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Abstract: Wastelands of the mining industry are among the largest of disturbed areas that demand
revitalization. To reduce environmental impact and to better manage these geo-resources, the
formation of sustainable plant and soil complexes and the restoration of self-recovery soil function
are critical points. The successful return of vegetative cover at post-mining sites requires eliminating
the deficiency of organic matter. For this, we assessed the usability of non-traditional ameliorants to
provide a better understanding of benefits from mutual dependencies of environmental resources. To
prevent losses and to close resource cycles, we studied the applicability of wastewater sludge from
the pulp and paper (SPP) industry as an amendment to counteract soil degradation and rehabilitate
human-disturbed lands. Waste rock limestone, beresite, and phosphogypsum substrates of post-
mining sites were used in vitro for the application of sludge and peat mixture and consequent grass
seeding. The formed vegetative cover was analyzed to compare the germination and biomass growth
on reconstructed soils. We assessed the efficiency of ameliorant combinations by two approaches: (1)
the traditional technique of cutting-off plant material to measure the obtained plant biomass, and
(2) digital image analysis for RGB-processed photographs of the vegetative cover (r2 = 0.75–0.95).
The effect of SPP on plant cover biomass and grass height showed similar results: land rehabilitation
with the formation of a 20 cm soil layer on mine waste dumps was environmentally suitable with an
SPP:soil ratio of 1:3. However, excessive application (ratio 1:1 of SPP to the soil) negatively affected
seed germination and plant vegetation.

Keywords: land revitalization; post-mining development; sustainable land-use management;
resource nexus; waste recycling; soil restoration; biomass production

1. Introduction
1.1. Rehabilitation of Post-Mining Areas

Post-mining sites are classified as technogenically disturbed lands due to the impossi-
bility of using them in accordance with their economic and administrative purposes, a high
degree of land degradation, and the adverse environmental effects of wind deflation and
water erosion [1,2].

Major impacts arise from disturbed areas of mining waste dumps [3]. These sites
are characterized by complex landscape damage [4,5], geochemical transformation, and
physical disruption of soils. The local environmental situation can be improved by sustain-
able land-use management through actions of rehabilitation and (or) conservation [6,7]. A
mix of engineering and biological work allows the formation of a sustainable soil–plant
complex [8,9] and further phytostabilization [10].

According to the FAO World Reference Base for Soil Resources, the studied soils
are classified as technosols, as such, their technical origin prevails over their properties
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and pedogenesis. The successful development of vegetative cover on these soils requires
elimination of the organic matter deficiency [8,11,12]. A restored balance of the mineral
and organic components improves the structure of technosols [13–16], optimizes soil
conditions [17,18], and provides local biocenosis with nutrients [19–21].

1.2. Wastewater Sludge as a Potential Ameliorant

The proper selection of ameliorants is one of the decisive points in the rehabilitation
of post-mining lands: inexpensive organic amendments with a prolonged effect are the
priority. In this aspect, sewage sludge (SS) is being studied as a non-traditional ameliorant
for the reclamation of human-disturbed lands [22].

Sewage sludge is derived as a residue product from the biological stage of wastewater
treatment, and in this way, SS may be characterized by a varied range of products of
microorganism vital activity. Sewage sludge contains high concentrations of organic matter
and numerous nutrients, including nitrogen and phosphorus. This makes SS a potentially
inexpensive organic ameliorant for land rehabilitation [23–25].

The high content of P makes it possible to classify SS as a phosphorus ameliorant.
The shares of plant-available P [20,26,27] and N rises [28,29] in soils treated with SS. The
high amount of organic matter in the sludge improves aggregate stability, which positively
affects the physical characteristics of the soil in terms of its water-holding capacity [20],
density, and erosion resistance [14,28,29]. On the other hand, higher levels of several other
nutrients, K, Ca, Mg, and Na [20,29], and of metals, Cu, Zn, Pb, Mn, Cr, and Cd [30–33], are
also noted in treated soil.

Due to the raised contents of metals and the ecological risk of their leaching, migration,
and accumulation, it is necessary to consider the pH of treated soil [34,35]. The pH of SS
is mainly determined to be in the range of 6.5–7.5 [20,36–38]. However, the introduction
of sludge does not equally affect the acidity and electrical conductivity of the soil [29,39].
Research results indicate both an increase [30,40] and a decrease [24,41] in soil acidity after
adding SS.

The application of optimal sludge doses (no more than 15–45%), improves vegetative
cover [37,42,43], stimulates biomass production [20,43,44], and positively affects the rate of
plant growth [20,30,37,43,45]. However, opposite results may also be achieved. In [27,46,47],
excessive SS application has led to plant growth inhibition, which could be due to the
phytotoxicity threshold of the sludge being reached.

