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Abstract: Scheelite associated with calcium-containing minerals such as calcite and fluorite is difficult
to separate by flotation because of the Ca ions contained in the mineral lattices, which cause scheelite
to have similar surface properties and floatability to gangue minerals. Traditional collectors such as
oleic acid need to add a large amount of sodium silicate as gangue inhibitors, which causes difficulties
for the settlement of tailings. In addition, the use of benzohydroxamic acid (BHA), which needs the
addition of Pb(NO3)2 as the scheelite activator, can also cause environmental pollution. In this paper,
Fe-BHA, a new collector containing the iron complex, was studied to investigate its flotation ability
of scheelite, as well as its BHA/FeCl3 ratio on scheelite flotations. In the single mineral flotations,
the Fe-BHA showed a significant difference in the flotation recoveries of scheelite and calcite, with a
scheelite recovery of 77.03% at pH 8.0 and calcite recovery of 16.69% at the same pH. The results of the
roughing tests of Xianglushan actual ore showed that the scheelite with Fe-BHA (500 g/t BHA and
200 g/t FeCl3) and 40 g/t oleic acid as collectors obtained satisfactory flotation results with a WO3

grade of 1.56% and WO3 recovery of 65.52%, which were much higher than those of scheelite with
BHA or oleic acid as the collector, but there was still a gap with those of scheelite using Pb(NO3)2 as
activation and BHA as the collector. The UV-Vis curves of the Fe-BHA with different BHA/FeCl3
ratios indicated that the Fe-BHA chelates might have several different structural forms, and the single
mineral tests of the BHA/FeCl3 ratios showed that when the molar ratio of benzohydroxamic acid to
FeCl3 was about 1.2:1, the best scheelite flotation result was obtained in this test. In addition, the XPS
analyses proved that the adsorption of the Fe-BHA on the scheelite surface occurred, and by fitting
the peaks of Ca 2p and O 1s of scheelite, it was found that the mechanism of the Fe-BHA acting on
the Ca sites of the scheelite surface was through the removal of H2O from the Ca-OH of scheelite and
Fe-OH from Fe-BHA to form Fe-O-H.

Keywords: Fe-BHA; chelate; scheelite flotation; BHA/FeCl3 ratio

1. Introduction

Tungsten, a rare metal, is important for its strategic position and industrial applica-
tions [1,2]. Scheelite (CaWO4) and wolframite [(Mn, Fe)WO4] are two major tungsten-
containing minerals which have important development value. As wolframite has the
characteristic of easy processing, which has led to its depletion, the exploitation of scheelite
has become important [3,4]. Usually, the flotation method is used to separate scheelite and
gangue minerals. However, there is a kind of scheelite associated with calcium-containing
minerals, such as calcite and fluorite, which is difficult to separate out by flotation, be-
cause the Ca ions contained in the mineral lattices cause scheelite to have similar surface
properties and floatability to the gangue minerals [5–7].

Conventionally, the Petrov process is applied to separate scheelite from other cal-
cium minerals, which requires steaming of bulk concentrate in 2–4% solutions of sodium
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silicate (Na2SiO3) at 80–90 ◦C using fatty acids as the collectors [3,8]. However, the en-
ergy consumption caused by the high temperature and the difficulty of tailing settle-
ment caused by sodium silicate have led people to research new high-efficiency flotation
reagents [9,10]. Many researchers have conducted a great deal of work, such as depressant
development, mixed-collector use, and selective collector exploiting to separate scheelite
from the calcium-containing minerals [11,12]. Among this work, the development of a
highly efficient collector is challenging and meaningful as it could make the flotation pro-
cess clean and convenient. Up to now, fatty acid, such as oleic acid, linoleic acid, palmitic
acid, and sodium oleate, which are well known for their strong collection and poor se-
lectivity, remain the most commonly used collectors of scheelite [3,8,13]. Some scholars
have found the selectivity of cationic collectors to scheelite flotation may be better than
traditional anionic collectors [8], and the cationic/anionic mixed collectors can achieve
better results [14]. However, these collectors still reveal the disadvantages of poor selec-
tivity and water solubility, which need to be further studied [15]. Benzo hydroxamic acid
(BHA) is recognized to have good selectivity for tungsten minerals; however, Pb(NO3)2,
which pollutes the environment, still needs to be added to improve the flotation [16,17].
Han et al. developed a new high-efficiency collector Pb-BHA, applied to scheelite flotation
and achieved satisfactory flotation results [18,19]. Nevertheless, only a few types of ores
were suitable for separation with this reagent, and more new and efficient agents need
to be developed [20]. Tian et al. [21] used Fe3+ as the activator of cassiterite with BHA as
the collector, and Chen et al. [22] applied Fe-BHA to ilmenite flotation and established the
adsorption model of one of the configuration forms of Fe-BHA on the ilmenite surface.
However, the application of the Fe-BHA in scheelite flotation was not mentioned, and
the structural forms of the Fe-BHA chelates as well as their forms in pulp still need to be
further studied.

