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Abstract: Edge detection techniques identify the horizontal extents of the underground geological
bodies and work well in association with magnetic as well as seismic data. Even though the detected
edges might not be a lithological contact, they offer first-hand information regarding various rocks
that ultimately offers an extra argument for existing tectonics. Most of the edge enhancement
techniques depend either on the horizontal gradient or total gradient of the potential fields. As of
now, no single edge detection filter performance is best in all conditions. The study proposes a novel
edge detection filter called “ETG-Enhanced Total Gradient” that combines the derivatives of the
analytic signal (AS) (in the third dimension). The maximum amplitude of the AS is less dependent of
the direction of magnetization and is critical in mapping the borders of the buried magnetic sources
beneath the Earth. As the ETG filter is based on the total gradient of the field, there is no need to
apply reduction to the pole process on the magnetic data. One limitation of the method is that the
filter is unable to perform better at the corners where the other conventional methods miserably
failed. The filter’s behavior is examined and validated using 2D and 3D synthetic magnetic data.
The reliability of the ETG filter is examined by applying it to the magnetic data of the Seattle uplift
region, USA. A new structural map of the region is generated by using the proposed ETG filter. The
observed peak response of the ETG filter is well correlated with major tectonic features such as the
Seattle Fault Zone (SFZ), Hood Canal Fault (HCF), and Dewatto Fault (DF).

Keywords: magnetic; seismic data imaging; enhancement filter; edge detection; analytic signal;
Seattle uplift

1. Introduction

Edge detection is a fundamental operation in the geological interpretation constrained
by magnetic field data [1]. The main principle in examining the geological contacts in the
magnetic field is to determine the exact location and extents of the sources based on the
measured magnetic properties of the rocks, such as magnetic susceptibility. Mapping the
edges of various source rocks can group the lithologies of a similar magnetic field based on
the detected edge along the contact of the two geological bodies. Even though the detected
edges might not be a lithological contact, this offers first-hand information regarding
various rocks and their geological domains that ultimately offers an extra argument for
existing tectonic evolution. Numerous enhancement filters have been used to examine the
boundaries of the sources buried at different depths on an observation plane [2–4]. These
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studies enhance the filter’s efficacy by delineating the true edges of the buried magnetic
sources [5,6]. It is quite interesting to note that the edge enhancement techniques are
successfully used to map the boundary of the salt dome in seismic image interpretation [7,8].
It is worth mentioning that enhancements in the edge detection filters are sensitive to
factors like (i) accuracy in delineated edges, (ii) crossed interfaces, (iii) balancing the signal
sources present at various depths, (iv) direction of magnetization, (v) dip of the interface,
(vi) sensitivity to noise and (vii) capability of working over bodies with thin dimensions
and less susceptibility contrast [9–12]. Most of the edge detection techniques are unable to
recover the true edge of the buried bodies with dip and non-vertical magnetic fields. When
the data is vertically magnetized, the edge detection filter task is straightforward. However,
in the real Earth case, it is obvious that the magnetization of the different rocks could be
vertical as well as non-vertical.

2. Previous Edge Detection Studies

Edge detection is the most common interpretation technique applied to gravity and
magnetic data for delineating the subsurface bodies with contrasting susceptibility or
density. Several edge detection techniques utilize the first, second, or even third-order
derivatives of the magnetic field to delineate the susceptibility contrasting zones [11,12].
Several methods are in use for interpreting the size and shape factors of the causative bodies.
Several studies have proposed filters on magnetic data to delineate the geological domain
boundaries, faults, lineaments and shear zones. Table 1 lists the previous edge detection
techniques used in the present research work for a comparative study that includes the
technique’s formula, used for computing the source edges, defined edge value from the
response, and potential advantages and limitations.

Table 1. Previous edge detection techniques. Abbreviations are used in the table for reducing the
column size and are listed as follows: HG: Horizontal Gradient; AS: Analytic Signal; TA: Tilt angle;
HGTA: Horizontal gradient of tilt angle; TM: Theta map; TDX: Normalized horizontal tilt; HTA:
Hyperbolic tilt angle; TAHG: Tilt angle of the horizontal gradient; TBHG: Tilt angle of the balanced
horizontal gradient; TAAS: Tilt angle of the analytic signal.

Method
(Reference)

Quantity
Related
to Edge

Advantages Limitations

HG =

√(
∂M
∂x

)2
+
(

∂M
∂y

)2

[13]
Maximum 1. Less sensitive to noise.