Differences in the impact of SS on soil–plant complexes can be explained by the
heterogeneity of the sludge compositions. The chemical composition and physicochemical
properties of the sludge can vary depending on the wastewater itself, the treatment system,
and the sludge processing [31,48].

Municipal sewage sludge (MSS) is actively used as a soil additive in agriculture and
forestry, land restoration, and reclamation of infertile soil. Even though MSS contains waste
products of microorganism activity, mainly attributed to low hazardous substances (e.g.,
classification of the Russian Federal Law No. 89-FZ, ‘On Production and Consumption
Waste’), the sludge can contain a significant amount of toxic inorganic and organic com-
pounds, dangerous pathogens, and high concentrations of metals [20,31,42,49]. To prevent
soil contamination, SS is processed by stabilization and disinfection, and assessed for com-
pliance with the regulations. Currently, regulation is mainly carried out in terms of general
characteristics: chemical composition, the content of metals, and quantity of pathogens
(according to GOST R 54534-2011, GOST R 17.4.3.07-2001, and GOST R 54651-2011).

Due to differences in the chemical composition and physicochemical properties of
wastewater sludge of industrial origin, their distinct assessment of applicability is re-
quired [50]. This study, as a solution, proposes to use wastewater sludge from pulp and
paper mills (SPP) for the replenishment of organic matter and nutrients to reclaim dumps.
Seven of the ten largest PPMs of the Russian Federation (Figure 1) are in the Northwestern
Federal District of the Russian Federation. The production rate accounts for more than
three thousand tons of dry SPP per year (without dehydration, the moisture content of



Minerals 2022, 12, 376 3 of 19

SPP is over 80–90%). In the same district, 123.3 thousand hectares of disturbed area needs
remediation (according to the state report ‘On the State and Protection of the Environment
of the Russian Federation in 2017’).
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Figure 1. Map of the largest pulp and paper mills in the Northwestern Federal District of the Russian
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The composition and physicochemical characteristics of SPP indicate their amelioration
potential. There is a high content of organic matter, phosphorus, nitrogen, and nutritious
macro and microcomponents (such as Ca, Fe, and Mn), as in MSS [51]. However, there
are also results with low levels of nutrients [52], that confirm the need for each sludge to
be assessed.

Wastewater sludge from pulp and paper mills (SPP) and MSS differ in the presence
of impurities of lignin and cellulose fiber [53], and increased C: N ratio, which can be
an obstacle for available nitrogen [54]. Concerning the cultivated soil, SPP improves the
water-holding capacity [54], and the presence of fiber improves the structure of the soil
and reduces the effect of water erosion [55]. That makes SPP a potentially inexpensive
organic ameliorant.

Therefore, the main aim of this work is to evaluate the efficiency of SPP as a soil
amendment for disturbed post-mining areas, with the following goals: (1) determination
of SPP and optimal soil composition for wasteland reclamation, and, (2) evaluation of the
growth efficiency and plant cover formation on reclaimed layers of soils and composition
of mine waste.

1.3. Assessment of Suitability of Non-Traditional Ameliorant

The assessment of the applicability of non-traditional ameliorants considers two issues:
(1) amelioration potential, and, (2) environmental safety of the substrate.

The evaluation of ameliorants is based on two method paths: direct and indirect as-
sessment of the substrate. Direct assessment consists of analyzing the chemical composition
and physicochemical characteristics of the ameliorant and their compliance with the regu-
lated norms. Indirect methods imply an evaluation of an ameliorant through an assessment
of the impact on: (1) plants—analysis of plant growth and vegetation [56–58], and, (2) soil
organisms—the qualitative and quantitative composition of soil microorganisms.

The advantage of such indirect methods is in the assessment of the impact of the
ameliorant on the two most influential factors in the ecologically effective restoration of
technosols: (1) on plants, to reduce the negative environmental impact by the formation of
a turf layer [59], and, (2) on soil organisms, to play an essential role in the main processes
of soil formation. This method path reduces the time, labor, and material costs for deter-
mining the entire spectrum of possible components and physicochemical characteristics
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of the analyzed ameliorant (toxic organic compounds, pesticides, metals, various salts,
etc.) [46,58].

2. Materials and Methods

We focused on assessing the rate of formation of the soil–vegetation complex during
the amelioration and rehabilitation of disturbed lands. The soil–plant complex formation
was evaluated by analyzing the growth and development of grass plants on the formed
models of mine waste layers. We used two methods of measurement to analyze the growth
and development of vegetative cover: a traditional approach for collecting and recalculating
plant material, and alternative digital methods of data processing [60–63].