In this article, a novel Fe-BHA was developed and applied to scheelite flotation by
laboratory tests, and the flotations of single minerals and actual ores were carried out.
Ultraviolet−visible spectroscopy (UV-Vis) analyses and X-ray photoelectron spectroscopy
(XPS) were conducted to investigate the adsorption mechanism of the Fe-BHA chelates on
scheelite. In addition, by the UV-Vis spectra, the possible and most effective forms of the
Fe-BHA chelate were discussed in detail.

2. Materials and Methods
2.1. Minerals and Reagents

In this study, all the mineral samples used in the experiments were purchased ores.
The scheelite and calcite samples were obtained from Jiangxi and Qinghai province in
China, respectively. Single minerals with high purity were obtained by crushing and
handing. After the ore samples were broken, the −106 + 45 µm particles were screened
for single mineral flotation and stored in wide mouthed jars. The results of the X-ray
diffraction (XRD) and the chemical analyses of the minerals samples are shown in Figure 1
and Table 1, respectively.
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Figure 1. The X-ray diffraction figures of scheelite (a) and calcite (b).

Table 1. Results of the chemical analyses of the scheelite and calcite single mineral samples.

Sample
Element Content, % Purity of the

Sample, %Ca C WO3 TFe

Scheelite 13.25 - 76.85 0.02 95.40

Calcite 39.84 11.96 - 0.02 99.60

It can be seen from Figure 1 that the purities of the scheelite and calcite single minerals
were quite high. In addition, from the chemical analysis results of Table 1, the purity of the
scheelite sample was determined to be 95.40%, while that of the calcite sample was 99.60%.

Chemically pure FeCl3 and benzohydroxamic acid (BHA) were used to form the
Fe-BHA chelates collector by mixing their aqueous solutions in a certain molar ratio.
Chemically pure Pb(NO3)2 and oleic acid were also used in the tests for comparison.
Solutions of HCl (0.1 mol/L) and NaOH (0.1 mol/L) were used as pH modifiers. Deionized
water was used throughout all the single mineral flotation tests.

2.2. Flotation Tests

The single mineral flotation tests were carried out in a 30 mL cell of an XFGII laboratory
flotation machine (Jilin Prospecting Machinery Plant, Changchun, China). The mineral
suspension was made by adding 2 g mineral into 25 mL deionized water, with a 3 min
agitation for mixing. The pH value was adjusted and recorded after this agitation. Then,
the reagents were added in order, the suspension was agitated for another 3 min, and a
4 min flotation was carried out. The froth products and tailings were dried and weighed,
used for grade testing and recovery calculations.

The roughing tests of the actual ore of scheelite were carried out in a 1.0 L cell of an
XFGII laboratory flotation machine with 300 g samples for a 6 min flotation.

2.3. X-ray Diffraction (XRD) Analyses

X-ray diffraction analyses were carried out at a room temperature of 25 ◦C by the X’
pert HighScore Plus analyzer from PANalytical, Almelo, Netherlands. The scanning range
was 5–9◦, and the scanning speed was 10◦/min. During the sample preparation, the ore
samples were ground to less than 5 µm with agate mortar, and the mineral X-ray diffraction
energy spectrum was obtained by testing after tablet pressing.