1. Poor performance in balancing
the signals from shallow and

deep anomalies.
2. Require magnetic

reduction-to-the-pole

|AS| =
√(

∂M
∂x

)2
+
(

∂M
∂y

)2
+
(

∂M
∂z

)2

[14]
Maximum 1. Less dependent on the direction

of the magnetization vector

1. Poor performance in balancing
the signals from shallow and

deep anomalies.

TA = tan−1

 ∂M
∂z√

( ∂M
∂x )

2
+
(

∂M
∂y

)2


[15]

Zero
1. Can generate a balanced image

for the sources situated at
different depths.

1. Require magnetic
reduction-to-the-pole.

2. Produces secondary edges
around the true edge.

HGTA =

√(
∂TA
∂x

)2
+
(

∂TA
∂y

)2

[16]
Maximum

1. The method enhances the
maximum horizontal gradients in

low wavelength anomalies.

1. Require magnetic
reduction-to-the-pole.

2. Produces secondary edges
around the true edge.

TM = cos−1


√
( ∂M

∂x )
2
+
(

∂M
∂y

)2√
( ∂M

∂x )
2
+
(

∂M
∂y

)2
+( ∂M

∂z )
2


[17]

Minimum
1. The TM filter produces

balances between edges located at
different source depths.

1. Require magnetic
reduction-to-the-pole.

2. Produces secondary edges
around the true edge.
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Table 1. Cont.

Method
(Reference)

Quantity
Related
to Edge

Advantages Limitations

TDX = tan−1


√
( ∂M

∂x )
2
+
(

∂M
∂y

)2

| ∂M
∂z |


[18]

Maximum
1. Can generate a balanced image

for the sources situated at
different depths.

1. Require magnetic
reduction-to-the-pole

2. Produces secondary edges
around the true edge

HTA = R

tanh−1

 ∂M
∂z√

( ∂M
∂x )

2
+
(

∂M
∂y

)2


[18]

Maximum
1. Can generate a balanced image

for the sources situated at
different depths.

1. Require magnetic
reduction-to-the-pole

2. Produces secondary edges
around the true edge.

TAHG = tan−1

 ∂(HG)
∂z√(

∂(HG)
∂x

)2
+
(

∂(HG)
∂y

)2


[19]

Maximum
1. Can generate a balanced image

for the sources situated at
different depths.

1. Detected edges have
low resolution.

2. Require magnetic
reduction-to-the-pole

TBHG = tan−1

 ∂B
∂z√

( ∂B
∂x )

2
+
(

∂B
∂y

)2


where

B =

(
HG

k+
√

Hx(HG)+Hy(HG)+HG2

)
[20]

Maximum
1. Can generate a balanced image

for the sources situated at
different depths.

1. Detected edges have
low resolution.

2. Require magnetic
reduction-to-the-pole

TAAS = tan−1

(
∂AS
∂z

( ∂AS
∂x )

2
+
(

∂AS
∂y

)2

)
[21]

Maximum 1. Perform is same on the datasets
situated at different latitudes.

1. Detected edges
have low resolution.

3. Proposed Method

The maximum amplitude of the AS (in the third dimension) is independent of the direc-
tion of magnetization and is critical in mapping the borders of the buried magnetic sources
beneath the Earth. The AS filter peaks just over the edges of the magnetic source [14,22,23].
Nevertheless, the amplitudes are blurred if the bodies are buried at a deeper depth, and
the shallow-seated bodies dominate the AS amplitude [11,12,14,23–25]. Even though the
filter works independently of the directions of magnetization and ambient magnetic field,
the blurriness caused by the response of the deep-seated magnetic sources makes this filter
unworthy for geological interpretation. This situation calls for the AS method to enhance
the response from the deep-seated anomalies that further generate a balanced image of the
buried sources. The second-order vertical derivatives of the analytic signal are utilized to
design the Enhanced Total gradient (ETG) function and are defined in Equation (1).

