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Abstract: Iron ore tailings are mainly composed of SiO; and iron, whose content determines the
potential reuse strategy of the tailings. Compared with the traditional wet chemistry approach,
spectroscopy has proven its superior effectiveness in characterizing and predicting minerals, such
as iron oxides, clay, and SiO;. This study aims to estimate the content of SiO, and TFe in iron ore
tailings based on visible-near infrared (VIS-NIR, 350-2500 nm) and thermal infrared (TIR, 8-14 um)
spectroscopy. The outer product analysis (OPA) method is used to combine VIS-NIR and TIR spectral
domains, from which an outer product matrix of fusion data can be generated. The study area
is the iron ore tailing dam from Waitoushan, which is one of the super-large iron deposits in the
Anshan-Benxi iron cluster of northeastern China. The spectral analysis results demonstrated the
following: (1) The reflectance feature at 1163-2499 nm in the VIS-NIR range correlates with TFe and
the emissivity feature at 8-9.4 and 10.7-12 um in the TIR range correlates with SiO;. (2) Compared
with the original absorbance spectra, the correlation coefficients of fusion spectra improve from
0.66 to 0.87 for TFe and from 0.64 to 0.84 for SiO,. (3) The partial least squares regression, random
forest (RF), and extreme learning machine exploiting particle swarm optimization modeling methods
are established for SiO, and TFe estimation. The prediction accuracy results indicate that the
prediction model with OPA-fused spectra performs significantly better than with individual VIS-NIR
and TIR spectra. The RF model with input-fused spectra provides the highest accuracy with the
coefficients of determination of 0.95 and 0.91, root mean square errors of 0.97% and 0.96%, and
ratios of performance to interquartile distance of 6.49 and 2.31 for SiO, and TFe content estimation,
respectively. These outcomes provide a theoretical basis and technical support for tailing composition
estimation using spectroscopy.

Keywords: iron tailings; VIS-NIR spectroscopy; TIR spectroscopy; fusion data; outer product analysis;
machine learning method

1. Introduction

Tailings are a mixture of various waste materials produced during the mining pro-
cess [1,2]. In addition, they are mainly discharged in the form of tailing slurry and accu-
mulated in tailing ponds. China has rich reserves and a comprehensive variety of mineral
resources, as well as one of the richest iron ore reserves in the world with more than
2000 iron deposits. The Anshan—Benxi iron cluster hosts the largest iron resource in China,
including 16 large and super-large iron deposits. All of the deposits in this ore cluster
belong to banded iron formation deposits with a total reserve of 12.5 billion tons of iron
ores, accounting for 24.2% of the total iron reserve of China [3]. The production of 1 ton of
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iron concentrate results in the generation and accumulation of 2.5-3.0 tons of iron tailings.
The tailing ponds are usually the accumulation of waste residue and waste water [4], and
are a risk source of landslides, mudslides, and other geological disasters [5]. Resource reuse
technology based on the tailing composition is an important method for managing iron ore
tailings. The recycling strategy for iron ore tailings is conducive to improving the regional
ecological environment and promoting the coordinated development of resources and en-
vironmental protection. Therefore, quantification of the tailing composition is considerably
important for determining the method of reusing tailings.

Compared with traditional analytical techniques, hyperspectral remote sensing is a
promising nondestructive and rapid technology for characterizing minerals. Spectroscopy
in the visible-near infrared (VIS-NIR, 350-2500 nm) region can reveal the information of
functional groups (e.g., C-H, N-H, O-H, C-N, C-C) and metal cations (e.g., Fe?t, Fe3+),
while in the thermal infrared (TIR, 8-14 um) region, it can detect spectral characteristics
related to Si-O bond vibrations in rocks and minerals [6-9]. This hyperspectral spectroscopy
has been proven to be an effective technology for accurate classification and quantitative
inversion of substances. In 2019, Xiao et al. [10] reported that the total iron (TFe) content in
iron ore could be detected by VIS-NIR spectroscopy with 95% accuracy. Due to the fact
that absorption characteristics of reflectance spectra in VIS-NIR are affected by the iron
content in the rocks, VIS-NIR spectroscopy can be used to estimate iron-bearing minerals,
including sulfates [11,12], phyllosilicates [13-15], and Fe oxides, such as hematite, goethite,
and magnetite [16,17]. The normalized index constructed on the basis of TIR spectra
can effectively estimate SiO; in iron ore with a prediction error of 3.57% [18]. Moreover,
TIR spectroscopy could predict the fixed carbon content of coal gangue by selecting the
difference index calculated from the TIR spectra with a 5% average error accuracy [19].