2.4. Ultraviolet–Visible Spectroscopy (UV-Vis) Analyses

A UV-Vis spectrophotometer (Evolution 201, Thermo Fisher Scientific, Waltham, Amer-
ica) was used to measure the spectra of the PE pellet extracted solutions, and the bundled
software thermo INSIGHT 2 (Thermo Fisher Scientific, Waltham, MA, USA) was used
for instrument control and spectral acquisition. The spectral absorption range was set as
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200–800 nm with a sampling interval of 1.0 nm. Ethanol was used as a reference blank.
The solution of FeCl3 and BHA was prepared in deionized water prior to testing. The
concentration of the FeCl3 solution was fixed at 1 × 10−6 mol/L, and the mixture of FeCl3
and BHA solutions with different concentration ratios were carried out for UV-Vis analyses.
The UV-Vis absorption curves of the Fe-BHA were compared with those of 1 × 10−6 mol/L
FeCl3 and 1 × 10−6 mol/L benzohydroxamic acid.

2.5. X-ray Photoelectron Spectroscopy (XPS) Analyses

The XPS analyses were carried out with the America Thermo VG ESCALAB250XI
spectrometer (Thermo Fisher Scientific, Waltham, America) using a monochromatic Al Kα

source at the working voltage, current and excitation energy of 15 kV, 10 mA, and 1486.6 eV,
respectively. The adjustment of the XPS analyzing results was based on the binding energy
of the hydrocarbon C1s photoelectrons (284.6 eV). The scan area was 1 mm2 and the scan
depth was 0.5–2 nm.

3. Results and Discussion
3.1. Results
3.1.1. The Single Mineral Flotation Tests

The flotation results of scheelite and calcite single mineral samples by NaOl, BHA,
Pb(NO3)2+BHA, and Fe-BHA are shown in Figure 2. As calcite dissolves under acidic
conditions, and the prepared BHA solution was weakly alkaline, the test results shown in
this figure were all obtained at pH 7.0–12.0.
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Figure 2. The flotation results of scheelite and calcite single mineral samples by NaOl (80 mg/L), BHA (160
mg/L), Pb(NO3)2+BHA (Pb2+—-1 × 10−4 mol/L; BHA—160 mg/L), and Fe-BHA (Fe3+—1 × 10−4 mol/L;
BHA—160 mg/L) as a function of pH values.

In the single mineral flotation tests in Figure 2, the best flotation recoveries of calcite
were obtained when sodium oleate (NaOl) was used as the collector. In the range of
pH 7.0–12.0, the flotation recoveries of calcite were more than 88.69%, and the maximum
was 97.0% (pH 12.0). When NaOl was used as the collector in the range of pH 7.0–12.0,
the recovery of scheelite increased with the increase in the pH value, and it reached a
maximum value of 93.25% at pH 12.0. The ability of BHA to collect calcite and scheelite
was found to be weaker than NaOl. When the pH value was less than 9.5, the collection
effect of BHA on scheelite was better than that of calcite. When BHA was used as the
collector, the recovery of scheelite reached a maximum value of 48.93% at pH 6.9, and then
the recovery of scheelite decreased with the increase in the pH value. When BHA was used
as the collector, Pb2+ had an obvious activation effect on scheelite flotation. In the range of
pH 7.0–12.0, scheelite flotation recoveries were significantly higher than that of calcite. The
maximum difference in flotation recoveries between scheelite and calcite was 44.44 % (pH
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7.0). Fe-BHA had a good collecting ability for scheelite. In the range of pH 7.0–12.0, the
flotation recoveries of scheelite were higher than that of calcite under the same conditions.
The maximum difference between the two was 60.34 % (pH 8.0).

