01 0.2 0.3 0.05 0.2 0.01 0.01
Maximum 248 0.02 0.08 1.8 40 53 50 125 100 0.51

QX-1 Median 0.02 0.02 0.01 0.01 2 2 3 0.1 0.01 0.03
Average 0.03 0.02 0.02 0.02 5 3 4 0.1 0.02 0.05

Minimum 0.02 0.02 0.01 0.01 0.5 0.1 0.7 0.04 0.01 0.01
Maximum 0.06 0.02 0.03 0.03 35 14 14 0.17 0.03 0.14

WTP-4 Median 0.05 0.02 0.03 0.2 17 18 17 0.05 0.03 0.025
Average 0.1 0.02 0.06 1 22 21 21 0.2 0.07 0.22

Minimum 0.01 0.01 0.01 0.01 1 1.6 1 0.01 0.01 0.01
Maximum 0.6 0.02 0.27 20 81 78 81 1 0.5 2
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Figure 8. Time-resolved depth profiles of Pb, Tl, and Sb in Sample 490-28.

As presented in Table 4, the pyrite in Sample 490-13 is highly enriched in As and Ni
(100–500 ppm), followed by Pb > Co > Sb > Mn > Mo > Bi > Cu. The parallel trends of the
counts for As, Fe, and S indicate that As enters the pyrite lattice via isomorphic substitution
(Figure 9). Additionally, the trends for Co, Ni, and As are parallel to those for Fe and S.
This result suggests that they exist in pyrite as isomorphisms or micro-inclusions (such as
cobaltite and CoAsS). The similar spikes of Pb, Tl, and Sb are probably due to the existence
of Pb-Sb inclusions. The pyrite in Sample 490-13 has a low Co/Ni ratio with a median
of 0.24.
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Figure 9. Time-resolved depth profiles of Co, Pb, Ni, As, Sb, and Tl in Sample 490-13.

The pyrite in Sample S3-2 has extremely elevated As with an average of 999 ppm. The
content of Cu (270 ppm) is strongly enriched. In order of concentration, the other elements
are Pb > Co > Bi > Th. The pyrite Co/Ni ratio of S3-2 with a median of 15 is the highest
among all the samples. In Figure 10, the parallel trends for Co, Fe, and S are flat, indicating
that Co enters pyrite by isomorphism. The trend for As is nearly parallel to that of Co,
except for a bulge in the middle. This result implies that in addition to isomorphism, As
is present as inclusions in pyrite. Although Bi counts have a profile similar to those of
Fe and S, it increases at the end of the curve, which suggests that Bi is present as both
isomorphisms and inclusions. The spike in Bi is similar to that in Pb, which indicates that
Bi and Pb are combined within inclusions in pyrite.



Minerals 2022, 12, 489 14 of 28

Minerals 2022, 12, 489 12 of 31 
 

 

 

Figure 8. Time-resolved depth profiles of Pb, Tl, and Sb in Sample 490-28. 

 

Figure 9. Time-resolved depth profiles of Co, Pb, Ni, As, Sb, and Tl in Sample 490-13. 

 

Figure 10. Time-resolved depth profiles of Bi, Pb, As, and Co in Sample S3-2.Figure 10. Time-resolved depth profiles of Bi, Pb, As, and Co in Sample S3-2.

In summary, the presence of elements with high contents in pyrite from each sample
is exhibited in Table 5.

Table 5. The present forms of trace elements in pyrite.

Mineralizing Zones Sample Isomorphism Micro-Inclusion Inclusion

W-Sn-Mo-Bi
490-28 Co, Ni, As Bi, Pb, Ag, Tl, Te
490-13 Co, Ni, As Pb, Sb, Tl
S3-2 As, Co Pb, Bi Bi, Pb, As

Pb-Zn
S8-2 Co, Ni, As Pb, Bi
QX-1 Mn, Pb Pb, Ag

Hg-Sb WTP-4 Mn, Pb Pb-Zn-Cu Pb, Zn, Cu, Sb; V, As

S8-2 and QX-1 are ores collected from the Pb-Zn zone.