Rocks are generally aggregates composed of two or more minerals and contain multi-
ple mineral components. Since tailings have properties similar to those of natural rocks,
single spectroscopy cannot easily reveal all the characteristics of tailing components. The
combination of VIS-NIR and TIR spectroscopy was demonstrated to improve the coal
and gangue classification accuracy to 99.2% from the 92.9% accuracy obtained with single
spectroscopy [20]. However, compared with spectral data combination, data fusion is
more advantageous for a comprehensive analysis of multiple data blocks from different
data sources [21]. Various spectral data fusion methods, such as spectral concatenation,
two-channel input analysis, and outer product analysis (OPA) have been developed [22].
In OPA, two spectral datasets are fused and the coevolution of each spectral domain is
emphasized to obtain information regarding the relationships between the datasets [23,24].
As a chemometric technique, OPA has been mainly applied to the classification of fruit
varieties [24] and butter categories [25,26], the study of the effect of temperature on the NIR
spectra of water [22], as well as NIR and mid-infrared (MIR) spectroscopy to determine
the sugar content in sugar beets [23,27]. In addition, OPA has been successfully applied to
improve the prediction accuracy of soil organic carbon (SOC) content [22,28]. According to
Terra et al. [29], the coefficient of determination (R?) of OPA-fused spectra for SOC content
prediction was improved by 0.12 and 0.04 compared with the R? values of VIS-NIR and
MIR spectra, respectively.

Partial least squares regression (PLSR) has emerged as one of the most commonly
used chemometric models to establish the relationship of spectral data with soil prop-
erties [30-32] and mineral composition [33]. It has been recognized that the inclusion
of non-informative spectral bands can significantly degrade the performance of PLSR in
spectroscopic multivariate calibration [34,35]. Moreover, machine learning techniques facil-
itate the use of hyperspectral reflectance data to generate accurate models for predicting
soil properties. A considerable number of studies have applied various machine learning
methods, such as SVM [36], RF [37], and ELM [10,38]. However, due to the randomly given
weights and biases, ELM usually requires more implicit layer nodes to obtain the desired
accuracy [39-41]. Particle swarm optimization (PSO) is exploited to help the ELM model
select input weights to improve prediction accuracy [42]. In addition to machine learning
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algorithms, parameter optimization and spectral preprocessing transformations can also
lead to significant improvement of machine learning prediction.

Various spectral characteristics of iron tailings can be obtained in the VIS-NIR to the
TIR region. Therefore, this study aims to provide a method for the rapid and effective
characterization of iron ore tailings, while considering the combined VIS-NIR and TIR
spectroscopy. This study (1) reveals the VIS-NIR and TIR spectral characteristics of SiO,
and TFe in tailings; (2) fuses VIS-NIR and TIR spectra by OPA for assessing SiO, and TFe
content; and (3) establishes SiO, and TFe prediction models by comparing the performance
of partial least squares regression (PLSR), random forest (RF), and extreme learning machine
exploiting particle swarm optimization (PSO-ELM) regression methods.

2. Materials and Methods
2.1. Tailing Sample Collection

The Waitoushan iron ore tailing dam, which is one of the extra-large iron deposits
in the Anshan—-Benxi iron cluster of Northeast China, was selected as the study area. The
area is located in the north of Benxi, Liaoning Province, Northeast China (Figure 1). The
coverage area of the tailing dam is approximately 1.1 km?, with a length of 1.87 km from
east to west and a width of 0.85 km from north to south. Tailing pipes are distributed at the
southern, eastern, and northern edges of the tailing dam. The tailings are all sourced from
the Waitoushan concentrator.
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Figure 1. The geographical location of the study area.