2.1. Materials
2.1.1. Wastewater Sludge

Wastewater sludge from the pulp and paper mill (SPP) was taken from a biological
wastewater treatment facility of sulfite pulp production. The sludge was a grey mass
waste, consisting mainly of excess activated sludge with various possible inclusions: lignin
substances, alumina, and cellulose fiber [43,53,55]. The sludge was dried and left for an
incubation period of up to 90 days to reduce the phytotoxicity of the sediment and stabilize
the compounds, according to Hechmi et al. [64]. The main properties of SPP (pH, total C,
N, and K, and metals—Mn, Zn, Cu, and Pb) were determined by standard methods: the
content of carbon, hydrogen and nitrogen were found in the air-dry state of SPP samples
using a LECO CHN628 analyzer (USA); the phosphorus content was determined using
a Hach Lange DR 5000 spectrophotometer (Germany); qualitative chemical analysis of
metals was carried out using a Shimadzu ICPE 9000 atomic emission spectrometer (Japan).
The composition of the sludge is shown in Table 1.

Table 1. Results of physical and biochemical properties of used SPP compared with average composi-
tions of municipal sewage sludge (MSS) and sludge from pulp and paper industry (SPP).

Characteristic
SPP MSS SPP

This Work Ref. Ref.

pH 6.00 ± 0.50

6.6 [33], 6.86 [38]
6.96 [37], 6.98 [65]
7.05 [36]
7.03–7.12 [42]

6.11 [66]
6.56 ± 0.09 [67]
6.71 [68]
7.38 ± 0.09 [69]

Electrical
conductivity,
µS/cm

0.56 2.61 [36], 2.83 [26], 2.85 [33] 1.15 ±1.44 [67]
1.70 [68]

Organic matter, % 96.00 ± 0.1
26.6 [37], 27.57 [38]
52.7 [36], 65.0 [65]
83.2 [26], 83.5 [70]

10.82 [66]
63.7 [68]

C, % 47.21 ± 0.15 Organic 47.7 ± 13.7 [71]
Total 41.6 ± 3.5 [72]

6.28 [66]
26.0 [52]
41.2 [73]

N, % 0.36 ± 0.05
4.83 [37], 5.22 [26]
19.4 [42]
78 [33]

1.68 [52]
3.90 [68]
4.18 [73]

P, % 0.16 ± 0.05 2.43 [37], 3.9 [70]
20.2 [42]

0.29 [52]
0.867 [73]
2 [55], 3.83 [68]

Mn, mg/kg Below detection
limit

210 [20]
560.70 [65] 109.7 ± 3.1 [69]
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Table 1. Cont.

Characteristic
SPP MSS SPP

This Work Ref. Ref.

Zn, mg/kg 430 ± 50
534 [36], 592.8 [70], 667.62
[65]
952.1 [37], 1062 [20]

165 [52]
258.0 ± 7.2 [69]

Cu, mg/kg 210 ± 10
90.0 [36], 96.00 [38]
162.56 [65]
843.8 [70], 975 [42]

69 [52]
133 ± 15 [69]

Pb, mg/kg Below
detection limit

13.53 [38], 15.9 [70]
48.2 [20]
186 [42]

33.5 ± 1.1 [69]

Depending on the reviewed literature source, the data accuracy may be not presented
by the authors. For the parameters with significantly varying numbers (such as organic
matter), the numbers were shown in a single row if the values were close enough.

2.1.2. Mining Rocks for the Rehabilitation Layer

The experiment was based on three types of mining waste: (1) waste rock from gold
mining, (2) phosphogypsum from storage facilities of the phosphate fertilizer production,
and (3) crushed limestone from mine stockpiles. In (1), beresite is a low-temperature
metasomatic rock characterized by quartz, sericite, and carbonate, resulting from the
replacement of both igneous and sedimentary protoliths. Mining operations in Russia
provide large masses of these waste rocks; the composition of the studied samples is shown
in Table 2.

Table 2. Average compositions of waste rock, minerals are listed in descending order.

Carbonaceous Beresites, C (Total) = 0.5–9.0% Argillisites–Beresites, C (Total) ≤ 0.03–1.20%

Unaltered
Low

Alteration
(5–15%)

Pervasive
Alteration
(15–50%)

High
Alteration

(>50%)

Low
Alteration

(5–15%)

Pervasive
Alteration
(15–50%)

High Alteration
(>50%)

