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Abstract: The discharging of ammonium from industrial, domestic, and livestock sewage has caused
eutrophication of the water environment. The objectives of this study are to synthesize magnetic
zeolite (M-Zeo) by an eco-friendly, economical, and easy procedure and to investigate its suitability
as an adsorbent to remove ammonium from an aqueous solution. Based on characterization from
XRD, BET, and SEM-EDS, Fe3O4 was proved to successfully load on natural zeolite. The effect of pH,
temperatures, reacting times, initial ammonium concentrations, and regeneration cycles on ammo-
nium adsorption was examined by batch experiments. The ammonium adsorption process can be
best described by the Freundlich isotherm and the maximum adsorptive capacity of 172.41 mg/g was
obtained. Kinetic analysis demonstrated that the pseudo-second-order kinetic model gave the best
description on the adsorption. The value of pH is a key factor and the maximum adsorption capacity
was obtained at pH 8. By using a rapid sodium chloride regeneration method, the regeneration
ratio was up to 97.03% after five regeneration cycles, suggesting that M-Zeo can be recycled and
magnetically recovered. Thus, the economic-efficient, great ammonium affinity, and excellent regen-
eration characteristics of M-Zeo had an extensively promising utilization on ammonium treatment
from liquid.

Keywords: ammonium; clinoptilolite; adsorption capacity; magnetic recovery

1. Introduction

Nitrogen compounds, ammonium or ammonia generated from population growth,
agriculture, and food predicting, in particular, in sufficient concentration can promote water
eutrophication. The presence of ammonium in industrial, domestic, and livestock sewage
has always been a major concern. The increasing amount of ammonium in wastewater
requires efficient sewage treatment technologies, including air stripping, biological treat-
ment, electrochemical treatment, membrane distillation, struvite precipitation, microwave
radiation, absorption, and ion exchange [1–4]. Biological treatment is considered the most
efficient method on ammonium removal from wastewater with high nitrogen concentration.
However, the traditional steps for ammonium removal in biological treatment comprise
aerobic nitrification and anoxic denitrification, which consumes abundant energy [5,6]. In
addition, large structure floor area, sensitive to shock load, high capital investment and
operation cost, and complex management limit its large-scale practical application. More
importantly, the current sewage treatment system cannot eliminate the strong disturbance
of human activities to the nitrogen compounds in the natural process, and still lead to
many nitrogen compounds finally discharged into the water environment. Actually, ammo-
nium or ammonia is also a resource and should be recovered from wastewater. Dawson
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and Hilton (2011) reported that about 0.9% of the world’s energy is consumed on the
production of nitrogen fertilizers [7]. Thus, the growing need of nitrogen may be solved
by recovering ammonium from wastewater. Due to adsorbents that are required to have
great physical and chemical properties, and also taking the technical, economical, and
health-related points into consideration, the technology of adsorption shows great potential
for ammonium recovered from wastewater [8].

Zeolite, with regular nanoporous structures, is mainly composed of aluminosili-
cates with a three-dimensional structural composed by Al-O and Si-O tetrahedra net-
works [3,9]. Zeolite has an excellent ion exchange capacity, and its cation exchange ranking
is Cs+ > Rb+ > K+ > NH4

