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Abstract: Calcium phosphates (CaPs) have broad applications in biomedicine, with the most used
phases being hydroxyapatite (HAp) and β-tricalcium phosphate (β-TCP) due to their similarity with
natural bone. There are several methods for obtaining CaPs. However, the Pechini method attracts
much attention due to its advantages: homogeneous molecular mixing, obtaining nanocrystalline
particles, low processing temperature, generating nanometric particles, and simplicity. However,
this method is little discussed for the synthesis of CaPs. This work aimed to synthesize CaPs using
the Pechini method, analyzing the antibacterial properties. The samples were characterized by
X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis
(TG/DTG), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). The
XRD confirmed obtaining the biphasic ceramic of HAp, with no other phase as an impurity, where the
ratio between citric acid and ethylene glycol (AC/EG) influenced the percentage of HAp phases and
β-TCP formed. Thermogravimetric analysis showed a mass loss of approximately 7%. SEM observed
the formation of post-agglomerates and irregular shapes. The bacteriological test was satisfactory.
The samples showed above 25% inhibition for the growth of Staphylococcus aureus and Escherichia
coli bacteria.

Keywords: calcium phosphate; antimicrobial; characterization

1. Introduction

The use of biomaterials for the recovery or replacement of bone tissue has become a
routine procedure in medicine and dentistry, necessary in applications such as the coating
or construction of prostheses, healing fractures, or filling significant bone defects [1,2]. In
the last few decades, researchers have studied different biomaterials related to developing
a new material that constitutes the ideal bone graft substitute [3]. As a result, several
biological materials, such as calcium phosphate (CaP) bioceramics, have been developed
and used, due to their excellent biocompatibility with bone tissue and their chemical
similarity with the mineral content of bones [4].

Hydroxyapatite (HAp) (Ca10(PO4)6(OH)2) is a well-known calcium phosphate be-
longing to the apatite family, being widely explored in the biomedical area due to its
characteristics: structure similar to bone mineral, biocompatibility, osteoconduction, stabil-
ity concerning bioabsorption and being non-toxic [5], having a molar ratio Ca/P 1.67 [6].
However, pure HAp has the disadvantage of slow biodegradation during the repair of
bone defects. Therefore, to avoid failure or slow reaction of materials with bone tissues,
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selecting appropriate phases is essential to maintain the balance of material dissolution and
new bone formation [7].

β-Tricalcium phosphate (β-TCP) has also received much attention for use as a substi-
tute for bone graft, as it gradually dissolves to leave some pores for the bone formation of
the new biological host and accelerates the process of apatite precipitation [8]. In addition,
the mixture of HAp and β-TCP produces biphasic calcium phosphate (BCP), which has the
reactivity of β-TCP and the stability of HAp, providing more bioactivity, increasing bone
growth, and ensuring better resistance of implants to tension [9].

Recently, several synthesis routes for producing CaP powders have been devel-
oped [10]. In this way, the application of the material must be well known to use the
best synthesis route to achieve the desired properties. The chemical precipitation, solid-
state reaction, and sol-gel methods are examples of traditional synthesis routes widely used
to obtain CaP powders. However, such methods have several disadvantages, such as a
low degree of chemical homogeneity, more significant contamination, long processing time,
formation of cracks during heat treatment, and permanence of fine residual pores, among
others [11]. The Pechini method is an alternative for synthesizing calcium phosphate pow-
ders, which has gained prominence compared to conventional methods. Because it allows
the use of different temperature ranges, different proportions of citric acid and metallic
cations allows changing the variables used in the process and controlling the stoichiometry
of the samples. It also allows better kinetics of crystallization and growth of the particles
through ethylene glycol used as a solvent for the polymerization process between citric
acid and metallic cations [12].

Despite such attractions, this method has yet to be studied for synthesizing calcium
phosphate powders. Peña and Vallet-Regi [13] synthesized several phases of calcium
phosphates via the Pechini method, including hydroxyapatite and α- and β-tricalcium
phosphates. Nine compositions, varying the Ca/P molar ratio between 1.5 and 1.667,
were synthesized. Solutions were prepared in an aqueous medium using a citric acid and
ethylene glycol ratio of 1:1. When the Ca/P ratio was 1.667, and with heat treatment at
1000 ◦C/24 h, monophasic hydroxyapatite was obtained.