These two samples have distinctive pyrite content features. The pyrite for Sample S8-2
has various elements above the detection limits. Co > Mn > Ta > Cu > Sn > As are strongly
enriched, followed by Ti-Zn-Bi-W-Se. This sample also has slight enrichments in Ni > Pb >
Th > Cr > V > Ag > Te. Based on the time-resolved LA-ICP-MS depth profile of Sample
S8-2 (Figure 11), the parallel trends for Co, Ni, and As suggest that these elements enter
pyrite via a substitution mechanism. The parallel trends for Pb and Bi mirror those of Fe
and S, indicating that Pb and Bi may occur as Pb-Bi micro-inclusions.

By comparison, pyrite from QX-1 contains minor elements above the detection limits.
It has only moderate enrichment in Mn and slight enrichments in Pb and Ag. Its Co/Ni
(0.12) ratio is the lowest. The trends for Mn and Pb are parallel to those of Fe and S,
suggesting that they occurred in pyrite in the form of a solid solution (Figure 12). However,
Pb displays spike summation, indicating the occurrence of a Pb solid solution.

Sample WTP-4 was collected from the Hg-Sb zone. Unlike those from the W-Sn-
Mo-Bi and Pb-Zn mineralized zones, pyrite from Sample WTP-4 contains abundant low-
temperature elements As, Mn, and Ni and is moderately enriched in Cu, Sb, Co, Ti, Pb, Zn,
Cr, and Se. It also has small amounts of Mo, Zr, and V. As presented in Figure 13, the trend
for Mn is parallel to those of Fe and S, indicating its presence as a solid inclusion in pyrite.
The V spike nearly mirrors that of As, indicating the occurrence of a V-As solid inclusion in
the pyrite. The trends for Pb, Zn, and Cu are parallel to each other, implying that they are
probably present as a solid inclusion. In addition, their curves are parallel to those of Fe
and S, indicative of the possible occurrence of galena micro-inclusions with elevated Cu.
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Figure 13. Time-resolved depth profiles of Mn, V, As, Pb, Zn, and Cu in Sample WTP-4.

4.4. Mapping Analysis

As shown in Figure 14, pyrite from Sample 490-28 has an obvious core-rim texture. The
core has elevated Co and Ni, while the rim is enriched in Bi, Pb, Ag, and As. Meanwhile,
some areas of the pyrite core are extremely enriched in Co and Ni (red areas in Co mapping
and green area in Ni mapping). These parts are probably relicts of sedimentary pyrite.
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Pyrite from Sample S8-2 has abundant Co and As in the core, while Pb, Bi Ag and
minor Sb, Te, As, Co, and Ni are enriched in the rim (Figure 15). Pb-Bi-Sb inclusions
occur occasionally in the pyrite. The sporadic distribution of Cu indicates that Cu occurs
as inclusions.
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Pyrite from Sample QX-1 has few trace elements (Figure 16). Only minor Mn and Pb
and trace amounts of Cu are detected.

Collectively, the results of pyrite mapping analyses are presented in Table 6.
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Table 6. The core-rim texture of pyrites.

Mineralizing Zones Sample Core Rim

W-Sn-Mo-Bi 490-28 Co, Ni Pb, Ag, Sb, Bi

Pb-Zn
S8-2 As, Co Co, Ni, As, Te, Sb, Ag, Pb, Bi, Cu
QX-1 Pb, Mn, Cu Mn, Sb, Pb, Ag

Note: The content unit is ppm.

