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Abstract: An accurate theoretical model to predict the extent and mechanical behavior of the excava-
tion damage zone (EDZ) in the surrounding rock of deep-buried tunnel is of great importance for the
practical engineering applications. Using the elastic-plastic theory and combined with the analysis
on the stress characteristics of the tunnel surrounding rock, this paper present a predict model for the
EDZ formation and evolution. A three-zone composite mechanical model was established for the
tunnel surround rock and the corresponding stress state and displacement field of three zones were
derived. The effects of the strain softening and dilatancy during rock deformation was taken into
account. The correctness of the proposed model was validated by the existing theoretical models. A
sensitivity analysis for different influencing factors in this model was also performed. The results can
benefit for the future numerical and experimental studies.
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1. Introduction

Due to the influence of deep-buried tunnel excavation and high in-situ stress, the hy-
draulic, thermal, and mechanical properties of the surrounding rock around the excavation
face is altered significantly [1], leading to the formation of the excavation damage zone
(EDZ) or disturbed rock zone (DRZ) [2–6]. An accurate determination of its extent and
mechanical behavior is of great importance for the design and construction of the deep
underground engineering.

EDZ has been extensively studied experimentally and numerically. For example, by
measuring the ultrasonic wave velocity and acoustic emission [7,8] of the surrounding rock,
Falls and Young [9], Meglis et al. [10], and Martino and Chandler et al. [11] determined
the formation and development of EDZ during the excavation phase. Even though their
real-time performance and high accuracy, experiments cannot be widely applied during the
entire design and construction process because they are high-cost and time-consuming. The
numerical methods can well complement the experimental approaches. For example, Li and
Liu [3] used a two-part Hooke’s model implemented into FLAC3D [12] and simulated the
EDZ formation and evolution around the ED-B tunnel at the Mont Terri site. The simulation
results were found to be highly consistent with those from field tests. Considering the
blasting-induced damage, Yang et al. [4] adopted LS-DYNA [13] and simulated the EDZ
evolution process along with a deep-buried tunnel excavation by drill and blast. Zhu and
Bruhns [14] adopted RFPA2D [15] to model the EDZ of a circular tunnel under a wide range
of hydromechanical conditions and the concurrent microdamage evolution was captured.
However, due to the complexity of the mechanical behaviour and nonlinear deformation
characteristics of the EDZ, it is difficult for the pre-existing numerical models to take into
considerations the time dependent dynamic formation and evolution of the EDZ induced
by excavation process. And the numerical models are still time-consuming, largely limiting
their practical applications.

Minerals 2022, 12, 1321. https://doi.org/10.3390/min12101321 https://www.mdpi.com/journal/minerals

https://doi.org/10.3390/min12101321
https://doi.org/10.3390/min12101321
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/minerals
https://www.mdpi.com
https://doi.org/10.3390/min12101321
https://www.mdpi.com/journal/minerals
https://www.mdpi.com/article/10.3390/min12101321?type=check_update&version=2


Minerals 2022, 12, 1321 2 of 13

Therefore, an accurate and easy-to-use predicable model is needed to provides conve-
nience for extensive practical engineering design and safety assessment. Some analytical
solutions have been proposed for the evaluation of the EDZ development. For example,
Schartz and Einstein [16] established an analytical model based on the stiffness ratio be-
tween the tunnel support and the surrounding rock. Li and Wang [17] derived an analytical
solution for the stress state and deformation field of the supported circular tunnel based
on elastic theories and plane strain conditions. Considering the creep effect and the delay
installation of the support, Fahimifar et al. [18] proposed the analytical solution to predict
the time dependent deformation of the tunnel wall. However, the existing theoretical
models are still relatively limited and incapable to comprehensively predict the extent
and mechanical behavior of the EDZ, reflecting the omission of some key factors in the
mechanical analysis.

To address the current research gap, in this paper, based on elastic-plastic mechanics, a
novel analytical model for the EDZ in tunnel surrounding rock was established by further
considering the effects of the strain-softening and dilatancy during the surrounding rock
deformation. A sensitivity analysis is also performed to investigate the influence of various
factors in the model.

2. Mechanical Division of Tunnel Surrounding Rock

The excavation of the tunnel by drilling and blasting destroys the original stress state
of the surrounding rock, and the phenomenon of stress concentration occurs [19–21], which
leads to the destruction of surrounding rock to form a crushed zone, a plastic softening
zone, and an elastic zone. Here, we defined that the range of the EDZ includes the crushed
zone and plastic zone. In addition, the lateral pressure coefficient will change as well when
the tunnel is under the influence of mining. According to the above analysis, considering
the influence factors such as lateral pressure coefficient and support resistance, the elastic-
plastic mechanical calculation model of the tunnel surrounding rock was established, as
shown in Figure 1.
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Figure 1. Mechanical model of tunnel surrounding rock.