Field surveys were conducted in July 2020. To make the collected samples representa-
tive, sampling points were randomly placed along the eastern and southern outlets. A total
of 75 tailing samples, each weighing approximately 300 g, were collected with a 100 m?
ring knife of dimensions 79.8 mmx 20 mm on the surface of the tailing dam. The samples
were oven-dried, ground, and sieved into a maximum size of 0.075 mm.

X-ray fluorescence spectroscopy was performed to determine the chemical compo-
sition of 75 tailing samples. As shown in Figure 2, the main chemical compounds of the
tailing samples consist of SiO,, MgO, CaO, and Al,O3, as well as iron cations Fe?* and Fe3*.
The SiO; content is the highest, with an average proportion of 65.67%, followed by TFe,
with an average proportion of 11.63%. All of the tailing samples were divided into 75% for
training and 25% for validation.
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Figure 2. The main chemical elements of tailings.

2.2. Spectral Measurement

The reflectance spectra of the tailing samples were measured by the SVC HR-1024
spectrometer in the wavelength range of 350-2500 nm under laboratory conditions. The
tailing samples were placed in a Petri dish with a depth of 3—4 cm, and the surface was
leveled to reduce roughness. As the light source, a 50 W halogen bulb was placed at
a zenith angle of 30° and 50 cm away from the sample. The sample was measured in
a perpendicular direction by the spectrometer with a 4° field-of-view at approximately
47 cm. A Spectralon white plate with 100% reflectance was used for obtaining the reference
spectrum. The average of four reflectance spectra per sample was considered as the spectra
of the samples.

The TIR spectra were measured by the Turbo FT spectrometer designed by Design
& Prototypes Corporation, USA. This spectrometer covers a wavelength range of 2-16 pm
with a spectral resolution of 4 cm~!. The sample was measured in the perpendicular
direction by the spectrometer with a 4.8° field-of-view at approximately 50 cm. To obtain
the spectral emissivity of the tailing samples, it is necessary to measure the cold black-body,
hot black-body, atmospheric downward, and sample surface radiance. The atmospheric
downward radiation data were collected from a diffuse reflection gold plate. The cold
and hot black bodies were used to calibrate the sample surface radiance and atmospheric
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downward radiance [43]. The sample surface radiance value was the average of two
observations of each sample.

The atmospheric window in the 8-13 um band is relatively less affected by atmospheric
radiation and contains the characteristic interval of the quartz emissivity spectrum [44].
Therefore, in this study, the spectral characteristics of the tailing samples were analyzed in
the wavelength range of 8-13 um.

2.3. Data Preprocessing Method

The reflectance spectral data were preprocessed using the Savitzky-Golay (5-G)
smoothing method [45], which could reduce the error of data analysis and the random
noise generated during the spectral measurement. Subsequently, the measured spectral
reflectance (R) was converted into the apparent absorbance (Equation (1)) of the sample to
linearize and enhance the correlation between the target parameter concentration and the
spectra [46]. Finally, the absorbance data were resampled to 25 nm.

A; =logyy(1/R;) M

where A; is the absorbance of the sample at band 7, and R; is the spectral reflectance of the
sample at band i.

According to Kirchhoff’s law and the theory of atmospheric radiation transmission for
natural objects, the total energy detected by the sensor includes: Atmospheric absorption,
atmospheric radiation, the reflection of object surface on the radiant energy of surrounding
objects, and the incident solar energy. The atmospheric upward radiation can be overlooked
when detecting objects at a close range. Therefore, the spectral radiance detected by the
sensor at temperature Ts can be approximately expressed as follows [47,48]:

LS(/\) = ES(A)B(A/ Ts) + [1 - ES(A)]LDWR()‘) )

where Lg(A) is the calibrated radiance of the sample, &(A) is the surface emissivity of
the sample, B(A,Ts) is the Planck function at the sample temperature, and Lpwgr(A) is the
atmospheric downward radiation.