Omori et al. [6] studied the synthesis of the hydroxyapatite phase by the Pechini
method, also under non-stoichiometric conditions. The authors studied two synthesis
routes: the first used calcium nitrate, monobasic ammonium phosphate, citric acid, and
ethylene glycol as reagents. Two molar ratios of Ca/P were studied, and the formation
of phases of HAp, CaO, and β-TCP was observed in the ratio Ca/P = 1.67. They used
the same reagents in the second route but replaced calcium nitrate with calcium acetate
and ethylene glycol with poly (acrylic acid). In this second route, different Ca/P molar
conditions were studied. All samples obtained exhibited the formation of two phases, HAp
and CaO.

Thus, although calcium phosphates are extensively studied in the literature, there is a
scarcity of research that uses the Pechini method to obtain them and studies that enable
the use of CaPs produced by this route. This work aims to synthesize CaP powders by the
Pechini method, studying the influence of the ratio between citric acid and ethylene glycol
(AC/EG) in the synthesis and evaluating the antibacterial activity of the materials against
two strains.

2. Materials and Methods
2.1. Materials

High-purity reagents were used, including anhydrous citric acid—C6H8O7 (Cinética,
Itapevi, São Paulo, Brazil), calcium nitrate—Ca(NO3)2·4H2O (Itapevi, São Paulo, Brazil),
diammonium hydrogen phosphate—(NH4)2HPO4 (Neon, Suzano, São Paulo, Brazil), ethy-
lene glycol—HOCH2CH2OH (LabSynth, Diadema, São Paulo, Brazil), and deionized water
(Federal University of Piauí, Teresina Piauí, Brazil). All analytical reagents were used
without purification.
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2.2. Synthesis of Bioceramics by the Pechini Method

Firstly, 100 mL of deionized water was added under constant stirring at 70 ◦C. Next,
the citric acid (30.63 g), calcium nitrate (11.76 g), and ammonium phosphate dibasic (3.95 g)
were added separately to the solution until completely dissolved. A 2:1 ratio between citric
acid and metal cations (AC/CM) was used. In the esterification and polyesterification
reactions, ethylene glycol (EG) was added (indicate the amount), then the temperature
was raised to 120 ◦C, forming the gel. The proportions of citric acid and ethylene glycol
(AC/EG) varied at 40:60, 50:50, and 60:40.

The resin formed underwent heat treatment (pyrolysis) in a muffle furnace at a temper-
ature of 400 ◦C/1 h with a heating rate of 10 ◦C/min. The puff formed was de-agglomerated
and sieved through an ABNT No. 200 sieve with a mesh diameter of 0.074 mm. The re-
sulting powder was calcined at 1000 ◦C, with a heating rate of 10 ◦C/min for 1 h, to form
the bioceramic. The nomenclature adopted to describe the synthesized samples was as
follows: BCP, which means biphasic calcium phosphate, followed by the variation between
citric acid and ethylene glycol of 40, 50, or 60, when this ratio was 40/60, 50/50, and 60/40,
respectively. The synthesis scheme is shown in Figure 1.
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Figure 1. Synthesis representation.

2.3. Characterization

The synthesized samples were characterized by X-ray diffraction to identify the phases
formed, quantify the phases, and calculate the percentage of crystallinity and crystallite size.
The diffractograms of the samples were created in Shimadzu equipment, model XRD-6000,
using CuK radiation (λ = 0.15406 nm), operated at 40 kV and 30 mA, scanning from 20◦ to
60◦, with a speed of 2◦/min at 0.02◦ intervals and a time of 0.6 s.

The X′pert Panalytical High Score Plus software and the JCPDS (Joint Committee
on Powder Diffraction and Standards) database were used to identify and quantify the
phases. Crystallinity was determined from the ratio between the integrated area of the
peak referring to the crystalline phase and the area referring to the amorphous fraction,
using the Shimadzu Crystallinity software. Finally, the average size of the crystallites of the
CaP nanoparticles was obtained using the width at half height of the diffractogram peaks,
using the Scherrer equation [14]:

D =
K ·λ

β·cosθ
(1)