Sericitic Quartzitic

quartz quartz quartz quartz hydrosericite carbonate
rock sericite quartz

plagioclase biotite hydrosericite

sulfide
(pyrite,

arsenical
pyrite)

quartz sericite carbonate
rock sericite

K-feldspar muscovite
carbonate

rock
(ankerite)

carbonate
rock sericite quartz quartz carbonate

rock

biotite hydrosericite sericite +/− sericite kaolinite kaolinite kaolinite kaolinite

muscovite sericite carbonaceous
matter hydrosericite

+/−
carbonate

rock

+/−
hydrosericite pyrite pyrite

carbonaceous
matter

carbonaceous
matter pyrite clinkstone clinkstone +/−

clinkstone
+/−

clinkstone
+/−

carbonate
rock

+/−
muscovite muscovite pyrite

tourmaline tourmaline pyrite

In (2), phosphogypsum is the calcium sulfate hydrate formed as a by-product of
phosphate fertilizer production, consisting mainly of CaSO4·2H2O (>80%). The volume
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of waste buried at gypsum disposal and storage facilities can reach tens of millions of
tons [50].

In (3), crushed limestone is primarily composed of calcium carbonate mineral (>97%)
from mine dumps. According to the analysis of particle size distribution, the diameter of
crushed chips varied between 8 and 25 mm. Laboratory analysis of mine waste samples
indicated their close geochemical proximity to the global abundances of the elements
(Table 3).

Table 3. The average element composition of used mine waste, mg/kg.

Beresite Waste Rock Phosphogypsum Limestone

Mg 8300 S 236,600 Ca 387,604

Na 8770 Ca 280,202 Mg 17,000
Ca 8050 Si 3597 Mn 23.00
Ti 6000 P 3226 V 2.10

Mn 840 Al 1799 Zn 1.20
Ba 720 Fe 1747 Ni 1.20
V 180 F 1600 Cd 0.74
Sr 130 Na 297 Cu 0.47
Zn 102 K 249 Pb 0.10
Cr 99 Cl 181 As 0.10
Ni 75 Mg 200 Sb 0.10
Cu 49 Mn 77
As 31
Co 23
Pb 14
Cd 2
Mo 1

2.1.3. Soil

The soil of natural origin for the control group was sampled in the Leningrad Oblast
at the field-protective territory, as human-altered soil (Figure 2, N60.2811, E30.2342). Soil
samples represented the upper 30 cm fertile layer of deformed sandy Podzols (>80% of
the 0.05–2.00-mm fraction). The soil density was 1.3 ± 0.05 g/cm3, the pHwater was of
5.00 ± 0.5, and the content organic matter 6.85 ± 0.7%. The soil was air-dried and passed
through a 2-mm sieve.

2.1.4. Peat Mixture

Peat mixture is an alternative experimental ameliorant for comparing and assessing
the SSP applicability degree as a soil amendment. Peat mixture was studied because
of its highly widespread use as a soil additive in soil rehabilitation works. The peat
mixture that was used was a commercial product, being a sifted and deoxidized peat of
medium decomposition with the addition of lime (100–180 mg/L nitrogen (NO3 + NH4),
135–255 mg/L phosphorus (P2O5), 115–215 mg/L potassium (K2O), and pH~5–6).

2.1.5. Plant Material

The effect of soil additives was assessed on the mix of two plant species of the cereals
family: ryegrass Lolium perenne and meadow fescue Festuca pratensis. Ryegrass and fescue
are locally widespread species of flora that adapt well to anthropogenic conditions and
are recommended for land reclamation. The seeding rate of the grass mixture was set as
200 t/km2 (20 centner /ha), according to GOST R 57446–2017 ‘Best available techniques.
Disturbed lands reclamation. Restoration of biological diversity’.
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Figure 2. Soil sampling area: (a) provenance of typical soils of coniferous woodlands in Leningrad
Oblast (based on the free blank map, commons.wikimedia.org); (b) agricultural land and forest shelter
belts with disturbed Podzols westwards and southwards of a cleared field of the rural settlement of
Agalatovo (based on the Yandex satellite image).

2.2. Trial Set-Up

An experimental setup consisted of models of the mine waste layers (dump surface)
and soils with plant cover. The models were formed at the working surface of 15 × 15 cm
according to the following scheme: a 15–20 cm thick layer of the dumped waste and
20 cm of cultivated soil with soil additives, as a minimal required layer thickness for land
rehabilitation.

The comparative evaluation was conducted in two types of ameliorants (soil additives):
a wastewater sludge of pulp and paper industry, and a peat mixture as an alternative soil
additive. The application of soil additives was carried out at three established ratios based
on recommendations for introducing a peat mixture, recommendations for the optimal soil
density for grass plants, a literature review of scientific works in this field, and preliminary
analyses of substrates. To assess the effective ratio of soil additive to soil, all other models
were formed with the addition of the ameliorants at ratios (by volume) of 1:1, 1:2, 1:3
(SPP/peat:soil).