3.1.2. Roughing Tests of the Actual Ore of Scheelite

In order to verify the effectiveness of the Fe-BHA on scheelite flotations, the actual
ore of scheelite was selected for roughing tests. The scheelite ore samples were taken
from Xianglushan in Jiangxi, China, with the grade of WO3 at 0.73% and the grade of S
at 2.90%. Since the content of sulfur-containing minerals in the ore was high, which may
affect the subsequent flotation of scheelite, desulfurization flotation was carried out first.
The flowsheet of the roughing test is shown in Figure 3.
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The results of the previous exploratory tests of the Xianglushan scheelite ore showed
that the Fe-BHA had the best separation effect when the grinding fineness was 75%
−0.074 mm, and the amount of Na2CO3 was 1000 g/t. Therefore, under such condi-
tions, the flotation results of the Xianglushan scheelite ore were compared with those of
different collectors, and a set of data with balanced metal content is given in Table 2, where
the errors of yield are controlled to be less than 3% and the test errors of WO3 grade are
less than 0.5%.
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Table 2. Results of the roughing tests of Xianglushan scheelite ore as a function of the collector species.

Collector Product Yield (±3.00), % WO3 Grade
(±0.50), % WO3 Recovery, %

BHA
(BHA-500g/t)

Oleic acid-20g/t

Sulphur
concentrate 16.88 0.63 14.57

Scheelite
concentrate 30.76 0.87 36.66

Tailing 52.36 0.68 48.77
Raw ore 100.00 0.73 100.00

Pb(NO3)2+BHA
[BHA-500g/t;

Pb(NO3)2-200g/t]
Oleic acid-20g/t

Sulphur
concentrate 17.01 0.61 14.30

Scheelite
concentrate 32.81 1.59 71.88

Tailing 50.18 0.20 13.83
Raw ore 100.00 0.73 100.00

Fe-BHA
(BHA-500g/t;
FeCl3-200g/t)

Oleic acid-20g/t

Sulphur
concentrate 16.09 0.61 14.13

Scheelite
concentrate 30.22 1.53 63.39

Tailing 52.88 0.31 22.47
Raw ore 100.00 0.73 100.00

Fe-BHA
(BHA-500g/t;
FeCl3-200g/t)

Oleic acid-40g/t

Sulphur
concentrate 16.79 0.65 14.98

Scheelite
concentrate 30.60 1.56 65.52

Tailing 52.61 0.27 19.59
Raw ore 100.00 0.73 100.00

As seen from Table 2, the scheelite activated by Pb(NO3)2 with BHA as the collector
obtained the best WO3 grade of 1.59% and the best WO3 recovery of 71.88%. The scheelite
with the Fe-BHA (500 g/t BHA and 200 g/t FeCl3) and 40 g/t oleic acid as collectors
obtained a WO3 grade of 1.56% and a WO3 recovery of 65.52%, which were much higher
than those of the scheelite using BHA and oleic acid as collectors. When the Fe-BHA with
oleic acid were used as the collectors, a good flotation result of scheelite was achieved,
though there was still a gap with those of scheelite using Pb(NO3)2 as activation and BHA
as the collector.

3.2. Discussion
3.2.1. Effect of the BHA/FeCl3 Ratio on the Scheelite Flotation

The results of the single mineral flotations of scheelite by Fe-BHA with different
BHA/FeCl3 ratio are shown in Figure 4. Under different FeCl3 concentrations, scheelite
flotation recoveries increased with the increase in the dosage of benzohydroxamic acid, but
when the dosage of benzohydroxamic acid was greater than 160 mg/L, scheelite flotation
recoveries increased slowly with the increase in the dosage of benzohydroxamic acid.
When the dosage of benzohydroxamic acid was 160 mg/L and the FeCl3 concentration was
1 × 10−3 mol/L, the scheelite flotation recovery (82.00%) was better than those of other
FeCl3 concentrations. At this time, the molar ratio of benzohydroxamic acid to FeCl3 was
about 1.2:1.