In the formulation, D corresponds to the average size of the crystallite. K is a constant
that depends on the experimental setup used and the geometry of the sample, which in
this case corresponds to 0.90. λ is the wavelength of the incident radiation, which in this
case is 0.15, referring to the wavelength of the copper anode. β is the width at half height
of the diffraction peaks (FWHM—Full Width at Half Maximum), and θ is the diffraction
angle of the crystalline plane or Bragg angle. Fourier transform infrared spectroscopy
(FTIR) was performed to identify the functional groups in a BunKer model TENSOR 27
spectrometer with a range of 4000 to 400 cm−1. The analysis was performed using pellets
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containing the sample powder and spectroscopic grade KBr in the proportion of 0.3 mg of
powder to 300 mg of KBr (1%), with 64 accumulations. The pyrolyzed precursor samples
at 400 ± 10 ◦C/1 h were also characterized by thermogravimetric analysis (TG/DTG) to
evaluate the mass losses that occurred during heating. The analysis was performed in a
thermal analyzer, model TA-60, from Shimadzu, with a heating rate of 10 ◦C/min, in a
nitrogen atmosphere, using an alumina crucible and ambient temperature range (25 ◦C) up
to a maximum temperature of 1000 ◦C. Scanning electron microscopy (SEM) was performed
to analyze morphological aspects in a microscope of the brand FEI COMPANY, model
Quanta FEG 250, with accelerating voltage from 1 to 30 kV.

2.4. Biological Tests

Staphylococcus aureus (ATCC 25923) and Escherichia coli (ATCC 25922) bacterial strains
of Gram-positive and Gram-negative species were used, respectively.

Cultures were obtained by transferring a bacterial growth colony from nutrient agar
to a sterile falcon tube containing 3.0 mL of Brain Heart Infusion (BHI) broth, followed by
incubation at 37 ◦C for 24 h. The bacterial inoculum used in the bioassays was prepared in
a suspension, transferring 1.0 mL of the culture to a falcon tube containing 9.0 mL of the
BHI medium.

BCP-40, BCP-50, and BCP60 were tested separately against S. aureus and E. coli in
triplicates. The direct contact test in a solid medium was performed according to Zheng
and Zhu [15]. AN amount of 100 µg of BCP was mixed with 100 µL of bacterial suspension
(inoculum), standardized by the McFarland scale at 1.5 × 108 colony-forming units per
mL (CFU/mL). After, they were transferred to Petri dishes containing the agar medium
Mueller Hinton and seeded with the aid of a Drigalski loop, followed by incubation at
37 ◦C for 24 h. Only the bacterial inoculum was seeded on the plates as a positive control.

The inhibitory effect produced by each test solution was calculated according to
Equation (2):

η =
N1− N2

N1
∗ 100 % (2)

where η is defined as the inhibitory effect, N1 is the arithmetic mean of the colony-forming
units of the control plates, and N2 is the arithmetic mean of the colony-forming units of
each of the samples tested.

3. Results

Figure 2 shows the formation of a biphasic calcium phosphate ceramic, in all synthe-
sized samples, with characteristic peaks of the HAp phase (standard card JCPDS 009-0432)
and the β-tricalcium phosphate phase (standard card JCPDS 009-0169). It is observed, for
all samples, that the increase in the AC/EG ratio caused the reduction of the β-TCP peaks,
for example, in the peaks 27.80◦ (2 1 4), 31.07◦ (2 1 0), and 32.42◦ (1 2 8), 34.23◦ (2 2 0),
favoring the increase of the HAp phase formed.

Table 1 shows the results of the samples’ quantification of phases, crystallite size,
and crystallinity.

Table 1. Quantification of phases, crystallite size, and degree of crystallinity of the samples.

Quantification of the Phases (%) HAp Crystallite Size
(nm)

Degree of Crystallinity
(%)Sample HAp β-TCP

BCP-60 98 02 63.1 94.8
BCP-50 45 55 61.1 88.1
BCP-40 39 61 60.6 82.3
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Figure 2. X-ray diffractograms of the synthesized samples BCP-60 (a), BCP-50 (b), and BCP-40 (c),
varying the AC/EG ratio in the proportions of 60/40, 50/50, and 40/60, respectively.