As shown in Figure 1, assuming that the surrounding rock is a continuous homoge-
neous isotropic medium, the original rock stress at the infinite distance of the tunnel is p0,
and the lateral pressure coefficient is λ. After the tunnel excavation and stress redistribution,
the fracture zone, the plastic softening zone and the elastic zone are formed outwardly
in the surrounding rock successively. Suppose that the tunnel radius is R0, the external
radius of the crushed zone is Rb, the external radius of the plastic softening zone is Rp, and
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the support resistance of the tunnel is pi. The elastic theory gives the basic formulas as
below [22]:

1. Yield criterion

σθ =
1 + sin ϕ

1− sin ϕ
σr +

2c cos ϕ

1− sin ϕ
(1)

where σr is radial stress, σθ is tangential stress, c is cohesion, and ϕ is internal friction angle.

2. Balanced differential formula

dσr

dr
+

σr − σθ

r
= 0 (2)

3. Geometric formula

{
εr =

du
dr

εθ = u
r

(3)

where: εr is the radial strain and εθ the tangential strain, and u denotes radial displacement
of surrounding rock.

4. Constitutive formula

 εr =
1−µ2

E

(
σr − µ

1−µ σθ

)
εθ = 1−µ2

E

(
σθ −

µ
1−µ σr

) (4)

3. Mechanical Analysis of Three-Zone Composite Model
3.1. Mechanical Analysis of Elastic Zone
3.1.1. Stress Analysis of Elastic Zone

According to the stress characteristics of elastic zone in the surrounding rock, an
equivalent model of elastic zone can be established, as shown in Figure 2. The surrounding
rock in the elastic zone can be simplified as follows: the vertical pressure is p0, the lateral
pressure is λp0, the internal pressure is σep, and the radial stress at the elastic-plastic
interface is σep. By using Kirsch’s solution [23], the stress distribution in the elastic zone
can be obtained as below:

σr
e = 1+λ

2 p0

(
1− Rp

2

r2

)
+ σep

Rp
2

r2 − 1−λ
2 p0

(
1− 4 Rp

2

r2 + 3 Rp
4

r4

)
cos 2θ

σθ
e = 1+λ

2 p0

(
1 + Rp

2

r2

)
− σep

Rp
2

r2 + 1−λ
2 p0

(
1 + 3 Rp

4

r4

)
cos 2θ

(5)

where σr
e denotes the radial stress of elastic zone, σθ

e is the tangential stress of elastic zone,
Rp stands for the radius of plastic zone, and σep is the radial stress at the elastic-plastic
interface.

When λ = 1, the stress of elastic zone can be calculated through Equation (5) with no
consideration for the influence of lateral pressure coefficient.

When r = Rp, at the elastic-plastic interface of surrounding rock, there is:{
σr

ep = σep
σθ

ep = (1 + λ)p0 − σep + 2(1− λ)p0 cos 2θ
(6)

At the elastic-plastic interface, the stress also satisfies the Mohr-Coulomb criterion,
from which the following can be obtained:

σθ
ep = (1 + λ)p0 − σep + 2(1− λ)p0 cos 2θ =

1 + sin ϕ

1− sin ϕ
σep +

2c cos ϕ

1− sin ϕ
(7)
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Solving Equation (7) gives:

σep = (1− sin ϕ)

[
1 + λ

2
p0 + (1− λ)p0 cos 2θ

]
− c cos ϕ (8)

Substitute Equation (8) into Equation (6) and the following can be obtained:{
σr

ep = (1− sin ϕ)
[
(1+λ)

2 p0 + (1− λ)p0 cos 2θ
]
− c cos ϕ

σθ
ep = 3

4 p0(1 + λ) + 5
2 p0(1− λ) cos 2θ + c cos ϕ

(9)

It can be seen from Equation (9) that, considering the influence of lateral pressure
coefficient, the stress state of the elastic zone is not only related to the original rock stress,
but also to the lateral pressure coefficient and angle. In other words, the tunnel stress
state varies at different angles. The lateral pressure coefficient has a great influence on the
distribution of stress field.
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3.1.2. Displacement Analysis of Elastic Zone

By substituting the stress results into the constitutive Equation (4), the strain of the
elastic zone can be obtained as follows:

εθ =
1 + µ

E


1+λ

2 p0

[
(1− 2µ) +

Rp
2

r2

]
− σep

Rp
2

r2 +

1−λ
2 p0 cos 2θ

[
1− 4µ

Rp
2

r2 + 3 Rp
4

r4

]
 (10)

By substituting Equation (10) into geometric Equation (3), the displacement of elastic
region can be obtained as follows:

ue =
1 + µ

E


1+λ

2 p0

[
(1− 2µ)r + Rp

2

r

]
− σep

Rp
2

r +

1−λ
2 rp0 cos 2θ

[
1− 4µ

Rp
2

r2 + 3 Rp
4

r4

]
 (11)