After stabilization of the complexes (1 week), seeds of the grass plants were evenly
sown in all models. The general scheme of the model complexes and their principle of
formation is shown in Figure 3.

The complex of models was set-up in favorable microclimatic conditions (T > 20 ◦C;
RH (atm) < 50%, W (soil) < 80%) with LED phyto-lighting providing the required lighting
conditions (full spectrum of luminescence, 35 W/lamp).

The experiment was carried out for 70 days to complete all grass vegetative periods
(60–70 days); the results of the study represent 40 days, to evaluate the exponential growth
stage of the grasses (ryegrass Lolium perenne and meadow fescue Festuca pratensis). The
following parameters were measured in the plants: seed germination, biomass growth, and
growth rate.
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six types of models on a rehabilitation layer of waste rock, D—six types of models on a rehabilitation
layer of phosphogypsum, E—six types of models on a rehabilitation layer of crushed limestone.

2.3. Measurements Method by the DIA for Plant Cover Assessment Trial

The assessment of the applicability of non-traditional ameliorants for plant cover
includes two measurement approaches: (1) the traditional method measuring physical
quantities (seed germination, grass height) and the cutting of plant material, and, (2) a
method using digital image analysis (DIA).

The method of DIA consisted of a systematic approach to photographing vegetative
cover following the plant material analysis [60,62,74]. The advantage of this method (in
comparison with the traditional approach) lies in the obtainment of data without high
expenditure of materials and time (the method is carried out without destroying the
analyzed plant material) [60,75,76].

The measuring method for DIA consisted of data collection (shooting plant material)
and processing digital RGB (Red, Green, Blue) images. Digital processing of images was
carried out using the Java-based open-source software ImageJ as follows: (1) removal of the
background (soil, stones, various inclusions, etc.) [62,77,78], counting [78], classification [79],
information processing based on color correction [62,75], and measurements of determined
physical quantities (the number of units of pixels, roundness, lines—for recalculating
biomass, seeds, and shoots) [62,80].

2.4. Analysis of Plant Growth and Vegetation

Vegetative cover and the accumulation of plant biomass are essential for restoring
the technogenic ecosystem [8]. Plant vegetative cover prevents land degradation and air
pollution by wind deflation and water erosion. Sustainable plant and soil cover have a
beneficial impact on environmental security and quality.

Vegetative cover assessment was carried out on all growth stages of grass plants:
germination and exponential growth stage by biomass and plant height. For plant biomass
and growth rate, a Gompertz sigmoid function analysis was used [81].

2.4.1. Germination

The germination assay included a comparative assessment of seed germination per-
centages in the studied models, to the control groups of models. The germination assay
was carried out on two species of grass plants—ryegrass Lolium perenne and meadow fescue
Festuca pratensis. The calculation of germination was estimated based on the number of
germinated seeds (%) for 5–7 days from the day of planting. The recalculation was carried
out using digital image processing.
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2.4.2. Plant Cover Biomass

The biomass of the vegetative cover was analyzed by two methods of measurement:
the traditional method, with the destruction of plant material, and the digital data process-
ing method. Both methods of measurement were conducted in the period of exponential
grass cover growth:

1. Direct visual measurement (traditional method): three-time cuts of aboveground
plant material (3 cm from the ground) were made bi-weekly to measure an increase in the
biomass.

2. Digital image analysis (alternative method): This was based on a digital RGB-
image analysis of vegetative cover. The method was carried out on a 2–3 day RGB image
shooting basis to estimate the biomass growth through the LAI (leaf area index). The index
characterizes vegetative cover as the area of vegetative cover per unit of surface (land) area.
Dimensionless quantity reflects the plant unit’s projected area (LAI = leaf area/land area,
m2/m2) [62,75]. An example of the RGB image processing results is represented in Figure 4.
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2.4.3. Plant Cover Height Rate

The height rate of the vegetative cover was analyzed by DIA which was based on a
digital RGB image analysis of vegetative cover [82]. The method consisted of 2–3 days of
RGB image shooting of grass cover, in height, against a black background, with a measuring
scale beside the plant cover. The scale was selected automatically on the image and the
pixel/mm ratio was calculated by the scale. The background was separated from the plant
semi-automatically. Digitization of grass cover for the estimation of the plant cover height
was based on comparison of the obtained measured growth lines with the size marks.

2.4.4. Data Analysis

Origin 8.5 Pro software (OriginLab Corporation, Northampton, MA, USA) and Java-
based open-source software ImageJ were used to analyze the experimental data. The
normality of distribution and homogeneity of variance were tested; the differences among
treatments were analyzed by ANOVA tests.
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3. Results and Discussion
3.1. Germination

The germination assay was carried out to estimate the amelioration efficiency on the
substrates in comparison with the control soil, and to assess the phytotoxicity of the treated
soil. Germination assay identifies unsuitable conditions, i.e., soil salinity, presence of toxic
compounds, and plant nutrition deficiency [54,58,83].