The emissivity can be computed by transforming Equation (2) as follows:

_ Ls()‘) - L ()‘)
(N) = 503,10 = Lowa (1)

®)

According to Kirchhoff’s law for opaque objects, the surface reflectance can be ex-
pressed as 1 minus the emissivity given by Equation (3). From this perspective, the emissiv-
ity was converted to reflectance data, and the absorbance was calculated by Equation (1).

2.4. Spectral Fusion Method

OPA, a notion which was introduced by Barros et al. [24] in 2008, emphasizes the
coevolution of spectral regions in signals obtained from different or from the same domains.
The outer product (OP) matrix is composed of all possible products of absorbance intensities
in the two domains. The calculation process of OPA is shown in Figure 3. For n samples,
all absorbance intensities of VIS-NIR spectra (signal 1 of length ) are multiplied by all
absorbance intensities of TIR spectra (signal 2 of length p) to generate n (m rows by p
columns) matrices, whose absorbance intensities are determined by the intensities of the
original spectrum. Subsequently, each matrix is unfolded to a vector and concatenated to
produce ann X (m x p) matrix, called the OP matrix. The OP matrix with mean absorbance
intensities can be folded back to produce an m x p matrix, Z, which is used to explain the
relationship between the two signals and evaluate their coevolution.
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Figure 3. The process of spectral fusion by OPA (a), and the unfolding process of resulting matrices

to build the OP matrix and apply statistical analyses (b). Here, “n” is the number of samples, “m” is

7o

the number of wavelengths for VIS-NIR, and “p” is the number of wavelengths for TIR.

2.5. Spectroscopic Modeling Method

PLSR is a linear modeling technique that has been used extensively for chemometrics
and quantitative spectroscopy [49]. In this technique, predictor and observed variables are
projected into a new space to determine an optimal linear regression model. PLSR can con-
sider the relationship between spectral data and chemical composition simultaneously [50].
In this study, X is the spectrum matrix and Y is the chemical composition, and they are
decomposed by PLSR as follows:

X=TP+E, @)
Y=UQ+F,

where T and U are the characteristic factor matrices extracted from X and Y, respectively, P
and Q are the load matrices, and E, and Fy are the error matrices of X and Y, respectively.

The relation in terms of the original space can be expressed as follows:

U=TB+E, ®)
where B and E; are the matrices of the regression coefficient and residuals, respectively.
This regression model was implemented using the “pls” package in R version 3.6.3.

RF is an ensemble classifier based on decision trees and was proposed by Leo Breiman
and Adele Cutler in 2001 [51]. For predicting the content of tailings, RF obtains multiple
bootstrap datasets through multiple random and repeatable extractions from the original
training set. A decision tree is constructed for each bootstrap dataset, and the average of
the predicted values of all decision trees is used as the predicted value of the RF model.
The parameters of the RF model are comparatively simple to set. RF runs faster with
high classification accuracy and better stability when using high-dimensional data for
prediction. The RF regression model in this study was built using the “TreeBagger” function
in MATLAB software, and the number of trees was set to 500.



Minerals 2022, 12, 382

7 of 18

ELM [52] is a machine learning algorithm based on a single hidden layer feedforward
neural network (SLEN). This algorithm has the advantages of high calculation speed and
requirement of fewer training parameters. However, due to the fact that ELM randomly
selects the input weight and hidden layer bias, the accuracy of ELM is generally low [39-41].
PSO is a population-based stochastic optimization technique that simulates the social
behavior of a flock of birds or a school of fish [53,54]. The input weight and hidden
layer bias of ELM optimized using the PSO can effectively reduce the number of hidden
layer nodes required by the ELM, thereby improving the calculation efficiency and the
generalizability of a trained neural network. In this study, the PSO-ELM regression model
was realized by MATLAB, with the maximum number of iterations set to 100 and the
number of hidden layer nodes set to 5. The inertia weights wy,;, and wy.x were set to
0.4 and 0.8, and the learning rates c1 and c2 were set to 2.4 and 1.6, respectively.

The performance of the models was evaluated in terms of R?, root mean square error
(RMSE), and ratio of performance to interquartile distance (RPIQ). The RPIQ is based
on the quartile distance and better represents the spread of the population for skewed
distributions. Therefore, it is used rather than the ratio of performance deviation [55,56].