+ > Sr+ > Na+ > Ca2+ > Fe3+ [10,11]. Its mineral framework com-
prises many openings, internal voids, or channels, which are beneficial to trap and bind
ammonium [12]. Comparing with other adsorbents for ammonium removal, for example,
clay minerals, activated carbon, exfoliated vermiculites, fly ash, peats, chitosan beads,
wood sawdust, bentonite, attapulgite, oxide nanoparticles, and zero-valent iron, with
disadvantages of complex preparation, high cost, or challenging for low concentration of
ammonium removal, natural zeolite has great advantages, being of low cost and easy to
obtain, having a high cationic exchange property, and is environment friendly, which allows
zeolite as a particular attractive cation exchanger and absorbent to capture ammonium
from wastewater [13]. In addition, zeolite has always been drawing extensive interests on
ammonium removal in different ways, for example, ion exchange columns, catalyst, fillers
in membrane, and fillers or carriers in biological reactors [14–22]. However, comparing with
natural zeolite, modified zeolite exhibits larger adsorptive capacities and higher selectivity
for ammonium [1]. In general, common modification techniques for zeolite involve acid
treatment, alkali treatment, salty treatment, heat treatment, electrochemical method, and
microwave treatment [4,10,11,23–28]. In fact, powder adsorbents have tremendous and
attractive advantages on specific surface area and adsorption capacity. Unfortunately, the
difficulty in separating powder adsorbents from liquid causes many engineering problems
and limits its practical application, for example, the mass loss will flow, blockage, or damage
the following treatment structures, and the adsorption capacity reduced by microorganisms,
etc. Thus, powder zeolites are also trapped into a dilemma to remove ammonium from
real sewage. Recently, the appearance of magnetic materials solves those problems. The
powdered magnetic modified adsorbent can be separated by magnetic recovery technology
after the adsorption of pollutants and then reused by regeneration. Magnetic materials
have been proven to have higher surface area, greater adsorption capacity, and magnetic
separation properties [29]. Thus, the preparation of magnetic zeolite may have advantages
in the ammonium treatment process. However, magnetic zeolite is commonly used for
refinery oily wastewater purification [30], heavy crude oil removal [31], and heavy metal
removals [32], etc.

The purposes of this research are to synthesize magnetic zeolite (M-Zeo) and to
systematically examine its application on the ammonium removal from aqueous solutions.
The effect of pH, temperatures, reacting times, initial ammonium concentrations, and
regeneration cycles on ammonium adsorption were investigated by batch experiments.
The adsorption isotherms, thermodynamic parameters, and kinetic models were used to
discuss the adsorption mechanism of ammonium on M-Zeo.

2. Materials and Methods
2.1. Materials

The natural zeolite powder (N-Zeo) (<200 mesh) utilized in this experiment was gained
from Xuancheng, Anhui province of China. The preparation method followed Mu et al. [33].
FeCl3 (2 g) was dispersed into ethylene glycol solution (60 mL), then, polyethylene glycol
(1.2 g) and sodium acetate (4.8 g) were dissolved into the solution. After stirring for 30 min,
0.8 g natural zeolite (N-Zeo) was added to the mixture and ultrasonicated for 3 h. After that,
the mixture was put into a polytetrafluoroethylene-lined autoclave (100 mL) and heated
at 190 ◦C for 8 h. The black composite after cooling to ambient temperature was bathed
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by using ethanol and deionized water for a few times until the conductivity was below
10 µs/cm. The M-Zeo was obtained after drying at 40 ◦C for 24 h.

Except zeolite, other reagents (such as ferric chloride, ammonium chloride, ethylene
glycol, and so on) employed in the current contribution were all of an analytical reagent
and purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).

2.2. Batch Adsorption Experiments

The influence of pH on the ammonium adsorptive capacity by M-Zeo was tested under
ambient conditions. NH4

+-N solutions (50 mL, 1000 mg/L) were put into 100 mL polyethy-
lene centrifuge tubes with caps, then, the pH value was regulated to 4, 5, 6, 7, 8, and 9 by
using 1M HCl or 1M NaOH solutions. A total of 0.02 g adsorbent (M-Zeo) was respec-
tively added into NH4

+-N solutions and then mingled in thermostatic shakers for 12 h
(200 rpm, 25 ◦C). After equilibrium, the solid phase was separated from the liquid phase by
centrifuging, filtering (membrane filter, 0.45 µm), or magnetic attraction, and then NH4

+-N
concentrations were tested.

NH4
+-N adsorption isotherms were performed in thermostatic shakers for 12 h at the

desired temperatures (298 K, 308 K, and 318 K). A total of 0.02 g adsorbent (M-Zeo) was
respectively added into the NH4

+-N solutions (50 mL) at pH = 8 and initial concentrations
at a range from 5 to 1000 mg/L (5, 50, 100, 200, 500, and 1000 mg/L).