ETG = 0.5×

tan−1

 (ASzz)−
(√

(ASzx)
2 +

(
ASzy

)2
)

|ASzz|

+ tan−1

 (ASzz)−
(√

(ASzx)
2 +

(
ASzy

)2
)

∣∣∣∣√(ASzx)
2 +

(
ASzy

)2
∣∣∣∣


 (1)

Here ASzz is assumed to be a negative summation of the second derivative of AS in
x- and y-directions as ASzz = −

(
ASxx + ASyy

)
, which is used to localize the edges with

zero-crossings of the high-frequency components in the magnetic field response [26].
As the ETG filter is based on the total gradient of the magnetic field, it can complement

the reduction to the pole process. As defined by [27], the absolute value of the AS is
described as the energy envelope of the field that is maximum over the contrasting magnetic
zones. This eventually states that the amplitudes of the AS-dependent ETG filter peak
directly over the center of the buried source edge. Even though the ETG filter is developed
on the third-derivatives of the data, the resolution in the response of the filter is not
compromised and performs as good as [21,28]. This can further be demonstrated in detail
in the ensuing section.
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4. Validating the Response of the ETG Filter

Two special cases are introduced in the present work to validate the results obtained
from the ETG filter. They are the responses over (i) 2D dipping dyke, (ii) 3D synthetic
magnetic anomalies using a complex model constructed with ten prisms. The results are
compared with the conventional edge detection filters which are listed in Table 1.

4.1. ETG Response over 2D Dipping Dyke

A simple 2D model is considered for the evaluation of the proposed ETG filter for
validating its response over a buried dyke mode dipped at 0◦, 30◦, 45◦, 60◦ and 90◦. The
dyke body has a width and height of 5 and 8 km, respectively. The dyke is buried at a depth
of 2 km below the surface. The schematic diagram of the dipping dyke model at different
dips is presented in Figure 1, and the magnetic anomaly response over the dipping dyke is
shown in Figure 2a. The response of the edge detection methods, namely HG (Figure 2b),
AS (Figure 2c), TA (Figure 2d), TM (Figure 2e), HGTA (Figure 2f), TDX (Figure 2g), HTA
(Figure 2h), TAHG (Figure 2i), TAAS (Figure 2j) and TBHG (Figure 2k), represents that a
change in the dip of the buried body obviously changes the response of the edge detection
filters. It is clear from Figure 2 that, except for the filters that are developed using the total
gradient of the field, the rest of the filters failed to extract the edge of the buried source.
The performance of the two filters, AS (Figure 2c) and TAAS (Figure 2j), proves that, even
though the dip of the dyke is changed, the filters continue to perform better. The response
of the AS is sharp and peaks at the center of the body when the dip of the dyke is 90◦, and
the peak position is shifted away from the center when the dip approaches 0◦, where a
double-peak response is observed (Figure 2c) that is a limitation of the AS amplitude. The
TAAS performed better than AS when dip = 0◦, but the spurious maxima observed at either
end of the response can lead to a false interpretation of the unknown sources (Figure 2j).
The maximum amplitude of the ETG method is directly peaks over the center of the body
(Figure 2l). The minimum amplitude is directed away from the center of the body and
does not correspond to any geological contact. The maximum amplitude of ~1.1 radians
is observed over the center of the body. There are no spurious peaks observed in the 2D
response of the ETG function. The ETG filter performed similarly in all the cases when the
dip of the dyke is changed between 0◦ and 90◦. This is the advantage of the ETG over all
the other conventional filters compared in the present study. In addition, even though the
direction of magnetization of the field is changed, the response of the ETG filter remained
the same.
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Figure 2. (a) The magnetic anomaly response of the dipping dyke models at different dip angles. The
response of various edge detection techniques over the dipping dyke model; (b) HG; (c) AS; (d) TA;
(e) TM; (f) HGTA; (g) TDX; (h) HTA; (i) TAHG; (j) TAAS; (k) TBHG; The response of the proposed
ETG filter is shown in (l). The legend of the dipping angles is presented in the top right corner of (l).
The theoretical background of all the edge enhancement filters is briefed in Section 2.

4.2. ETG Response over 3D Magnetic Sources

The efficacy of the ETG technique is illustrated by application over the 3D synthetic
magnetic data consisting of ten prisms, each with different dimensions and physical
properties. The schematic diagram of the 3D synthetic model considered for the present
study is shown in Figure 3a, and the nomenclature with 2D representation is presented in
Figure 3b. The dimensions and physical properties of the ten prismatic sources are listed
in Table 2. The total magnetic intensity of the model is set to 44,500 nT (as per the IGRF
model). The anomaly due to the 3D prismatic model is calculated with a 1 km sampling
interval at 201 × 201 grid nodes. Here, four important cases were considered: (1) The
azimuth, inclination and declination of the field are set to 0◦, 90◦ and 0◦ for all the sources,
respectively; (2) The azimuth, inclination and declination of the field are set to 0◦, 33◦ and
0.19◦ for all the sources (magnetic field parameters of central Indian tectonic zone as per
IGRF model), respectively; (3) The remanent magnetization direction is (Ir, Dr) = (10◦, 25◦),
and a remnant magnetization of 0.5 is introduced to all the model’s bodies of the second
case; (4) 4% Gaussian noise added to the magnetic anomaly of the third case.