RZ _ Z?:l (yl - y)2 (6)
(v — ?)2
RMSE = [y (3 — §1)? 7)

®)
IQ=0Q3-Q1
Here, n is the number of samples, 1; is the predicted value, y; is the measured value, i
is the average value, Q3 is the third quartile, and Q1 is the first quartile. In general, a robust
model has a high R? and RPIQ and a low RMSE.

3. Results and Discussion
3.1. VIS-NIR Spectral and Absorption Characteristics

The TFe and SiO, content in the tailing samples ranged from 7.78%-20.7% and
54.17%—72.1%, respectively. All of the samples were divided into 12 grades, according to
the TFe and SiO; content. The VIS-NIR reflectance and absorbance spectra of the tailing
samples, respectively are shown in Figure 4a,b. In Figure 4a, the samples with higher
5iO, content and lower TFe content resulted in higher reflectance. The absorption peaks
observed near 750 and 980 nm were due to electronic transitions in minerals containing Fe>*
(e.g., goethite and hematite) [57,58]. This characteristic gradually increased from 1000 to
2100 nm. The absorbance peaks at 1450 and 1950 nm could be related to the combination of
stretching and bending vibrations of the hydroxyl group (O-H) in water molecules [59-61].
The absorption characteristics at 2250 and 2350 nm are usually attributed to the aluminol
group (Al-OH) [13,15,62].

3.2. TIR Spectral and Absorption Characteristics

The TIR reflectance and absorbance spectra of the tailing samples, respectively are
shown in Figure 5a,b. In Figure 5a, the emissivity spectra in the TIR range with higher TFe
content and lower SiO; content result in higher emissivity. All of the emissivity spectra
in the TIR range were divided into three regions. In region I (8-9.5 um), the absorption
characteristics are distinct, forming two asymmetric absorption bands near 8.6 pm, which
were attributed to the stretching vibration of the Si-O bond [63]. The spectral absorption
depth gradually increased with the increasing SiO;, content. In region II (9.5-12.3 pm),
the emissivity increased evidently, and there was no significant relationship between SiO,
content and reflectance. In region III (12.3-13 pm), two weak absorption peaks due to the
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Reflectance (%)

Emissivity

S5i—O-Si symmetric stretching vibration were observed. However, this characteristic was
not significantly correlated with SiO, content [64].
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Figure 4. (a) The reflectance spectra of TFe and SiO,. (b) The absorbance spectra of TFe and SiO,
in VIS-NIR.
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Figure 5. (a) The emissivity spectra of TFe and SiO,. (b) The absorbance spectra of TFe and SiO,
in TIR.

3.3. Spectral Data Fusion and Coevolution

In applying spectral data fusion, the absorbance intensities of the TIR spectral data
(168 bands) were multiplied by all the absorbance intensities of the VIS-NIR spectral data
(86 bands), generating a matrix with 14,448 bands (168 x 86). The OP matrix formed with
the mean intensities is shown in Figure 6. The X- and Y-axes represent the wavelengths
of the VIS-NIR and TIR spectra, respectively. Higher absorbance intensities of the fused
spectra are distributed in the ranges of 350-1200 nm in the VIS-NIR region and 10.7-13 pm
in the TIR region, indicated by red in the color bar.
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Figure 6. Mean value matrix of OPA-folded results.