The germination and biomass growth assays showed that the germination of seeds in
the studied soil–plant complexes of the grass mix (ryegrass Lolium perenne and meadow
fescue Festuca pratensis) depended on: (1) the ratio of the components and, (2) waste rock
layers. The germination results are shown in Figure 5.
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Figure 5. Diagrams of seed germination (%) by four groups of rehabilitation layers with seven types
of models—control model (soil), wastewater sludge SPP and peat mixture: A—without layer, B—on
waste rock, C—on phosphogypsum, D—on crushed limestone. The data represent the mean of 4
replicates; the vertical bars indicate standard deviations.

The results showed high germination levels on the control soils (~70–80%) relative to
the treated soils, which is explained by the high fertility of the control soil. The optimum
conditions for seed germination were obtained at: (1) a ratio of 1:2 (peat:soil)—50–60%, and,
(2) a ratio of 1:3 (SPP/peat:soil)—65–75% and 60–70%. Results indicated a non-phytotoxic
effect of SPP in optimal ratios for ryegrass and meadow fescue. However, soils treated with
peat mixture showed healthier results of seed germination at most types of layers than soils
treated with SPP.

Drastic inhibition of seed germination was observed at soils treated with an extensive
amount of SPP, 1:1. Similar results were observed in earlier studies [16,69]. Hence, high
dosages of SPP should be avoided to prevent a negative effect on plant cover formation.

Evaluation of seed germination of ryegrass and meadow fescue on reclaimed layers
showed a difference in germination, which can be explained by: (i) neutralization of the soil
layer due to waste forming dumps (layers), (ii) optimal regimes (air, water, and nutrient),
and (iii) the degree of soil moisture. Optimal air regimes are determined by the density of
the substrate and the ratio of the components; the water regime depends on the moisture
capacity and water loss of the substrates; the nutrient ratio depends on the content of
the applied components in the initial additive. Factors (ii) and (iii) can be formed by
differences in substrate densities and the ratio of components, and the influence of factor (i)
is further confirmed by the analysis of the biomass of a vegetative cover and the percentage
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of germination on waste rock models. The lowest results were observed in model groups
formed on the waste rocks, and the highest was found on the crushed limestone layer.

Speaking of the result dissimilarity, we assume that several factors could affect the
difference in the seed germination. Low seed germination on the waste rock can be
explained by the particle size distribution: the rest of the model mixtures have a forming
mineral layer of low water permeability, while the 1–4 cm beresite crushed specimens
provide better water drainage and thus can contribute to moisture shortage under equal
laboratory precipitation. Furthermore, SPP is characterized by a higher water-holding
capacity as compared with peat mixture, so the seed germination on waste rock varies
significantly. The control samples confirm this hypothesis: considering the variability of
germination over the blank layer, crushed limestone, and phosphogypsum, we see levels
close to 80%, while over the waste rock, the percentage is normally below 70%, close to
50%. Moreover, the capillary uptake of metals from the mineral substances may inhibit the
grasses as reported in early studies by Aoyama and Kuroyanagi [83] and recent laboratory
research by Wiewióra and Żurek, [84] and several other authors.

Overall, the results of the seed germination assay determined that with the application
of a rational amount of SPP, there is no phytotoxic effect on seed germination from the
treated soil. However, the results of the experiments could be influenced by many other
factors: salinity [54,58,84] (and EC [85]), excessive ammonium nitrogen levels [16,54,58],
high amount of metals [54], and poor physical structure [86].

3.2. Plant Cover Biomass

An analysis of biomass sections was carried out in three-time measurements by weigh-
ing plant material cuts. The results of the plant cover biomass assay (weight of plant
material cuts) are shown in Figure 6.
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Figure 6. Diagram of the biomass by the weight of plant material cuts (g/m2): A group of models: 
A—without layer, B—on waste rock, C—on phosphogypsum, D—on crushed limestone; with six 
types of wastewater sludge and peat mixture (SPP, peat) and ratios (1:1, 1:2, 1:3); with 3-time 
measurements. The data represent the mean of 4 replicates; the vertical bars indicate standard de-
viations. 

Figure 6. Diagram of the biomass by the weight of plant material cuts (g/m2): A group of models: A—
without layer, B—on waste rock, C—on phosphogypsum, D—on crushed limestone; with six types of
wastewater sludge and peat mixture (SPP, peat) and ratios (1:1, 1:2, 1:3); with 3-time measurements.
The data represent the mean of 4 replicates; the vertical bars indicate standard deviations.