3.2. Mechanical Analysis of Plastic Zone

When the external load on the surrounding rock exceeds its strength, the cohesion and
internal friction angle of surrounding rock will reduce to varying degrees. This process
is known as strain softening. Therefore, the strain softening effect on surrounding rock
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must be considered in mechanical analysis. For the convenience of calculation, the strain
softening model adopted in this paper is shown in Figure 3, in which the cohesive strain
softening model is a three line model. Since the internal friction angle changes in a small
range and has little influence on the stress distribution, it is assumed that the internal
friction angle of rocks in elastic and plastic zones is ϕ0, and that in crushed zone is ϕb.
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According to Figure 3, the softening modulus of cohesion could be expressed as:

Mc =
c0 − cb

εθ
pb − εθ

ep (12)

where: c0 denotes the initial cohesion, cb is the residual cohesion, εθ
ep stands for the critical

tangential strain at the interface of elastic zone and plastic softening zone, εθ
pb refers to the

critical tangential strain of surrounding rock at the interface between the plastic softening
zone and the crushed zone.

The surrounding rock of the plastic softening zone is assumed to be incompressible,
and εθ + εz + εr = 0. The plane strain condition is εz = 0 and εθ + εr = 0, so the geometric
Equation (3) is expressed as follows:

u
r
+

du
dr

= 0 (13)

To solve the differential Equation (13), we can get u = C1
r , where C1 is the integral

constant, which is related to the boundary conditions.
From the definition of equivalent strain, the equivalent effect of surrounding rock in

the plastic softening zone evolves to be:

εi =

√
2

3

√
(εθ − εr)

2 + (εr − εz)
2 + (εz − εθ)

2 =
2
√

3
3

εθ =
2
√

3
3

C1

r2 (14)

When r = Rp, and εi = εθ
ep, with the contact conditions of the interface between the

elastic zone and the damage zone taken into consideration, the following equation can be
obtained:

C1 =

√
3

2
εθ

epRp
2 (15)

When Equation (15) is substituted into Equation (14), it can be concluded that the
effect in the softening zone is as follows:

εi =
2
√

3
3

εθ =

(
Rp

r

)2
εθ

ep (16)
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The tangential strain of the plastic softening zone is:

εθ =

√
3

2

(
Rp

r

)2
εθ

ep (17)

The relationship between the cohesion and the radius after the surrounding rock
softening can be deduced as follows:

c∗ = c0 −Mcεθ
ep

(√
3

2

(
Rp

r

)2
− 1

)
(18)

At the same time, the dilatancy effect of surrounding rock at yield is considered in the
plastic zone as well. The model of dilatancy effect of surrounding rock is shown in Figure 4,
where η1 and η2 denote the dilatancy gradients of plastic softening zone and crushed zone
of surrounding rock respectively, which are assumed to be constant.
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In the plastic softening zone, the plastic flow rule is as follows:

εr
p + η1εθ

p = 0 (19)

In the crushed zone, the plastic flow rule is as follows:

εr
b + η2εθ

b = 0 (20)

3.2.1. Stress of Plastic Softening Zone

According to Equations (1) and (18), the yield criterion of plastic softening zone is as
follows:

σθ
p = nσr

p + mc∗ (21)

where: n = 1+sin ϕ0
1−sin ϕ0

, m = 2 cos ϕ0
1−sin ϕ0

.
By substituting Equation (21) into Equation (2), it can be deduced that:

dσr
p

dr
+

1− n
r

σr
p =

mc∗

r
(22)

To solve Equation (22), we can get:

σr
p = C2rn−1 + m

[
c0 + Mcεθ

ep

1− n
+

√
3

2 Mcεθ
ep

1 + n

(
Rp

r

)2
]

(23)
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Combined with boundary conditions: r = Rp, σr = σep, the following can be obtained:

C2 =
σep −m(A + B)

Rpn−1 (24)

where: A = c0+Mcεθ
ep

1−n , B =
√

3
2

Mcεθ
ep

1+n .
By substituting Equations (23) and (24) into Equation (21), the distribution of stress

field in the plastic softening zone can be obtained:
σr

p =
[
σep −m(A + B)

]( Rp
r

)1−n
+ m

[
A + B

(
Rp
r

)2
]

σθ
p = nσr + m

[
c0 −

√
3

2 Mcεθ
ep
(

Rp
r

)2
+ Mcεθ

ep
] (25)

3.2.2. Displacement of Plastic Softening Zone

According to the flow law and geometric Equation (3) in the plastic softening zone,
the following results can be obtained:

∂up

∂r
+ η1

up

r
= 0 (26)

By solving the differential Equation (26), the following result is obtained

up = C3r−η1 (27)

Since the boundary condition of the crushed zone is r = Rp and up = ue, it can be
deduced that:

C3 = NRp
η1+1 (28)

where: N = 1+µ
E
[
(1 + λ)(1− µ)p0 − σep + 2 cos θ(1− λ)(1− µ)p0

]
.