3.4. Correlation of Spectral Data with TFe and SiO, Content

In the VIS-NIR region, absorbance intensity was positively correlated with TFe con-
tent (Figure 7a), with the highest correlation coefficient of 0.83 recorded in the range of
1163-2499 nm. By contrast, a negative correlation was observed between SiO, content and
absorbance intensity, with the highest correlation coefficient of 0.80 recorded in the ranges
of 1365-1391 nm and 1410-1623 nm. In the TIR region, absorbance intensity was positively
correlated with TFe content, with the highest correlation coefficient of 0.66 recorded in the
ranges of 8-9.4 um and 10.7-12 pm, but negatively correlated with SiO, content, with the
highest correlation coefficient of 0.64 recorded in the same range (Figure 7b).
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i ] 0.6 510,
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5 7 e - B o066 1
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Figure 7. Correlation of VIS-NIR (a) and TIR (b) data with TFe and SiO;. Here, Ir| was the absolute
value of correlation coefficient.
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The Pearson correlation calculations were performed to analyze the fused absorbance
data in relation to TFe and SiO,. The correlation of fused absorbances with TFe and SiO, is
shown in Figure 8. In the fused matrix, absorbance intensity was positively correlated with
TFe content (Figure 8a) and negatively correlated with SiO; content (Figure 8b). The fused
spectra significantly correlated with TFe and SiO, contents (111> 0.80). The fusion domain
(1181-1409 nm and 2298-2375 nm for VIS-NIR, 8.17-8.27 um and 8.37-8.52 um for TIR) had
the largest correlation coefficient of 0.87 with TFe content. The largest correlation coefficient
between the fusion domain (1257-1714 nm for VIS-NIR and 8.13-0.54 um for TIR) and
SiO; content was 0.84. The fused spectra showed a significantly improved correlation
of TIR absorbance with TFe from 0.66 to 0.87 and SiO, from 0.64 to 0.84. However, the
improvement effect of the VIS-NIR absorbance correlation with TFe and SiO, was not
evident. This indicates that the fused data can effectively improve the correlation of
absorbance with TFe and SiO, compared with the individual spectral. A similar result
was demonstrated in a previous study, in which SOC more strongly correlated with the
OPA-fused spectral domain using VIS-NIR and TIR spectroscopy than with the individual
spectral domains [29].

(a) 13 0.87
~ 12 0.83
g 0.79
=11 0.75
%"_ 0.71
e 10 0.66
S 0 0.62
0.58

g 0.54

600 900 1200 1500 1800 2100 2400

(b) 13 -0.44
~ 12 —0.49
5 -0.54
< 11 -0.59
1 -0.64
© 10 -0.69
z -0.74
-0.79

8 -0.84

600 900 1200 1500 1800 2100 2400
Wavelength (nm)

Figure 8. Correlation of OPA-fused absorbance data back-transformed into a matrix with TFe (a) and
SiO; (b). X-axis represents the wavelengths of VIS-NIR spectra. Y-axis represents the wavelengths of
TIR spectra. The absolute values of correlation coefficients decrease from red to blue in the color bar.

3.5. Prediction Accuracy of TFe and 5iO;

To compare OPA with the data augmentation method, we combined the absorbance
data of VIS-NIR and TIR to generate an n x (m + p) matrix to predict the accuracy of
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TFe and SiO;. The prediction accuracy of TFe and SiO, using PLSR, RF, and PSO-ELM
regression methods based on different input spectra (VIS-NIR, TIR, data augmentation,
and OPA-fused) is presented in Table 1. Notably, all of the results presented in the table are
obtained from the test dataset. A different balance of training and validation samples could
be applied, and it was reasonable to use around 25% of the samples for validation [65].
In this paper, the samples were all randomly divided into 57 training samples and 18
validation samples. In the VIS-NIR domain, the input spectra with ranges of 1163-2499 nm
for TFe content and 1365-1391 nm and 1410-1623 nm for SiO, content were selected on
the basis of the correlation analysis to develop multivariate regression models by PLSR,
RE and PSO-ELM. As shown in Figure 9, the RF and PSO-ELM models performed better
than the PLSR model with the VIS-NIR spectral data. In terms of TFe prediction, the
RF model showed the highest prediction capability with the validation criteria R? = 0.86,
RMSE = 1.08%, and RPIQ = 2.05. For SiO; prediction, the PSO-ELM model performed the
best with R? = 0.87, RMSE = 1.49%, and RPIQ = 3.91.

Table 1. Model accuracies of TFe and SiO; in individual (VIS-NIR and TIR), data augmentation, and
OPA-fused spectral ranges.