5. Discussion
5.1. Element Combinations and Features

Pyrite is one of the most common minerals in nature and a ubiquitous mineral in
the Shizhuyuan ore field. In addition to cubes, pyrite crystals are present as octahedra
and pyritohedra. Octahedra usually form at high temperatures (>600 ◦C), such as the
pyrite occurring in the Ni ore in Norway; in contrast, pyritohedra are commonly present in
low-temperature or sedimentary deposits rather than in high-temperature or metamorphic
deposits [36]. The composition, texture and electrical properties are variable, leading
to its ability to capture various minor and trace elements, such as Ag, As, Au, Bi, Cd,
Co, Cu, Hg, Mo, Ni, Pb, Pd, Ru, Sb, Se, Sb, Sn, Te, Tl, and Zn [37]. These minor and
trace elements are present in pyrite crystals in three forms: (1) metamorphism; (2) micro-
inclusions or nanometer-sized inclusions; and (3) mineral inclusions that fill in the fractures.
Isomorphous substitution commonly occurs between ions/anions with similar charges
and radii. Co, Ni, As, Se, and Te mostly enter the pyrite crystal lattice by isomorphism.
Isomorphous substitution can be classified into two forms: (a) stoichiometric substitution,
such as Co or Ni2+ substituting for Fe2+ in pyrite and Se/Te replacing S2- in pyrite crystals,
and (b) nonstoichiometric substitution, such as AsS3-/AsS2

4- substituting for S in pyrite
crystals [37].

According to the relationships among their variations, trace elements are divided into
several groups: (1) Bi, Pb, Te, and Tl; (2) Sb, Cu, Pb, Tl, and Zn; and (3) Mn and V.

5.1.1. Bi, Pb, Te and Tl

As shown in Figure 16, the Bi content has a strong correlation with temperature: the
pyrites from Samples 490-28, S3-2, and S8-2 corresponding to the high-temperature zone
have the highest Bi contents (average contents are 79, 47, and 17 ppm, respectively); those
from the low-temperature zone (Sample WTP-4) have the lowest Bi concentration of 0.2
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on average; those from the moderate-temperature zone have a moderate Bi content of
21 ppm. Bi probably occurs as native bismuth in high-temperature (>350 ◦C) reductive
fluids [38]. This inference is consistent with the unusually high Bi contents of Samples
490-28 (937 ppm) and S3-2 (288 ppm), which probably correspond to the occurrence of
native bismuth inclusions in pyrite.

Based on the Te-Bi binary diagram (Figure 17), in the low-temperature Hg-Sb zone,
the small variations in Bi and Te contents and their strong correlation indicate that Bi is
mostly present in pyrite as bismuth telluride (BiTe). In contrast, in the W-Sn-Mo-Bi and
Pb-Zn zones, Pb and Te contents show weak correlations. The Bi/Te ratio ranges widely,
with a minimum of 0.05 and a maximum of 1000, which suggests that bismuth telluride
(BiTe) is not the main occurrence of Bi in these two zones.
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Actually, in the W-Sn-Mo-Bi and Pb-Zn zones, the Bi content is strongly correlated
with the Pb content. As shown in Figure 7, Figure 10, and Figure 11, which display the
time-resolved depth profiles of Samples 490-28, S3-2, and S8-2, respectively, the similar
spikes of Bi and Pb imply their strong correlation and the possible occurrence of Bi-Pb
mineral inclusions. For instance, as shown in Figure 11 for Sample S8-2, the trends of
Pb, Bi, and S are parallel to each other, indicating the presence of lillianite (Pb3Bi2S6),
aikinite (CuPbBiS3), or cosalite (Pb2Bi2S5) as micro-inclusions; in the time-resolved depth
profile of Sample S3-2 (Figure 10), the Bi spike is similar to that of S, which is probably
attributed to the occurrence of bismuthinite (Bi2S3) micro-inclusions. The Pb/Bi ratio in the
W-Sn-Mo-Bi zone (Sample 490-28) is 1.5. In the Pb-Zn zone, Sample S8-2 has a distinctive
Pb/Bi ratio of 5. These values are consistent with the presence of Bi-Pb mineral inclusions
in these two zones. Moreover, the Pb concentration in each mineralized zone is entirely
distinct. The Pb contents in the W-Sn-Mo-Bi zone are the highest of the three zones, with a
maximum of 519 ppm. The average Pb concentrations of samples 490-28, 490-13, and S3-2
are 41 ppm, 76 ppm, and 73 ppm, respectively. The Pb-Zn zone has the lowest Pb contents
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(0.19–40 ppm); the Pb concentrations of pyrites from Sample S8-2 and Sample QX-1 average
6 and 5 ppm, respectively. With respect to the Hg-Sb zone, the Pb content corresponding to
Sample WTP-4 is 22 ppm on average, and 81 ppm at its maximum. The discrepancy in Pb
concentrations among the three zones might be attributed to the differences in the quantity
of galena. Specifically, in the Pb-Zn zone, Pb preferentially enters galena, resulting in a
decrease in Pb in pyrite, and vice versa.