The kinetics adsorption was evaluated at pH = 8 and at 298 K. A total of 0.02 g
adsorbent (M-Zeo) were adopted into NH4

+-N solutions (50 mL, 1000 mg/L). Samples
were withdrawn at continuous intervals (0.25, 0.5, 1, 2, 4, 8, and 12 h).

The impact of the regeneration cycles on the adsorption capacity of ammonium was
performed at pH=8 and at 298 K. The adsorbents after adsorption were collected and
regenerated by using NaCl solutions (50 mL, 2 mol/L). After washing with deionized water
for a few sequences, the regenerated M-Zeo was dried at 60 ◦C for 24 h and then reused to
adsorb ammonium from the aqueous solution.

2.3. Analysis Methods

The NH4
+-N concentrations were analyzed by the Nessler’s reagent spectrophotome-

try method with a spectrophotometer (722E, Spectrum Co., Shanghai, China). The mineral
phases were performed by X-ray diffraction (XRD) analysis using an X-Ray diffractionmeter
(SmartLab, Rigaku, Japan) with a Cu-target and a range of 5–70◦ at a scan rate of 10◦ min−1.
The morphology and nanostructures of M-Zeo were analyzed by a field emission scanning
electron microscope (FESEM, Sigma 300, Zeiss Ltd., Cambridge, UK) with an electron
acceleration voltage of 10 kV. The analysis of surface area and pore circumstances of M-Zeo
were performed by using a surface area and pore size analyzer (Quanta NOVA 3000e,
Quantachrome, Shanghai, China).

3. Results
3.1. Characterization

Figure 1 illustrates the XRD patterns of N-Zeo and M-Zeo. The characteristic diffrac-
tion peaks of clinoptilolite appeared on 2θ = 9.76, 11.16, 22.36, 28.04, 30.02, and 31.92◦. The
reflection at 2θ = 26.56◦ was found and authenticated as quartz according to the standard
database. Clinoptilolite was the main phase coexisting with quartz in adsorbents, but the
intensities of quartz and clinoptilolite superficially became weaker after modification. As a
matter of fact, the diffraction patterns at 2θ = 35.42, 57.28, and 62.48◦ identified as magnetite
show strong diffraction peaks in the sample of M-Zeo, which proved magnetite as a new
phase successfully loaded on zeolite.

The SEM images of adsorbents used in the present study are presented in Figure 2.
Plate-like morphology crystals, flat surfaces, and massive pores of the zeolite and the
channels inside of the zeolite framework can be observed in Figure 2a. Many Fe3O4
particles with a scale of 200–300 nm were loaded on the surface of zeolite after magnetic
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modification in Figure 2b. The EDS analysis (Figure 2c) also proved that the surface of
zeolite was coated with plenty of magnetite.
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The BET-specific surface area, pore volume, and pore size are templated in Table 1. M-
Zeo had better BET-specific surface area and pore volume than N-Zeo. The increase in BET
of M-Zeo was attributed to the nanoscale of magnetite occupied on the surface of zeolite.
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The adsorption curves of both N-Zeo and M-Zeo showed a shape of IV isotherm (Figure 3),
implying the characteristic feature of mesoporous materials. Thus, these mesoporous
materials provide more internal specific surface and pore volume [34].

Table 1. The values of specific surface area, pore volume, and average pore size of N-Zeo and M-Zeo.