3.2.2. The Possible Forms of the Fe-BHA in Pulp

It was found that when the FeCl3 and BHA solution were mixed in a certain proportion,
a new type of Fe-BHA purple solution was formed. The UV-Vis curves with different
BHA/FeCl3 ratios are shown in Figure 5.
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Referring to the results of the flotation tests in Figure 2, the optimum pH value of the
Fe-BHA in scheelite flotation was pH 8.0, while the Fe-BHA chelates in the flotation pulp at
pH 8.0 mainly existed in the form of two hydroxyl complexes and one neutral molecule as
shown in Figure 7.
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3.2.3. The Adsorption Mechanism of the Fe-BHA on Scheelite

To study the mechanism of the Fe-BHA chelates with respect to scheelite recovery, the
XPS analyses were carried out on calcite before and after contact with the Fe-BHA chelates,
and the results are shown in Table 3.

As seen in Table 3, the iron element and nitrogen element were detected in the scheelite
sample contacted with the Fe-BHA chelates, which characterized the adsorption of the
Fe-BHA chelates on the scheelite surface. At the same time, the nitrogen element was also
detected in the calcite sample contacted with the Fe-BHA chelates, which may be attributed
to the adsorption of BHA on the surface of calcite, or the adsorption of a quite small amount
of the Fe-BHA chelates, such that the presence of the iron element could not be detected.

In Table 3, the relative content of the Ca element and O element on the scheelite surface
decreased, accompanied by a relatively obvious decrease in the O binding energy from
531.27 eV to 530.09 eV. In order to further analyze the change in the surface properties of
scheelite before and after contact with the Fe-BHA chelates, the narrow-range scanning
spectrum of the Ca element and O element were fitted by sub-peaks. Figures 8 and 9 show
the fittings of the narrow-range scanning spectrum of the Ca element and O element of
scheelite before and after contact with the Fe-BHA chelates, respectively.
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Table 3. XPS analyses of scheelite and calcite before and after contact with Fe-BHA.

Sample C
%

O
%

Ca
%

W
%

N
%

Fe
%

CaCO3

25.90
(284.62 eV)

14.53
(289.08 eV)

4.36
(285.78 eV)

39.67
(531.17 eV)

15.54
(346.59 eV)

CaCO3 with
Fe-BHA

44.43
(284.62 eV)

39.18
(530.84 eV)

15.35
(346.56 eV)

1.04
(399.45 eV)

CaWO4
37.02

(284.62 eV)
39.40

(531.27 eV)
12.07

(346.72 eV)
11.51

(35.20 eV)

CaWO4
with

Fe-BHA

30.23
(284.62 eV)

36.62
(530.09 eV)

11.02
(346.56 eV)

8.53
(34.70 eV)

1.17
(398.59 eV)

0.43
(709.69 eV)

8.53
(36.80 eV)

1.95
(35.80 eV)

1.95
(37.90 eV)

Minerals 2022, 12, x  10 of 13 
 

 

Ca- was also the smallest, from 530.30 eV to 529.80 eV, a decrease of 0.50 eV. The change 
in peak binding energy of the O element in W-O- was also small, from 530.90 eV to 530.20 
eV, which was 0.70 eV lower. The binding energy of the O element in Ca-OH changed the 
most, from 531.40 eV to 530.20 eV, a decrease of 1.20 eV. A new peak appeared at the 
binding energy of 531.1 eV. Judging from the peak shape and peak position [28–30], it was 
most likely the spectral peak of the O element in Ca-O-Fe after the scheelite surface is 
adsorbed by the Fe-BHA chelates. The adsorption mechanism of the Fe-BHA chelates on 
scheelite surface is speculated to be that an H2O is removed from the Fe-OH of the Fe-
BHA and Ca-OH from the scheelite to form Fe-O-Ca. 

 

 

Figure 8. Ca 2p XPS spectra of scheelite (a) and scheelite conditioned with Fe-BHA (b). 

 

Figure 8. Ca 2p XPS spectra of scheelite (a) and scheelite conditioned with Fe-BHA (b).