As shown in the time-resolved depth profiles of Sample 490-28 in Figure 7, the parallel
trends of Tl, Pb, Bi, and Te indicate their strong correlations. These correlations proba-
bly result from the replacement of Pb2+ by 2Tl+ in lillianite (Pb3Bi2S6) or other minerals
composed of Bi and Pb [39].

In the Tl-Bi and Pb-Bi binary diagrams, three regions with different temperatures
(the high-T, moderate-T and low-T regions) are apparent according to Pb/Bi and Bi/Tl;
in Samples 490-28, S3-2, and S8-2, representing the high-T region, the Pb/Bi ratios are
higher than 1.5. In contrast, Pb/Bi in the low-T region (Sample WTP-4) is lower than
0.01. Samples 490-13 and QX-1 have intermediate Pb/Bi ratios. Similarly, Bi/Tl is higher
than 20 in the high-T region and lower than 2 in the low-T region. The moderate-T region
corresponds (Sample 490-13 and QX-1) to Bi/Tl ratios ranging from 2 to 20. In summary,
Pb/Bi and Bi/Tl are effective factors for distinguishing mineralization zones with various
mineralization temperatures.

5.1.2. Au, Ag, Te, and As

The Au contents are low in the Shizhuyuan ore field and hardly depend on temper-
ature: the inner W-Sn-Mo-Bi zone (averages, Sample 490-13: 0.08 ppm; S3-2: 0.06 ppm;
490-28: 0.05 ppm) > the outer zone (WTP-4: 0.06 ppm) > the middle Pb-Zn zone (S8-2:
0.03 ppm; QX-1: 0.02 ppm). As shown in Figure 17, based on the Au saturation line of
CAu = 0.02 × CAs + 4 × 10−5 [40], Au is unsaturated and present in pyrite as micro-
inclusions [41,42]. Au has a positive correlation with Ag (Figure 17), indicative of the
occurrence of electrum (AuAg) inclusions. Furthermore, Ag/Au ranges widely from 1 to
200, suggesting the existence of minerals containing Au and Ag. As illustrated in Figure 17,
Au is also positively associated with Te. Au is inferred to be present also as tellurides, such
as calaverite (Au2Te) and petzite (AuAg3Te2) inclusions.

The Ag contents in the W-Sn-Mo-Bi and Pb-Zn zones reach 11 ppm on average and
1.2–2.1 ppm on average, respectively. By comparison, the Ag concentration (0.7 ppm) of
the Hg-Sb zone is one order of magnitude less than those of the other zones. As presented
in Figure 17, not all of the data have a good correlation. These results suggest that Ag
combines with other elements to form mineral inclusions, in addition to the aforementioned
Au and Te. As shown in Figure 17, according to their strongly positive association, Ag and
Sb are likely combined into minerals such as stephanite (Ag2SbS3), pyrargyrite (Ag3SbS3),
miargyrite (AgSbS2) and polybasite ((Ag, Cu)16Sb2S11) [19]. Additionally, Ag demonstrates
a positive relationship with Pb, indicating that minor Ag probably enters galena micro-
inclusions. Foord et al. [43] reported that Ag combined with Sb/Bi can enter galena by
replacing Pb in the mineral lattice. The replacement mechanism is Ag+ + (Sb, Bi)3+ = 2Pb2+.
This substitution is likely the cause of the parallel trends of Pb, Sb, and Ag in the time-
resolved depth profiles for Sample 490-28 (Figure 7).