Input Spectral Region Tailings Content Model R? RMSE (%) RPIQ

PLSR 0.75 2.53 2.22
1365-1391 nm SiO, RF 0.86 1.51 415

1410-1623 nm
PSO-ELM 0.87 1.49 3.91

VIS-NIR
PLSR 0.77 1.36 1.48
11632499 nm TFe RF 0.86 1.08 2.05
PSO-ELM 0.85 1.03 1.88
PLSR 0.55 3.04 1.84
SiO, RF 0.67 2.49 2.52
8-9.4 um PSO-ELM 0.60 2.88 1.99
TIR
10.7-12 pm PLSR 0.70 1.60 1.25
TFe RF 0.54 1.88 1.18
PSO-ELM 0.62 1.83 1.14
PLSR 0.74 2.16 2.59
SiO, RF 0.95 0.97 6.49
PSO-ELM 0.94 1.32 2.33
Fused Bands of |r|1> 0.80
PLSR 0.84 1.22 1.64
TFe RF 0.91 0.96 231
PSO-ELM 0.89 1.14 1.75
1365-1391 nm PLSR 0.74 2.18 1.89
1410-1623 nm Sio, RF 0.90 128 4.90
8-9.4 um
10.7-12 pm PSO-ELM 0.88 1.72 3.40
Augmentation S

1163-2499 nm PLSR 0.82 1.17 2.11
8-9.4 um TFe RF 0.87 1.10 2.02
10.7-12 pm PSO-ELM 0.86 1.07 1.52

In the TIR domain, the input spectra with ranges of 8-9.4 pm and 10.7-12 pm were
selected to establish TFe and SiO; prediction models. As shown in Figure 10, the most
accurate predictions were obtained with the PLSR model for TFe (R? = 0.70, RMSE = 1.60%,
and RPIQ = 1.25) and the RF model for SiO, (R? = 0.67, RMSE = 2.49%, and RPIQ = 2.52).
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Figure 9. Validation between the measured and predicted value of SiO; (a—c) in the 1365-1391 nm
and 1410-1623 nm range, TFe (d—f) in the 1163-2499 nm range from VIS-NIR using the PLSR, RF, and
PSO-ELM models. The dashed line shows the 1:1 relationship and the red line shows the model trend.
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Figure 10. Validation between the measured and predicted value of SiO; (a—c) and TFe (d—f) in the
8-9.4 pm and 10.7-12 um range from TIR using the PLSR, RF, and PSO-ELM models. The dashed
line shows the 1:1 relationship and the red line shows the model trend.In the data augmentation
domain, the input spectra with ranges of 1163-2499 nm, 8-9.4 um, and 10.7-12 um for TFe content
and 1365-1391 nm, 1410-1623 nm, 8-9.4 um, and 10.7-12 um for SiO, content were selected to
develop multivariate regression models. As shown in Figure 11, the RF model produced the best

prediction for TFe and SiO, with R2 = 0.87 and 0.90, RMSE = 1.10% and 1.28%, and RPIQ = 2.02 and
4.90, respectively.
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Figure 11. Validation between the measured and predicted value of SiO, (a—c) in the 1365-1391 nm,
1410-1623 nm, 8-9.4 um, and 10.7-12 um range, TFe (d—f) in the 11632499 nm, 8-9.4 um, and
10.7-12 um rangefrom data augmentation using the PLSR, RF, and PSO-ELM models. The dashed
line shows the 1:1 relationship and the red line shows the model trend.