The average crystallite sizes ranged from 60.6 to 63.1 nm, evidencing the nanometric
character of the particles, in agreement with the literature [16–19]. In addition, all samples
showed high crystallinity values, ranging from 82.3 to 94.8%, where these increased as the
proportion of citric acid in ethylene glycol increased.
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Figure 3 shows the infrared spectra of samples BCP-60 (a), BCP-50 (b), and BCP-40 (c).
From the FTIR analysis, there are four main functional groups in the samples: OH− PO4

3−,
CO3

2−, and HPO3
4−.
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The prominent bands that prove the presence of HAp and do not appear in the β-TCP
phase are 3572 and 630 cm−1. They are referenced to the stretching and vibration modes of
the structural groups (OH) on the lattice of the HAp crystallite, respectively. In addition,
the band at 3641 cm−1 probably belongs to calcium hydroxide, Ca(OH)2. The bands 3435
and 1635 cm−1 confirm the presence of water molecules adsorbed in the samples [20,21].

The bands of PO4
3−, a group of the HAp phase, occur at 1088, 1038, 962, 602, 554, 570,

and 474 cm−1. The bands 1088 and 1038 cm-1 correspond to the vibration mode ν3. (P-O),
602 and 570 cm−1 symmetrical and asymmetrical deformation in the plane (ν4 O-P-O). The
bands 554 and 474 cm−1 are flexural O-P variations of the mode (ν2) of the PO4 group
(ν2 -O) [6,22,23]. On the other hand, the band at 875 cm−1 belongs to a carbonate group.

As the amount of the HAp phase increases (from the BCP-40 to the BCP-60), there was
a reduction in bands 1120, 970, and 945 cm−1, which corresponds to the BCP.

Figure 4 presents two mass loss events for the three analyzed samples. The events
occurred in similar temperature ranges for all samples, referring to the same mass losses.
The first event occurred at a temperature of 422 ◦C for the BCP-60, 376 ◦C for the BCP-50,
and 381 ◦C for the BCP-40, corresponding to the combustion of the organic matter present
in the material, resulting from citric acid and ethylene glycol. An initial process of de-
hydroxylation may occur with the exit of water. In this first event, the mass losses were
approximately 1% for all samples.

The second event occurred with maximum decomposition temperatures of 618, 548,
and 616 ◦C for BCP-60, BCP-50, and BCP-40, respectively, and is related to the formation
of BCP. The mass losses for the second event were approximately 6.5% for the BCP-60,
5.8% for the BCP-50, and 4.3% for the BCP-40.

Figure 5 presents the electronic microscopy of the samples, showing the particular
morphology of each synthesized sample.
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The micrographs show the particles are grouped, forming agglomerates with irregular
shapes, showing heterogeneity of the two phases, HAp and β-TCP. The powders essentially
show a mixture of particles of different sizes. However, it is possible to observe the presence
of two different shapes of particles: larger plates (possibly referring to the β-TCP phase)
and rods (very characteristic of the HAp phase) [24,25].

Samples BCP-60, BCP-50, and BCP-40 had their antimicrobial activity tested against
Gram-positive (Staphylococcus Aureus) and Gram-negative (Escherichia coli) microorganisms.

Figure 6 shows the result of the microbiological tests for the two bacteria used in
different proportions.
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It is possible to verify that the bacterial growth was different in the tests against
S. aureus and E. coli within the samples of BCP. In assays using S. aureus, bacterial growth
was 43.10% lower when using BCP-50. In tests against E. coli, growth inhibition was 73.39%
when using BCP-50 concentration. Comparing the three samples, the BCP-50 was better in
the tests with the two bacterial strains.

The percentages of reduction in bacterial colony growth are listed in Table 2.

Table 2. Percentage of inhibition of bacterial growth.

Sample Staphylococcus aureus
(% of Inhibition)

Escherichia coli
(% of Inhibition)

BCP-60 35.34 38.06
BCP-50 43.10 73.39
BCP-40 30.17 25.07

4. Discussion

The increase in the quantification of the HAp phase in the samples is probably due to
the increase in the citric acid content in the solution because it has three carboxylic groups
(-COOH) in its composition, which in solution become citrate ions due to the loss of a proton
and a hydroxyl (OH-). Such groups act as a chelating agent, sequestering a greater amount
of metal ions in the solution and forming a complex, thus preventing the segregation of
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PO4
−3 ions, favoring the formation of stoichiometric HAp, with a Ca/P = 1.67 ratio [26–29].