Sample BET (m2/g) Volume (cc/g) Pore Size (nm)

N-Zeo 21.283 0.074 69.371
M-Zeo 43.097 0.138 63.814
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3.2. Influence of pH on Ammonium Removal

The impact of pH values on NH4
+-N adsorption by using M-Zeo as an adsorbent was

performed by adjusting pH values in a range from 4.0 to 9.0. As shown in Figure 4, among
the initial pH values, the maximum ammonium adsorption takes place at pH 8.0. The
results proved that the adsorption process in the current study was pH-dependent. The
adsorption capacity of ammonium clearly rose from 73.84 mg/g to 140.97 mg/g in the pH
range from 4.0–8.0, and then declined to 115.94 mg/g at pH 9.0. The present study observed
the same trend in a pH rise with other literatures [11,27,35]. The balance between NH3 and
NH4

+ is pH and temperature-dependent, and the relationship between ammonium and
ammonia in an aqueous solution can be expressed as follows:

[NH3] =
[NH3 + NH4

+]

1 + [H+]/Ka
(1)

pKa = 4× 10−8 × T3 + 9× 10−5 × T2 − 0.0356× T + 10.072 (2)

where [NH3], [NH3 + NH4
+], and [H+] are expressed as the concentrations of NH3, NH3 + NH4

+,
and H+ in an aqueous solution, respectively. Ka is the acid ionization constant for ammonia,
which was 5.39 × 10−8 L/mol obtained by Campo et al. [36]. pKa can be stated in a tem-
perature relation formula (◦C), represented in Equation (2). Therefore, pKa was calculated
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as 9.24 according to the following Equation (2). This was in accordance with ammonium
existing as NH4

+ at pH 2–8 and NH3 at pH 10–13 in the aqueous solution (Figure 4b). At a
lower pH, zeolite is highly selective for H+ and NH4

+ and could be favorable for adsorbing
NH4

+ on the external surface of the zeolite. At a higher pH, the decrease of ammonium
adsorption capacity can be attributed to the alkaline condition promoting NH4

+ turning
into NH3.
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3.3. Adsorption Isotherms and Thermodynamics

Three adsorption models of the Langmuir model, the Freundlich model, and the D-R
isotherm were used to fit the process of the M-Zeo adsorbing ammonium [37–39]. The
Langmuir model is described as Equation (3):

Ce

qe
=

1
qm

Ce +
1

qmk
(3)

here, qm is the maximum adsorptive capacity (mg/g); k (L/mg) refers to the Langmuir
constant; Ce is the equilibrium concentration (mg/L); qe is the adsorption capacity on
adsorbent (mg/g).

The Freundlich model is represented as Equation (4):

ln qe = ln K f +
1
n

ln Ce (4)

here, Kf (mg/g) refers to the Freundlich constant. 1/n is a heterogeneous factor, which is
involved in the adsorption intensity or surface heterogeneity.
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The D-R isotherm is given as Equation (5):

ln qe = ln qm − βε2 (5)

here, β is the adsorption energy constant (mol2/J2); ε is Polanyi potential, which can be
calculated as Equation (6):

ε = RT ln(1 +
1

Ce
) (6)

and E is the average energy of adsorption (kJ/mol), which is expressed from β in the
following Equation (7):

E =
1√
2β

(7)

The adsorption isotherms under various temperatures are illustrated in Figure 5a.
Table 2 shows relative parameters and correlation coefficients summarized from three
adsorption isotherm models. The highest values of correlation coefficients R2 (>0.9928)
were obtained by fitting with the Freundlich model, indicating that the adsorption was
taking place on a structurally heterogeneous adsorbent surface. In this study, the value
of the heterogeneous factor 1/n is between 0.4667 and 0.4739 (<0.5), which suggests a
favorable adsorption in the present research [40]. Further, the maximum adsorption
capacity of 172.41 mg/g was obtained from the Langmuir model at 298 K. Based on D-R
isotherm, the process of ammonium adsorption could be related to a pore volume filling
process [39]. The point of E distinguishes the class of sorption. Thus, physical sorption
is determined by the E values in the range from 1 to 8 kJ/mol, while chemical sorption
is determined by the E values in the range from 8 to 16 kJ/mol. E values obtained in
present study ranged in 8.9087–9.6225 kJ/mol, demonstrating that the adsorption was
predominantly chemisorption.
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Table 2. Relative parameters of adsorption isotherms models.