In the fused domain, the spectral absorbance intensities that were significantly corre-
lated with TFe and SiO; (x| > 0.80) were selected for achieving the regression models.
As shown in Figure 12, the RF model produced the best prediction for TFe and SiO, with
R? = 0.91 and 0.95, RMSE = 0.96% and 0.97%, and RPIQ = 2.31 and 6.49, respectively.
The OPA-fused spectra produced statistically better results than VIS-NIR, TIR, and data
augmentation spectra. For TFe prediction, the R? value increased from 0.70 to 0.91, RMSE
decreased from 1.60% to 0.96%, and RPIQ increased from 1.25 to 2.31. For SiO, prediction,
the R? value increased from 0.67 to 0.95, RMSE decreased from 2.49% to 0.97%, and RPIQ
increased from 2.52 to 6.49. This implies that OPA fusion for combining VIS-NIR and TIR
spectra is an effective approach for estimating TFe and SiO, content and can extend the
order of magnitude of the prediction for TFe and SiO, content. The data augmentation
spectra retained all of the absorbance intensity information of VIS-NIR and TIR, improving
the prediction accuracy of TFe and SiO, content compared with individual VIS-NIR and
TIR spectra. Compared with data augmentation, OPA fusion spectra expanded the possi-
bility of finding a spectral coevolution that was more relevant to TFe and SiO; [24,29,66].
Compared with previous studies that use OPA to fuse VIS-NIR and MIR spectra [28,29],
this study achieved significant improvement in fusing VIS-NIR and TIR spectral data for
TFe and SiO; prediction, thus indicating that OPA takes full advantage of the different
characteristics and complementary information of the two spectra. OPA-fused spectroscopy
using VIS-NIR and TIR input data can serve as a stable and effective method for TFe and
510, prediction. It can be seen that in four different input ways with single VIS-NIR, single
TIR, data augmentation, and OPA-fused, the lower RMSE value of TFe was generated
rather than the value of SiO,. This was similar to Desta et al. [21], who found that the lower
RMSE of Fe,O3 (RMSE = 3.3%) was achieved using the PLSR model combined with the
MWIR and LWIR concatenation data compared with SiO, (RMSE = 5.96%).
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Figure 12. Validation between the measured and predicted value of SiO; (a—c) and TFe (d—f) in the
Ir] > 0.80 band range from fusion spectra using the PLSR, RF, and PSO-ELM models. The dashed
line shows the 1:1 relationship and the red line shows the model trend.

The results of this study indicated that the RF model performs better than PLSR and
PSO-ELM models for TFe and SiO, estimation using OPA-fused spectra. Bao et al. [67]
verified that the RF model could produce superior results compared with the PLSR and
SVM models for predicting the soil organic matter content in reclaimed mine soil. In
addition, the RF model considers only the most important variables in the input spectra,
thereby significantly reducing the risk of model overfitting and dampening the effects
of noise and outliers [51,68-71]. Compared with other machine learning methods, RF
deliberately generates a large number of decision trees by randomly selecting subsets of
training samples and variables for segmentation at each tree node [72]. Therefore, the
RF model is less sensitive to the quality of training samples and to overfitting. Owing to
this characteristic of RF modeling, improved results can be obtained for the regression
prediction of tailing component contents using hyperspectral data.

4. Conclusions

This study proposed the combined VIS-NIR and TIR spectroscopy coupled with a
machine learning method to effectively quantify the contents of TFe and SiO; in high-silicon
iron tailings. OPA can fuse VIS-NIR and TIR spectra to improve predictions of TFe and
SiO,. The following conclusions can be drawn from the study:

1. This study demonstrated that with the VIS-NIR spectra, the sensitive absorption
bands of SiO; occurred in the ranges of 1365-1391 nm and 1410-1623 nm, and those of
TFe occurred in the range of 1163-2499 nm. In the TIR domain, the sensitive absorption
bands of both SiO; and TFe were in the ranges of 8-9.4 ym and 10.7-12 um.

2. Compared with individual VIS-NIR or TIR spectra, the OPA-fused absorbance data
had a stronger correlation with TFe and SiO; content. The largest correlation coef-
ficient between TFe and the fusion domain (1181-1409 nm and 2298-2375 nm for
VIS-NIR, 8.17-8.27 pm, and 8.37-8.52 um for TIR) was 0.87. By contrast, the largest cor-
relation coefficient between SiO; and the fusion domain (1257-1714 nm for VIS-NIR
and 8.13-0.54 um for TIR) was 0.84.
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3. The combination of RF modeling and OPA-fused spectral data achieved the optimal
prediction accuracy of TFe and SiO, compared with the accuracy obtained through
individual spectra. The R? value increased from 0.70 to 0.91, RMSE decreased from
1.60% to 0.96%, and RPIQ increased from 1.25 to 2.31 for TFe prediction. The R? value
increased from 0.67 to 0.95, RMSE decreased from 2.49% to 0.97%, and RPIQ increased
from 2.52 to 6.49 for SiO, prediction. The RF model performed better than the PLSR
and PSO-ELM models, with greater R?> and RPIQ and lower RMSE values.
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