On the other hand, with the decrease in the AC/EG ratio, the amount of citric acid de-
creased, which generated an insufficient homogeneity in the distribution of ions and a
decrease in the Ca/P ratio of the samples, resulting in the formation of more β-TCP. The re-
sults suggest that the citric acid content significantly influences the formation of phases [29].
Moreover, it corroborates the studies by Omori et al. [6], who reported the influence of
AC-EG resin on the Ca/P ratio of Hap samples. Roopalakshmi et al. [16] also stated that
the β-TCP phase might occur due to the poor complexity of the PO4

3− group, caused by
the inefficient homogeneity of the solution or the short reaction time of the precursors with
citric acid.

The characteristic bands for the phosphate group (PO4
−3 ) of the β-TCP phase ap-

peared at 1120, 970, and 945 cm−1, with 1120 asymmetric elongation (ν3 P-O), 970 and
945 cm−1 symmetric elongations (ν1 P-O) [8,30]. In addition, the bands 1991, 1431, and
1413 cm−1 confirm the presence of carbonate groups (CO3

2−) in the samples. Furthermore,
the band at 1413 cm−1 is related to the symmetric stretching of the C-O group (ν3) cm−1.

The reduction of bands from the BCP-40 sample to BCP-60 confirms the decrease in
the β-TCP phase and increase in crystallinity and crystallites. The FTIR analysis confirms
that the samples synthesized showed the functional groups of the HAp and β-TCP phases,
corroborating the results of the XRD patterns.

The thermal behavior of all samples was similar, where all showed good thermal
stability, with low mass losses, which were 7.73, 6.97, and 5.74% for samples BCP-60,
BCP-50, and BCP-40, respectively. Furthermore, the low percentage of total mass loss of the
samples is significant because thermal stability is crucial in controlling sintering or thermal
processing conditions for the design and preparation of ceramics [31].

The antimicrobial activity of the samples was tested against two strains of bacteria,
one Gram-positive and the other Gram-negative, obtaining a degree of inhibition of both
bacteria. This test was essential to evaluate the interaction of samples with microorganisms
that commonly cause community and hospital infections, the latter being closely related to
surgical procedures [32].

It is known that ceramic materials such as CaP have physicochemical properties and
are very similar to the natural composition of dental tissue and other bones in the human
body. Therefore, using these materials in surgical procedures can be a gain for medicine,
as the organism accepts it well, does not present toxicity, and does not favor bacterial
growth [33,34].

When samples BCP-60, BCP-50, and BCP-40 were used, a linear trend of growth
inhibition was not seen, with BCP-50 being better than the other samples. This behavior can
be explained by a possible plateau of electrostatic forces interacting with microorganisms.
Even so, the interaction and inhibition are better in the E. coli strain [35,36].

The mechanism generally explains the antibacterial properties of solid-state materials
based on the electrostatic interaction between the bacterial cell wall and the metal ions
in the HAp/β-TCP molecules [35]. In this way, bacteria move towards surfaces coated
with HAp/β-TCP particles. In addition, metal ions interact with the microbial membrane
and induce structural and permeability changes [37–40]. Thus, metal ions can interact
with microbial nucleic acids, preventing microbial replication, possibly occurring more
satisfactorily in the BCP-50 sample with 73.39% inhibition for the growth of E. coli bacteria
and 43.10% for S. aureus. The results of this test were satisfactory. BCP can be used as a
promising material for biotechnological use in surgeries.

5. Conclusions

This study aimed to produce calcium phosphates via the Pechini method, where
the method was efficient in obtaining the biphasic ceramic formed by hydroxyapatite
and beta-tricalcium phosphate, producing samples with different concentrations of the
two phases depending on the AC/EG variations used in the synthesis. As a result, the
two-phase ceramic obtained characteristics of nanometric powders, with a high degree
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of crystallinity, total mass losses of approximately 7%, and agglomerated particles of
irregular shape. Furthermore, regardless of the HAp/β-TCP concentration, the samples
demonstrated inhibitory effects on the growth of the bacteria tested, with the BCP-50
sample being more effective against E. coli. The study indicates that BCP can be explored
in several biotechnological fields that use ceramic materials in surgical procedures. Due
to its physicochemical properties, living organisms are very accepted and do not favor
the proliferation of microorganisms, mainly Gram-negative ones, which prevents post-
surgical infections.
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