T (K)

Langmuir Freundlich D-R

qm
(mg/g) k R2 Kf

(mg/g) 1/n R2 B
(mol2/J2)

qm
(mg/g)

E
(kJ/mol) R2

298 172.41 0.005 0.9442 5.73 0.4739 0.9953 0.0063 152.32 8.9087 0.9486
308 175.44 0.005 0.9425 5.92 0.4714 0.9952 0.0059 154.02 9.2057 0.9472
318 181.82 0.005 0.9410 6.33 0.4667 0.9928 0.0054 158.03 9.6225 0.9410

The maximum adsorption capacity in the present study was obviously higher than
in other literature. For example, the ammonium exchange capacity by high silica zeolites
was 4.08 mg/g [5]. Fu et al. [27] obtained the maximum adsorption amount of ammo-
nium of 16.96 mg/g by using zeolite modified with sodium nitrate (NaNO3). Kamyab
and Williams [12] reported that the maximum adsorptive amount of ammonium by Linde
Type J zeolite was 51.97 mg/g. Meanwhile, Shabanet al. [41] found that the adsorp-
tion capacities of ammonium by clinoptilolite and synthetic zeolite-A were, respectively,
92 mg/g and 99 mg/g. Considering the differences, the main reason may be that the nano
magnetic particles enhanced the BET specific surface area and pore volume of the adsor-
bent (Table 2), which promoted greater adsorption ability for the ammonium. Moreover,
Vaičiukynienė et al. [42] stated that the increasing initial ammonium concentration encour-
aged the internal micropores of the adsorbent to take part in ammonium exchange, which
facilitated the great adsorption capacity obtained.

3.4. Thermodynamic Parameters

The distribution coefficient, Kd, is represented as Equation (8), and the Gibbs free
energy, entropy, and enthalpy are calculated by the temperature-dependent adsorption
isotherm (Equations (9) and (10)):

Kd =
qe

Ce
(8)

∆G0 = −RT ln Kd (9)

ln Kd = −∆H0

RT
+

∆S0

R
(10)

Figure 5b tabulated the relationship between lnKd and 1/T, while Table 3 summarized
the thermodynamic parameters values. The value of ∆G0, lower than zero, and the value
of ∆H0, higher than zero, determined that the adsorption was endothermic, feasible,
and spontaneous. The lower values of ∆G0 coupled with higher temperature (Table 3),
determined that higher temperatures promoted the endothermic adsorption. The values of
∆S0 that were higher than zero revealed that the adsorption was randomness increasing.

Table 3. Thermodynamic parameters of ammonium adsorption by M-Zeo.

T (K) ∆G0 (kJ/mol) ∆S0 (kJ/mol/K) ∆H0 (kJ/mol)

298 −12.549
308 −13.032 0.050 2.482
318 −13.558

3.5. Adsorption Kinetics

Four typical kinetic models simulated the adsorption kinetics are expressed as fol-
lows [43–46]:

Pseudo first-order equation : ln(qe − qt) = ln qe − k1t (11)

Pseudo sec ond-order equation :
t
qt

=
1

k2qe2 +
t
qe

(12)
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Elovich equation : qt =
ln aebe

be
+

1
be

ln t (13)

Intraparticle diffusion equation : qt = k3t0.5 (14)

here, qt is the amount of adsorption at time t, mg/g; qe is the amount of adsorption at
equilibrium, mg/g; k1 and k2 are, respectively, the rate constants of pseudo first-order
adsorption and pseudo second-order adsorption, g/(mg·h); ae is the initial adsorption rate,
mg/(g·h); be is described to the extent of surface coverage and the activation energy for
chemisorption, g/mg; k3 is the rate constant of intraparticle diffusion, mg/(g·h−0.5).