Table 2. Geometry and magnetization parameters of the 3D synthetic model.

Parameter P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

X-center (km) 30 90 60 110 160 95 95 170 170 170
Y-center (km) 110 175 25 25 25 110 110 150 110 70
Width (km) 10 160 30 30 30 50 80 30 15 10
Height (km) 160 7 30 30 30 50 80 15 15 10

Top Depth (km) 2 2 3 2 1 5 10 3 2 1
Thickness (km) 5 5 3 3 3 3 5 1 2 3

Susceptibility (SI) −0.02 0.02 0.02 −0.021 0.02 −0.026 0.028 0.023 −0.021 0.022
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view and (b) plan view.

The magnetic anomaly in the first case is represented in Figure 4a. Figure 4b–l show
the results of the HG, AS, TA, TM, HGTA, TDX, HTA, TAHG, TAAS, TBHG, and ETG
methods, respectively. We can see that the HG, AS, and HGTA filters cannot be applicable
to outline the borders of the deeper bodies and hence fail to balance the amplitudes from
the sources at different depths [11,12,22,28]. The TA, TM, TDX, and HTA methods produce
numerous spurious anomalies around the true edges of the bodies making the interpretation
complicated, which [29,30] also observed. The TAHG filter is effective in delineating all
the borders. Like TAHG, the filter TAAS is effective in delineating all the borders, but
its performance does not seem to perform well over bodies with superimposed magnetic
source bodies (P6 and P7). The TBHG filter can delineate all the borders, but it also produces
numerous spurious edges. The proposed ETG filter is successful in delineating the edges of
all the buried magnetic sources with better accuracy than the above discussed conventional
edge detection filters. No false edges are produced in the filtered response of the ETG filter.

In the second case, the magnetic anomaly response of the model is represented in
Figure 5a. In this case, it is observed that, when the parameters of the model are close to
the real data parameters, all the methods (Figure 5b–k) failed to identify a clear picture
of the true edges of the subsurface bodies. Amongst the conventional filters tested in the
present study, TAHG’s (Figure 5i) performance is comparatively better, but the horizontal
edges have been found with false edges and are not clearly visible. The ETG filter response
(Figure 5l) is outstanding when compared to the other methods. The proposed method
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clearly identified the source edges, irrespective of the sign of magnetic susceptibility,
magnetic inclination and declination. One limitation of the method is that the filter is
unable to perform better at the corners, where the other methods miserably failed.
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The magnetic anomaly in the case of the remanent magnetization induced to the model
is represented in Figure 6a. Similar to the second scenario, all the filters failed to outline the
source, including TAHG (Figure 6b–k). The proposed ETG filter is effective in delineating
all the borders except the body with superimposed anomalies (P7) (Figure 6l). P7 is situated
at 10 km depth, and with the influence of remnant magnetization the edge of the prismatic
body is not linear.

In the fourth case, 4% Gaussian noise added to the magnetic anomaly of the third
case (Figure 7a). Almost all the conventional filters (Figure 7b–k) failed to highlight the
borders under the influence of noise in the data. Similar to the other conventional methods
based on total gradient, the performance of the ETG filter (Figure 7l) is rather poor and
is the limitation of the proposed filter. In order to overcome this limitation, one solution
is to continue the magnetic anomaly to a certain height that is based on the interpreter.
Likewise, we opted for 1000 m as continuation height to visualize the performance of the
filters (Figure 8a). We observed that, when the magnetic response continued to 1000 m, the
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ETG filter performed better than other conventional filters (Figure 8b–k), delineating all the
edges of the magnetic sources except the superimposed bodies (Figure 8l).
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5. Application of ETG over Aeromagnetic Data of Seattle Uplift (SU), USA
5.1. Study Region