5.1.3. Sb, Cu, Pb, Tl, and Zn

The distributions of Sb differ in each zone from each other. The Sb concentration in
the Hg-Sb zone is much higher than those in other zones, with a maximum of 736 ppm
and an average of 47 ppm. In contrast, the maximum (3 ppm) and average (0.8 ppm) Sb
concentrations in the Pb-Zn zone are two orders of magnitude less than those in the Hg-Sb
zone. With respect to the W-Sn-Mo-Bi zone, the Sb concentration reaches a maximum of
295 ppm, with an average ranging from 5 to 35 ppm.

The similar spikes of Sb, Tl, and Pb (Figure 8) indicate their strong correlations.
This observation agrees with the positive association of Sb and Tl (Pb) in the Tl (Pb)-Sb
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binary diagram (Figure 17), which probably results from the replacement of Pb in Pb-Sb
mineral inclusions by Tl, such as jamesonite (Pb2Pb2FeSb6S14) and boulangerite (Pb5Sb4S11).
Furthermore, Sb-Cn and Pb-Cu present sound correlations as well, implying the occurrence
of bournonite (PbCuSbS3).

Mn and V

Mn and V have extremely contrasting values: the maximum Mn content is 1687 ppm,
while V has a maximum of 14 ppm. They share the same variation tendency of increasing
from the inner zone (W-Sn-Mo-Bi) to the outer zone (Hg-Sb).

In summary, the abovementioned distribution characteristics of trace elements are
presented in Table 7.

Table 7. Distribution characteristics of trace element in pyrites.

Element Content vs.
Temperature Comparison Combination DV HT(ppm) MT(ppm) LT(ppm)

Bi Positively related LT and OZ: Te-Bi;
MT-HT: Pb-Bi Tl/Bi >20 2< and <20 <2

Pb IZ >OZ>MZ Bi, Sb, Cu, Tl Pb/Bi >1.5 0.01< and
<1.5 <0.01

Cu IZ >OZ>MZ Pb, Zn, Sb
Co/Ni Positively related Co/Ni >1 <1 <1

Au IZ >OZ>MZ Ag, Te, As
IZ (ppm) MZ(ppm) OZ(ppm)

Ag Variation in orders IZ >MZ>OZ Au, Te, Sb, Pb Average 1.2–2.1 0.5
Sb Variation in orders MZ<IZ <OZ Sb, Tl, Pb, Cu Average 4–8.3 0.3 44.1
Mn IZ <MZ<OZ Average 16 102 166
V Average 0.03 0.54 1.54

Notes: IZ is inner zone; MZ is middle zone; OZ is outer zone; LT is low temperature; MD is middle temperature;
HT is high temperature; DT is discrimination value.

5.2. Ore Forming Environment

Co/Ni is an important discriminating tool for ore diagenesis [18,39,44]. In the three
zones, Ni is most enriched in the Hg-Sb zone (the Ni content of Sample WTP-4 has a median
value of 101 ppm). In contrast, the enrichment in Co is the highest in the W-Sn-Mo-Bi zone
corresponding to the high-temperature region. This result is consistent with the fact that
the Co/Ni ratio has a strongly positive association with the temperature of mineralization.
As shown in Table 3, each zone has a distinct Co/Ni ratio. Co/Ni in the high-temperature
region is the highest. Specifically, Sample S3-2 (15 ppm) > Sample 490-28 (4 ppm) > Sample
S8-2 (2 ppm). In the moderate-temperature zone, Sample 490-13 (0.2 ppm) > Sample QX-1
(0.1 ppm), which is closely followed by Sample WTP-4 (median value: 0.09 ppm) in the
low-temperature zone. As presented in Figure 17, the data are separated into two sections
by the line where Co/Ni = 1:1) data higher than the line represent the high-temperature
zone, and (2) data lower than the line represent the moderate- to low-temperature zones. In
Figure 17, the data of the high-, moderate- and low-temperature zones can be discriminated
by the distinct regions they occupied. Moreover, Sample S3-2 in the high-temperature zone
is outstanding due to its extremely high Co/Ni ratio, which suggests that Sample S3-2 was
subjected to the strongest magmatic-hydrothermal alteration.