The method of plant biomass analysis using DIA and LAI made it possible to analyze
the rate of plant biomass growth over the entire growing season (exponential growth stage).
The result of 36 days of measurement reflected the main trends and identified the main
factors of the impact on the reclaimed layer and formed plant–soils complexes (Figure 7).
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Figure 7. Rate of plant biomass growth by DIA and LAI (%): A—on the model without layer,
B—on the waste rock of a gold ore deposit, C—on phosphogypsum, D—on crushed limestone,
(A1,B1,C1,D1)—on mixture of soil and wastewater sludge SPP, and (A2,B2,C2,D2)—on mixture of
soil and peat.

Comparison of the results of the two presented measurement methods on the plant
material collecting days showed a correlation dependence of: r1

2 = 0.95, r2
2 = 0.75, and

r3
2 = 0.75.

The results of the biomass growth rate showed the dependence of the seed germina-
tion on the applied substrate. The effectiveness of the vegetative cover formation in the
disturbed areas depended on the deposited layer, ameliorant, and its quantity.

The analysis of the weekly increase in the biomass of the vegetative cover showed that
the peat mixture achieved better results of biomass increase (LAI > 50% on phosphogypsum,
on crushed limestone, and models without layer) than soil with the addition of SPP
(LAI < 40%).
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Peat mixture applied into the soil in the ratios of 1:2 and 1:3 showed the highest
results of vegetative cover formation and biomass growth rate, where LAI > 50% on
control models, LAI > 30% on waste rock layer, LAI > 40% on phosphogypsum layer,
and LAI > 60% on crushed limestone. Plant growth was accelerated and overall biomass
growth was improved. The closest results of the biomass growth rate were in models where
SPP was introduced into the soil in a ratio of 1:3, where LAI > 30% on all types of layers.

Speaking of the amount of application, the ratio 1:1 is not applicable to peat mixture nor
SPP (LAI~10%), as an ameliorant. Inhibition of plant growth and lower overall productivity
of the biomass of the vegetative cover were noted. These results can be explained by: (1) a
high degree of soil lightness, i.e., a low density of the soil substrate unacceptable for the
effective formation of grass vegetative cover, or an increase in the phytotoxicity of the soil
layer, which in general results in an inhibitory effect on plant growth. Similar research
results have already been noted with excessive addition of sewage sludges [8,39].

The analysis of the influence of the recultivated layer determined that the formation
of a minimal 20 cm soil layer was the most ecologically effective vegetative cover form on
models with a neutral medium (pH 6.5–7.0), due to the characteristics of the dump rocks.
Rehabilitation of waste rock dumps (from gold mining) reflected the most negligible results
in germination and biomass growth, which, in turn, was also explained by the acidity of
the formed conditions.

The decrease in the acidity of the soil layer worsened the efficiency of biomass for
reasons of: deterioration of the optimal acidity conditions, and an increase in the migration
ability of metals, which led to an increase in the phytotoxic effect of soil layers [15,17].

No phytotoxic effect of the added ameliorants nor reclaimed layers was found in any
of the studied models: there were no signs of chlorosis, necrosis, or other plant damage.

High results of biomass growth, normal growth, and vegetation of plants were ob-
served when a peat mixture was added at ratios of 1:3 and 1:2 and SPP 1:3 to the soil, which
confirmed the earlier obtained seed germination results.

Based on the obtained growth functions of the grass plant cover (Gompertz sigmoid
function) and their correlation coefficients, it can be concluded that the development of
the vegetative cover on the formed treated soil models proceeded without deviation and
within the standard growth rate (r2 = 0.84–0.98). Analysis of variance (ANOVA) was used
to examine differences between types of formed soil–plant models. All statistical analyses
were performed at the 95% confidence level (p < 0.05).

3.3. Plant Cover Height Rate

The results of plant cover height showed the dependence of the germination on the
applied substrate and deposited layer.

The analysis of the weekly increase in plant cover height mainly confirmed results of
biomass growth. The height grass cover formation on SPP mixture (obtaining a maximum
of plant cover height ~10 cm) reached a higher maximum than grass cover on peat mixture
(>10–15 cm). Results of plant cover height grown on a mixture of soil and SPP showed
similar results on all types of rehabilitation layers. The obtained results of grass cover
height are shown in Figure 8.