The aeromagnetic anomaly over the Seattle Uplift, USA, is used to represent the
practical utility of the proposed ETG filter. The location of the study region is shown in
Figure 9a and the geology of the region [29,31] with the major tectonics is represented
in Figure 9b. The study region is bounded by the North Pacific Ocean and the Olympic
Mountains in the west, Strait of Juan de Fuca in the north-west and the Cascade Range
in the east. The subduction setting of the Juan de Fuca plate under the North American
continent created an unstable tectonic condition and resulted in the northeast migration
of the coastal regions of Washington and surrounding regions. The migration is counter
attacked by the stable cratonic blocks of the southwest Canadian region resulting in the
activation of numerous fault zones between major tectonic settings of the Seattle uplift
region [32–34]. The Crescent formations present in the northwest corner of the study region
are divided into the Lower and Upper member basalt, where a solid white dotted line is
represented in Figure 9a for division.
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Seattle fault is reflected as a crustal fault in the study region that hosted a large Holocene 
earthquake and can better be called as Seattle Fault Zone (SFZ) because of its huge width 
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probably transfers strain onto the SFZ as suggested by [36]. The TF is a steep north dipping 
buried reverse fault where the northern side of the fault is uplifted, and its eastern end 

Figure 9. (a) Location map of the study region near Seattle Uplift over the topography; (b) Geology
and tectonic settings of the region. The abbreviations of various geological units are as follows:
1. Quaternary deposits, 2. Pleistocene continental glacial deposits, 3. Pleistocene alpine glacial
deposits, 4. Paleogene-Neogene marine sedimentary rocks, 5. Paleogene-Neogene intrusive rocks,
6. Eocene Crescent Formation. The solid black lines are the tectonic faults in the study region. The
abbreviations of the tectonics are HCF: Hood Canal Fault, DF: Dewatto Fault, TF: Tacoma Fault,
SFZ: Seattle Fault Zone. The major structures are extracted from [31,34].

There are several active tectonic faults present in the region, namely Seattle Fault
Zone (SFZ), Hood Canal Fault (HCF), Tacoma Fault (TF) and Dewatto Fault (DF) [31]. The
Seattle fault is reflected as a crustal fault in the study region that hosted a large Holocene
earthquake and can better be called as Seattle Fault Zone (SFZ) because of its huge width
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(5–7 km) with numerous faults and deformed shallow strata ([35] and references therein).
The HCF is a NE-SW trending linear-natured strike-slip fault beneath Hood Canal, which
probably transfers strain onto the SFZ as suggested by [36]. The TF is a steep north dipping
buried reverse fault where the northern side of the fault is uplifted, and its eastern end
comprises numerous lineaments along a 10 km wide zone [37]. The DF is present on the
western end of the Seattle uplift region and exhibits two different trends, being north
directed in its southern end and NW-SE directed in its southern tip. According to [34], DF
is thought to be initiated with the exhumation of the Olympic Massif. The Seattle uplift is
thought to be controlled by two nearly orthogonal faults (TF and DF) bounding it in the
southern and western corners.

5.2. Aeromagnetic Data

The high-resolution aeromagnetic data (Figure 10a) were acquired by the U.S. Geo-
logical Survey department during the late 1990s with north-south directed flight lines, a
flying height of 250 m and a 400 m sampling interval [38]. The amplitudes of the magnetic
anomalies in the study region varies between a minimum of ~−620 nT to the north of SFZ
and a maximum of ~1018 nT that surrounds the Seattle uplift region. The low amplitude of
the magnetic anomaly dominates the study region that covers the southwest of the DF and
eastern end of the TF. The high amplitude magnetic anomalies are present at the center of
the map over the Seattle uplift region. The SFZ is governed by low amplitude magnetic
anomalies, whereas the HCF divides the moderate NE-SW trending elongated magnetic
anomalies in the east from the low amplitude anomalies to its west. In order to remove the
effect of erroneous near-surface magnetic sources, the magnetic anomaly is continued to
200 m upward (Figure 10b). The upward continued magnetic anomaly is used to extract the
pseudo-structural magnetic fabric of the study region, and the amplitude varies between
~−560 to 865 nT (Figure 10b).

5.3. Results and Discussion

The magnetic anomaly, which continued to 200 m upwards (Figure 10b), is used
to map the subsurface structures. The subsurface structures identified by various edge
detection techniques are shown in Figure 10c–l. The edges obtained from the ETG method
are displayed in Figure 10m, superimposed by the major tectonic features [31,34]. The
magnetic analysis shows that both HG (Figure 10c) and AS (Figure 10d) are dominated
by the large anomalies from the southern margin of the SFZ. Both AS and HG are good at
deciphering the linear structures that are present at a shallower depth, unable to balance
the linear features, and unable to produce a signal from the deep subsurface geological
structures [11]. The phase-based filters like TA (Figure 10e), TBHG (Figure 10l) and TM
(Figure 10f) were successful in delineating the magnetic lineaments. However, the detected
edges are not sharp enough for visual inspection. The HGTA map is shown in Figure 10g.
As stated in scenario 1, the filter is unable to balance the borders of the bodies with
sources at different depths, which is an inherent quality of a filter designed based on
horizontal gradient.