As mentioned above, Bi is an indicative factor of high temperature, and the Co/Ni
ratio reflects the degree of hydrothermal alteration. Therefore, the Bi-Co/Ni binary diagram
can discriminate these mineralization zones. As presented in the Bi-Co/Ni binary diagram
(Figure 16), all five samples are located in distinct regions. According to temperature, all
the samples can be divided into three groups: (1) for the high-temperature group, Samples
490-28 and S3-2 from a complex skarn in the W-Sn-Mo-Bi zone and Sample S8-2 in the
Pb-Zn zone all plot in the high Co/Ni and high Bi region (1 < Co/Ni < 100, 0.1 < Bi < 1000),
implying a magmatic-hydrothermal genesis; (2) for the moderate-temperature group,
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Sample 490-13 collected from a simple skarn in the W-Sn-Mo-Bi zone has high Bi and low
Co/Ni (Co/Ni < 1, 0.1 < Bi < 1000); and (3) for the low-temperature group, Sample WTP-4
acquired from the antimony ore in the Hg-Sb zone has characteristics of low Bi and low
Co/Ni.

5.3. Trace Element Distribution Characteristics
5.3.1. W-Sn-Mo-Bi zone

As demonstrated by Tables 5 and 6, in Sample 490-13, the trace element composition
is simple: (1) Co, Ni, and As enter pyrite by isomorphism, and (2) mineral inclusions
mostly contain Pb, Bi, and Tl. Moreover, its Co/Ni ratios are 0.02–3, with a median of
0.2. By comparison, Samples 490-28 and S3-2 collected from the complex skarn have more
variable pyrite trace element compositions: (1) Co, Ni, and As enter the pyrite lattice by
isomorphism; (2) Pb-Bi mineral inclusions occur as both micro-inclusions and mineral
inclusions in the pyrite lattice fraction; and (3) mineral inclusions are composed of Bi, Pb,
Ag, Tl, Te, and Sb. Pyrite Co/Ni ratios of the complex skarn are high. Specifically, Sample
S3-2 acquired from the complex skarn in Chaishan has a median Co/Ni of 15 (ranging from
1.29 to 534.97). Similarly, the Co/Ni ratios of Sample 490-28 in the Shizhuyuan complex
skarn range from 0.3 to 10 with a median value of 4. Accordingly, a complex skarn results
from a simple skarn superimposed by a hydrothermal process that adds Bi and Ag. The
Co/Ni ratios of complex skarn are far higher than that of simple skarn. Based on field
work and petrological observations, a simple skarn overlaid by greisenization leads to
the formation of a complex skarn. This process is in accordance with the trace element
distributions in these two kinds of skarn. These results provide evidence for the suggestion
that the Co/Ni ratio is an effective tool to indicate the degree of hydrothermal alteration.
As a result, Sample S3-2 with the highest Co/Ni reflects the strongest hydrothermal impact.

5.3.2. Pb-Zn zone

On the basis of the spot analysis and mapping of pyrite (Tables 5 and 6), Sample
8-2 has a trace element assemblage similar to that of the skarn in the W-Sn-Mo-Bi zone:
(1) Co, Ni, and As enter pyrite by isomorphism; (2) Pb and Bi form micro-inclusions;
and (3) Pb, Bi, Te, and Sb are found in mineral inclusions. Except for a value of 0.04,
the other sixteen Co/Ni ratios of Sample S8-2 are higher than 1.67, with a maximum of
289 and a median of 2.44. These results provide evidence that the Pb-Zn deposit has a
hydrothermal genesis. Interestingly, Sample QX-1 from Shexingping has apparently distinct
characteristics of trace element combinations: (1) Mn, Pb, and Cu occur in the form of
isomorphism, and (2) mineral inclusions are mainly composed of Mn, Sb, Pb, and Ag.
Compared with Sample S8-2, Sample QX-1 has much more Mn and much less Bi. Moreover,
the Co and Ni concentrations of Sample QX-1 are mostly lower than the detection limits.
Five groups of Co and Ni content data range from 0.04 to 0.4 with a median value of 0.12.
The trace element assemblage and Co/Ni ratios of Sample QX-1 are in contrast to those
of Sample S8-2, indicating that they were impacted by two distinct hydrothermal fluid
processes. The Co/Ni ratios and Bi contents of Sample QX-1 are lower than those of Sample
S8-2, indicative of the lower temperature of the hydrothermal fluids. This inference is in
accordance with the previous fluid inclusion study. The homogenization temperatures of
fluid inclusions in Samples S3-2 and S8-2 are 299–344 ◦C and 187–362 ◦C, respectively [17].
The high Mn concentration of Sample S8-2 suggests higher oxygen fugacity. Moreover, the
Mn content reaches 485.1 (Table 4), indicating a hydrothermal genesis [45].