Based on the obtained growth functions of the grass plant cover (Gompertz sigmoid
function) and their correlation coefficients, it can be concluded that the development of
the vegetative cover on the formed treated soil models proceeded without deviation and
within the standard growth rate (r2 = 0.85–0.99). Analysis of variance (ANOVA) was used
to examine differences between types of formed soil–plant models. All statistical analyses
were performed at the 95% confidence level (p < 0.05). No visual or measurable signs of
the impact of lower horizons on vegetation height were found. However, higher values of
maximum vegetation height were noted in the following groups of models: (1) on the group
without horizon 0, (2) on the rehabilitated layer of waste rock, and, (3) on phosphogypsum.
Overall, no visual distortion was recorded, so the results of biomass measurements can be
considered more indicative.
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Figure 8. Rate of plant cover height (cm): A—on the model without layer, B—on the waste rock of a
gold ore deposit, C—on phosphogypsum, D—on crushed limestone, (A1,B1,C1,D1)—on a mixture of
soil and wastewater sludge SPP, and (A2,B2,C2,D2)—on a mixture of soil and peat.

3.4. Plant Growth and Vegetation

Measured characteristics were recounted in comparison with results from control
models and maximum obtained values. Recounted characteristics were compiled in the
total matrix of plant cover growth and vegetation indicators (Figure 9).

The combined matrix of indicators proved the results of the germination assay and the
biomass cover assessment (though LAI), replicating a particularly relevant amount of SPP
soil application for disturbed land reclamation. In comparison with peat mixture additives,
the recommended ratio of SPP to soil was 1:3, which was based on achieved results of grass
cover growth and vegetation development.
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The average rate of measured plant indicators showed the optimal SPP ratios for
application to soils (soil treating) in disturbed land of the mining industry. Treated soils
formed without the mining waste layer showed average values for plant growth and
vegetation. The optimal ratios in the absence of a mine waste layer were 1:3 for SPP, and
1:2 and 1:3 for peat mixture, as the obtained values of the average rate of measured plant
indicators were > 50%:

1. For the waste rock layer, the optimal ratios were obtained with soil at a 1:3 addition
of SPP and peat mixture to the soil (average rate > 50%);

2. For the phosphogypsum layer, the optimal ratios for waste rock dump rehabilitation
for SPP were 1:2 and 1:3, and for peat mixture, all types of ratios (1:1, 1:2, and 1:3) resulted
in the average rate of measured plant indicators > 50%. The highest value of the average
rate of measured plant indicators was obtained with a ratio of 1:3 peat mixture to soil
(average rate >100%);

3. For the crushed limestone layer, the obtained results showed a more suitable
addition of peat mixture than the addition of peat for crushed limestone; the average rate
of measured plant indicators: (1) for SPP 1:2 (>60%) and 1:3 (>90%) to soil; (2) for peat
mixture 1:2 (>100%) and 1:3 (>100%).

4. Conclusions

The assessment of the applicability of SPP as a soil additive for the rehabilitation
of disturbed lands in the mining industry was carried out based on an evaluation of the
plant cover growth, considering the climatic, environmental, and anthropogenic factors of
the technogenic substance. The growth efficiency of a plant cover was evaluated by the
following parameters: (1) seed germination, (2) plant cover biomass, and (3) plant cover
height rate.

The SPP influence on seed germination was measured by the digital image analysis
method. In general, a rational application of SPP to the soil does not hurt seed germi-
nation (seed germination > 50%). However, excessive application (in ratio 1:1 of SPP to
the soil) negatively affected the germination parameter, showing phytotoxic effect and
growth inhibition.

The influence on plant cover biomass was analyzed by the digital image analysis
method and leaf area index (LAI). The SPP (in ratio 1:3) influence on biomass growth
rate reflected similarly on all soil–plant complexes (LAI > 30% on all types of layers).
However, it resulted in a lower biomass quantity in comparison with soils with peat mixture
application (LAI > 50% on control models, LAI > 30% on waste rock layer, LAI > 40% on
phosphogypsum layer, and LAI > 60% on crushed limestone).

The effect of SPP on the plant cover height rate replicated previous results of germina-
tion and plant cover biomass. However, it showed no significant difference in SPP ratios or
mine waste layer type.
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Overall, results of the evaluation of plant cover formation showed that peat mix-
ture application resulted in healthier and higher levels of plant cover growth than SPP
amendment. Nonetheless, SPP results were close to the result of peat mixture of plant
growth influence in a ratio 1:3 to soil: (1) germination: 1:2 peat—50–60%, 1:3 peat—60–70%,
and 1:3—SPP 65–75%; (2) biomass: 1:3 SPP LAI = 30–40% (in limestone >60%) compared
with peat mixture LAI = 30–80%; (3) height: in SPP ratio 1:3 to soil—10 cm, and peat
mixture—10–20 cm.

Land rehabilitation with the formation of a 20 cm soil layer on mine waste dumps is
environmentally suitable with an SPP application ratio of 1:3 to the soil. The amount of
SPP in ratio 1:1 was found not applicable as an ameliorant.
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