Figure 6a shows the adsorption kinetics at pH 8. It is observed that the adsorption
significantly rose with the increasing contact time after 1 h. The adsorption quantity was
151.22 mg/g at a contact time of 12 h at 298 K. The data of adsorption kinetics stated that
M-Zeo presented a fast adsorption rate for ammonium removal.
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The kinetic parameters after kinetic data in the current study fitted by the above four
kinetic models were summarized in Table 4. It is observed that the adsorption kinetic data
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can be satisfactorily simulated by a pseudo-second-order model with the highest correlation
coefficient R2 = 0.9990. According to the pseudo-second-order model, the theoretically
adsorbed amount at equilibrium was calculated as 156.25 mg/g, which was close to the
value obtained from the experiment (151.22 mg/g). Because of the correlation coefficient
R2 higher than 0.99, the Elovich model acceptably fitted the kinetic data, supposing that the
adsorption was energetically heterogeneous [47]. As observed in Figure 6b, the adsorption
kinetic data can be satisfactorily simulated by the intraparticle diffusion model if the entire
curve is separated into two linear patterns. Therefore, the adsorption can be considered
to involve two stages, respectively, corresponding to the boundary layer diffusion and
the intraparticle diffusion [11]. The fast stage at the first two hours belonged to the
rapid occupation of major surface adsorption positions by ammonium, while the gradual
stage is ascribed to ammonium entering the internal pores of M-Zeo by the intraparticle
diffusion [10]. Thus, the adsorption is firstly rapid adsorption and then gradual equilibrium.

Table 4. Kinetic parameters of ammonium adsorption by M-Zeo.

Kinetic
Model

Pseudo First-Order Pseudo Second-Order Simple Elovich Intraparticle
Diffusion

qe
(mg/g)

k1
(h−1) R2 qe

(mg/g)
k2

(g/mg·h) R2 ae
(mg/(g·h))

be
(g/mg) R2 k3

(mg/g·h0.5) R2

M-Zeo 77.339 0.3026 0.9101 156.25 0.0108 0.9990 1105.2 0.04 0.9830 29.941 0.8664

3.6. Regeneration

The regeneration of the M-Zeo performance for ammonium adsorption is exhibited
in Figure 7. After the second regeneration cycle, the adsorption quantities were clearly
increased from 153.49 mg/g to 166.00 mg/g. However, after regeneration by the third cycle,
the adsorption quantities were declined. After five regeneration cycles, the adsorption
quantity was 148.94 mg/g, with the regeneration ratio of 97.03%. Meanwhile, M-Zeo was
proven to have great advantages on magnetic recovery and reused properties by employing
the NaCl regeneration method.
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The ion-exchange equilibrium of the process of “NaCl regeneration” of ammonium-
bearing zeolite can be expressed as the following [48]:

NaCl + NH4 − Zeolite⇔ NH4Cl + Na− Zeolite (15)

On the surface of zeolite, Na+ exchanged the position of NH4
+ and then zeolite recov-

ered the property of ammonium exchanging [49]. Meanwhile, Li et al. [49] proved that after
three cycles in NaCl regeneration the adsorbent had the adsorption capacity close to that of
fresh zeolite. Thus, NaCl solution can act as both a desorbing agent and regenerating agent,
which contributes to NH4

+ desorption and M-Zeo regeneration, simultaneously [50].

4. Conclusions

The M-Zeo with high magnetic recovery performance was successfully synthesized. M-
Zeo demonstrated a great performance of ammonium removal from liquid. The Freundlich
model and the pseudo-second-order model satisfactorily simulated the adsorption isotherm
and kinetics for ammonium adsorption on M-Zeo, respectively. The maximum adsorptive
capacity of 172.41 mg/g was obtained. The E values in the range of 8.9087–9.6225 kJ/mol
from the D-R model proved that the adsorption process was chemisorption. Thermody-
namic parameters determined that the adsorption was endothermic, feasible, and spon-
taneous. The efficient ammonium removals presented that the economic-efficient, great
ammonium affinity, and excellent regeneration characteristics of M-Zeo can be a promising
adsorbent extensively utilized in the ammonium treatment of liquid.
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