5.3.3. Hg-Sb zone

Sample WTP-4 was collected from an ore in Wutongping. Its pyrite trace element
characteristics are elucidated as follows: (1) Mn and Pb are present as isomorphisms; (2) Pb,
Zn, and Cu occur as micro-inclusions; and (3) mineral inclusions contain Pb, Zn, Cu, and
As. The pyrite of sample WTP-4 has high Ni concentrations with an average of 119 ppm
and a maximum of 473 ppm. Its Co/Ni ratios are low, with a median of 0.09. Except for
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two data points (3.04 and 2.6 ppm), the other twenty-six Co/Ni ratios are lower than 1.
Consequently, pyrites from Sample WTP and those from Sample QX-1 (Pb-Zn zone) have
similar Co/Ni ratios and trace element combinations.

In summary, the pyrite trace element assemblage varies in each mineralized zone.
The assemblages exhibit a continuing regular variation from the inner zone to the outer
zone (Figure 18; Table 8). (1) Inner zone: the simple skarn from the inner zone has element
assemblages of Co-Ni-As and Pb-Sb-Tl, while the complex skarn from the inner zone
corresponds to the combinations of Co-Ni-As and Pb-Bi-Ag-Sb-Tl-Te. (2) Middle zone:
the Chaishan Pb-Zn ore (S8-2) in the inner part has element combinations of As-Co and
Pb-Bi-Te-Sb, and the Shexingping Pb-Zn ore in the outer part has element assemblages
of Mn-Pb-Cu and Ag-Sb. (3) Outer zone: the element assemblages of the Hg-Sb ore are
Mn-Pb-Cu and Sb-Zn. In the inner zone, the Bi content increases from the simple skarn to
the complex skarn, but decreases from the inner zone through the inner and outer parts
of the middle zone to the outer zone. Meanwhile, Mn and Sb show the opposite trend,
increasing from the inner zone to the outer zone. Pb and Cu concentrations decrease from
the inner zone to the middle zone. Then, they increase from the middle zone to the outer
zone. Thus, the element assemblages and regular variations in pyrite contents among
mineralized zones reflect the gradual changes in ore-forming hydrothermal fluids.
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Table 8. Combination and variation of trace elements in pyrites among each zone.

Rim Location Sample Rock Combination Variation

W-Sn-Mo-Bi
Shizhuyuan 490-13 Simple Skarn Co-Ni-As, Pb-Sb-Tl Bi: gradually increase

490-28 Complex Skarn Co-Ni-As,
Pb-Bi-Ag-Sb-Tl-TeChaishan S3-2 Complex Skarn

Bi: gradually decrease; Mn,
Sb: gradually increase; Pb, Cu:

decrease after increase
Pb-Sb

Chaishan S8-2 Galena Ore As-Co, Pb-Bi-Te-Sb
Shexingping QX-1 Galena Ore Mn-Pb-Cu, Ag-Sb

Hg-Sb Wutongping WTP-4 stibnite Ore Mn-Pb-Cu, Sb-Zn

6. Conclusions

1. The gradual changes in pyrite trace elements from the inner mineralization zone to the
outermost zone reflect the compositional variations in the corresponding hydrother-
mal fluids.

2. Pyrites in each mineralized zone are distributed in distinct regions in the Co/Ni-Bi
binary diagram, suggesting that this diagram is an effective discrimination tool for
the degree of hydrothermal alteration.

3. All three mineralized zones probably constitute a whole ore-forming hydrothermal
system, and the hydrothermal fluids originated from the Qianlishan granites.
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