The TDX and HTA filters (Figure 10h,i, respectively) are successful in detecting the
horizontal extents of most of the geological boundaries. Nonetheless, false boundaries were
determined, and many adjacent edges were found to be interconnected in the response of
HTA. The synthetic scenarios suggest that the delineated edges have a considerable shift
from the true geological boundary. The filters TAAS (Figure 10k) and TAHG (Figure 10j) are
successful in identifying the geological contacts. Amongst the applied edge enhancement
filters applied to the aeromagnetic data over the Seattle uplift region, the filters based on
the HG and its derivatives need the reduction to pole process so we can observe a shift of
linear features. However, the filters AS, TAAS and ETG (Figure 10m) have an exemption
from the reduction to pole process, as they use the total gradient of the magnetic anomaly.
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cover. A new structural map of the Seattle uplift region is interpreted from the response 

Figure 10. (a) The aeromagnetic anomaly map of the study region. The aeromagnetic anomaly
map after continuing to 200 m upward is presented in (b). The response of various conventional
edge detection filters namely (c) HG; (d) AS; (e) TA; (f) TM; (g) HGTA; (h) TDX; (i) HTA; (j) TAHG;
(k) TAAS; (l) TBHG; and (m) ETG. The white lines over the response on all the figures show the true
edge of the prisms.

The proposed ETG technique is successful in delineating the boundaries of most of the
geological contacts visible on the surface as well as buried under the top geological cover.
A new structural map of the Seattle uplift region is interpreted from the response of ETG
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and is shown in Figure 11a, and the geology is overlaid on the existing and interpreted
lineaments as shown in Figure 11b. Three types of gradients are generated in the magnetic
analysis map (Figure 11a), out of which the magnetic gradients observed beneath the SFZ
are aligned in E-W direction, the trends to the north are aligned, and the rest are mostly
trending in NE-SW direction. It is clear that the contact between the upper and lower
members of the Crescent Formations is identified reasonably well. Our analysis shows that
the HCF has well-documented evidence in the magnetic gradient aligned in the NE-SW
direction along its length. The magnetic gradient is continuous at its southern end but is
discontinuous in its upper portion. However, we observed no seismic evidence to support
the existence of a fault beneath Hood Canal [39]. The Seattle uplift zone is marked with
a boundary based on the aligning trends at the outer edge of the Seattle uplift region
(Figure 11b). The DF fault is represented by the peaks of the ETG filter and is consistent
with its NE-SW trending nature at its northern end to ~N-S at its center and is interrupted
by the NE-SW trending faults to its south-western margin. We were unable to detect
any continuous ETG response beneath the TF. The structural map prepared using ETG
response revealed numerous magnetic lineaments in the Seattle uplift region that were not
recognized from the geologic map alone.
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Figure 11. (a) Structural mapping of the Seattle Uplift (SU), Washington, United States of America
using the proposed ETG filter; (b) The magnetic lineaments (solid blue lines) are detected by the ETG
method and the geological structures are represented in solid black lines.

6. Conclusions

We introduced a new edge enhancement technique called “Enhanced Total Gradient”
for outlining the boundaries of the subsurface bodies. The effectiveness of the ETG method
is discussed over the magnetic anomaly generated on a dipping dyke model and a complex
synthetic magnetic model and compared with performing conventional edge detection
techniques. The main advantage of the ETG technique is that it reduces the filter depen-
dency on the direction of magnetization. The results obtained from the model studies show
that the ETG method can outline all the boundaries with no false information generated
around the true boundaries. The method appears to effectively equalize the signal arising
from the shallow and deep bodies. Under the influence of remnant magnetization, the
technique performs better than other techniques. Since the ETG filter is developed on
the third-derivatives of the data, the interpreter needs to apply the upward continuation
technique to overcome the noise limitation of the ETG filter. The reliability of the ETG filter
is also validated by applying it to the aeromagnetic data of the Seattle uplift region, USA. A
new structural map is generated by using an ETG filter. The filter seems to perform better
when compared to other techniques. The observed peak response of the ETG filter is well
correlated with major tectonic features like HCF, DF and SFZ.
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