Minerals 2022, 12, 484 10 of 12

Minerals 2022, 12, x  10 of 13 
 

 

Ca- was also the smallest, from 530.30 eV to 529.80 eV, a decrease of 0.50 eV. The change 
in peak binding energy of the O element in W-O- was also small, from 530.90 eV to 530.20 
eV, which was 0.70 eV lower. The binding energy of the O element in Ca-OH changed the 
most, from 531.40 eV to 530.20 eV, a decrease of 1.20 eV. A new peak appeared at the 
binding energy of 531.1 eV. Judging from the peak shape and peak position [28–30], it was 
most likely the spectral peak of the O element in Ca-O-Fe after the scheelite surface is 
adsorbed by the Fe-BHA chelates. The adsorption mechanism of the Fe-BHA chelates on 
scheelite surface is speculated to be that an H2O is removed from the Fe-OH of the Fe-
BHA and Ca-OH from the scheelite to form Fe-O-Ca. 

 

 

Figure 8. Ca 2p XPS spectra of scheelite (a) and scheelite conditioned with Fe-BHA (b). 

 

Minerals 2022, 12, x  11 of 13 
 

 

 

Figure 9. O 1s XPS spectra of scheelite (a) and scheelite conditioned with Fe-BHA (b). 

4. Conclusions 
Fe-BHA has a considerable potential for scheelite flotation. Although the flotation 

separation ability of Fe-BHA for scheelite was slightly weaker than that of the BHA for 
scheelite activated by Pb(NO3)2, Fe-BHA proved to have a better separation effect than 
oleic acid or BHA in the scheelite flotation. 

In the single mineral flotation tests, when using Fe-BHA as the collector, scheelite 
recovery of 77.03% was obtained at pH 8.0, which was closer to the maximum recovery 
(79.28% at pH 8.2) obtained by BHA adding Pb(NO3)2 as an activator. The results of the 
scheelite actual ore roughing tests show that when Fe-BHA (500 g/t BHA and 200 g/t FeCl3) 
with oleic acid (40 g/t) were used as collectors, a better scheelite flotation result (WO3 
grade of 1.56% and WO3 recovery of 65.52%) than using oleic acid or BHA individually 
was achieved, although there was still a gap with that of scheelite (WO3 grade of 1.59% 
and WO3 recovery of 71.88%) using Pb(NO3)2 as the activator and BHA as the collector. 

The UV-Vis curves of Fe-BHA with different BHA/FeCl3 ratios indicated that the Fe-
BHA chelates may have several different structural forms, and the single mineral tests of 
BHA/FeCl3 ratios showed that when the molar ratio of benzohydroxamic acid to FeCl3 
was about 1.2:1, the best scheelite flotation result was obtained in this test. 

The XPS analyses proved that the adsorption of Fe-BHA on the scheelite surface oc-
curred, and by fitting the peaks of Ca 2p and O 1s of scheelite, it was found that the mech-
anism of the Fe-BHA acted on the Ca sites of the scheelite surface through the removal of 
an H2O from the Ca-OH (of scheelite) and Fe-OH (of Fe-BHA) to form Fe-O-H. 

Author Contributions: Conceptualization, C.S. and W.Y.; methodology, C.Z. and Y.Z. (Yangge 
Zhu); software, Y.Z. (Yimin Zhu) and Y.Z. (Yangge Zhu); investigation, C.Z. All authors have read 
and agreed to the published version of the manuscript. 

Funding: This research was funded by the BGRIMM Technology Group Research Fund (BGRIMM-
02-2111). 

Data Availability Statement: Not applicable. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 
1. Yao, W.; Li, M.; Zhang, M.; Cui, R.; Shi, J.; Ning, J. Effects of Pb2+ ions on the flotation behavior of scheelite, calcite, and fluorite 

in the presence of water glass. Colloids Surfaces A Physicochem. Eng. Asp. 2021, 632, 127826, 
https://doi.org/10.1016/j.colsurfa.2021.127826. 

2. Yan, W.; Liu, C.; Ai, G.; Feng, Q.; Zhang, W. Flotation separation of scheelite from calcite using mixed collectors. Int. J. Miner. 
Process. 2017, 169, 106–110, https://doi.org/10.1016/j.minpro.2017.10.009. 

Figure 9. O 1s XPS spectra of scheelite (a) and scheelite conditioned with Fe-BHA (b).

As can be seen from Figure 8, the double peaks of Ca 2p of scheelite corresponded
to the peaks at 346.72 eV and 350.25 eV in the figure, respectively. After the interaction
with the Fe-BHA chelates, the position of the Ca 2p peak of scheelite moved from the
binding energy of 346.72 eV and 350.25 eV to the binding energy of 346.56 eV and 350.10 eV,
with a small displacement of 0.16 eV and 0.15 eV, which can be considered an analytical
error. Figure 9a shows that the peak at the binding energy of 531.40 eV corresponded to
the peak of the O element in Ca-OH formed by the combination of Ca2+ exposed on the
scheelite surface and OH- in water [25]. The peaks at the binding energy of 530.90 eV and
530.30 eV for the O element belonged to W-O− [26] and O-Ca- [27] on the scheelite surface,
respectively. In Figure 9b, after scheelite contacted with the Fe-BHA chelates, the intensity
of the O 1s peak was enhanced as a whole, and the peaks of the O elements in Ca-OH, W-O-,
and O-Ca- shifted. Among them, the O element in O-Ca- was least affected, because it
resides in the mineral crystal, so the change in the binding energy of the O element in O-Ca-
was also the smallest, from 530.30 eV to 529.80 eV, a decrease of 0.50 eV. The change in peak
binding energy of the O element in W-O- was also small, from 530.90 eV to 530.20 eV, which
was 0.70 eV lower. The binding energy of the O element in Ca-OH changed the most, from
531.40 eV to 530.20 eV, a decrease of 1.20 eV. A new peak appeared at the binding energy
of 531.1 eV. Judging from the peak shape and peak position [28–30], it was most likely the
spectral peak of the O element in Ca-O-Fe after the scheelite surface is adsorbed by the
Fe-BHA chelates. The adsorption mechanism of the Fe-BHA chelates on scheelite surface is
speculated to be that an H2O is removed from the Fe-OH of the Fe-BHA and Ca-OH from
the scheelite to form Fe-O-Ca.
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4. Conclusions

Fe-BHA has a considerable potential for scheelite flotation. Although the flotation
separation ability of Fe-BHA for scheelite was slightly weaker than that of the BHA for
scheelite activated by Pb(NO3)2, Fe-BHA proved to have a better separation effect than
oleic acid or BHA in the scheelite flotation.

In the single mineral flotation tests, when using Fe-BHA as the collector, scheelite
recovery of 77.03% was obtained at pH 8.0, which was closer to the maximum recovery
(79.28% at pH 8.2) obtained by BHA adding Pb(NO3)2 as an activator. The results of the
scheelite actual ore roughing tests show that when Fe-BHA (500 g/t BHA and 200 g/t FeCl3)
with oleic acid (40 g/t) were used as collectors, a better scheelite flotation result (WO3
grade of 1.56% and WO3 recovery of 65.52%) than using oleic acid or BHA individually
was achieved, although there was still a gap with that of scheelite (WO3 grade of 1.59% and
WO3 recovery of 71.88%) using Pb(NO3)2 as the activator and BHA as the collector.

The UV-Vis curves of Fe-BHA with different BHA/FeCl3 ratios indicated that the
Fe-BHA chelates may have several different structural forms, and the single mineral tests
of BHA/FeCl3 ratios showed that when the molar ratio of benzohydroxamic acid to FeCl3
was about 1.2:1, the best scheelite flotation result was obtained in this test.

The XPS analyses proved that the adsorption of Fe-BHA on the scheelite surface
occurred, and by fitting the peaks of Ca 2p and O 1s of scheelite, it was found that the
mechanism of the Fe-BHA acted on the Ca sites of the scheelite surface through the removal
of an H2O from the Ca-OH (of scheelite) and Fe-OH (of Fe-BHA) to form Fe-O-H.
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