By substituting Equation (28) into Equation (27), the displacement field of the plastic
softening zone can be obtained:

up = Nr−η1 Rp
η1+1 (29)

3.3. Mechanical Analysis of Crushed Zone
3.3.1. Stress of Fracture Zone

The surrounding rock in the crushed zone not only meets the yield criterion of Equation
(1), but also the equilibrium differential Equation (2). The following results can be obtained
by combining the two equations:

σr
b =

Lb
1− Kb

+ C4rKb−1 (30)

where: Kb = 1+sin ϕb
1−sin ϕb

, Lb = 2cb cos ϕb
1−sin ϕb

.

With the stress boundary condition being r = R0,σr
b = pi, it can be deduced that:

C4 =

(
pi −

Lb
1− Kb

)
R0

1−Kb (31)

The stress state of the crushed zone can be obtained from Equations (1), (30) and (31): σr
b = Lb

1−Kb
+
(

pi − Lb
1−Kb

)(
R0
r

)1−Kb

σθ
b = Lb

1−Kb
+ Kb

(
pi − Lb

1−Kb

)(
R0
r

)1−Kb
(32)
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3.3.2. Displacement of Crushed Zone

According to the plastic flow law and the geometric equation, the following conclu-
sions can be obtained:

∂ub
∂r

+ η2
ub
r

= 0 (33)

By solving the differential equation, the result can be obtained

ub = C5r−η2 (34)

With the boundary condition being r = Rb and ub = up,it can be deduced that:

C5 = NRp
η1+1Rb

η2−η1 (35)

By substituting Equation (35) into Equation (34), the displacement of the crushed zone
can be obtained:

ub = Nr−η2 Rp
η1+1Rb

η2−η1 (36)

4. Analysis of the Range of Plastic and Crushed Zone

According to the strain softening model, the strength of surrounding rock softens to
the residual value at the interface between the plastic zone and the crushed zone. Equation
of softening modulus is as follows:

Mc

(
εθ

pb − εθ
ep
)
= c0 − cb (37)

On the elastic-plastic interface, it is known from Equation (29): εθ
ep = N.

On the interface between plastic softening zone and fracture zone, when r = Rb is
substituted into Equation (29), the result is as follows:

up = NRb
−η1 Rp

η1+1 (38)

Then:

εθ
pb =

up

Rb
= N

(
Rp

Rb

)η1+1
(39)

By combining Equations (37)–(39), we can get:

Rp

Rb
=

(
c0 − cb
NMc

+ 1
) 1

η1+1
= ξ

1
η1+1 (40)

At the interface of plastic softening zone and fracture zone, the stress continuity
condition are r = Rb and σr

p = σr
b. Substituting them into Equations (25) and (32), we can

get:

[
σep −m(A + B)

](Rp

Rb

)1−n
+ m

[
A + B

(
Rp

Rb

)2
]
=

Lb
1− Kb

+

(
pi −

Lb
1− Kb

)(
R0
Rb

)1−Kb

(41)

By solving the above Equation (41), it can be known that:

Rb = R0

 (1− Kb)
(
σep −mA−mB

)
ξ

1−n
1+η1 + m(1− Kb)

(
A + Bξ

2
η1+1

)
− Lb

(1− Kb)pi − Lb


1

Kb−1

(42)
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By combining Equations (40) and (42), the following can be obtained:

Rp = ξ
1

1+η1 R0

 (1− Kb)
(
σep −mA−mB

)
ξ

1−n
1+η1 + m(1− Kb)

(
A + Bξ

2
η1+1

)
− Lb

(1− Kb)pi − Lb


1

Kb−1

(43)

5. Sensitivity Analysis of Influencing Factors

The extent of EDZ directly affects the deformation control and support parameter
design of roadway [24]. Equation (43) shows that the extent of EDZ is mainly affected by
the original rock stress, lateral pressure coefficient, cohesion, internal friction angle and
support resistance. In order to analyze the influence of various factors, the single factor
sensitivity analysis method is adopted here. The calculated results are compared with the
classical Rubin’s solution [25] to verify the applicability of our proposed model.

The Rubin’s solution is as follows [25]:

Rp = R0

{
[p0(1 + λ) + 2c cot ϕ](1− sin ϕ)

2pi + 2c cot ϕ

} 1−sin ϕ
2 sin ϕ

×
{

1 +
p0(1− λ)(1− sin ϕ) cos 2θ

[p0(1 + λ) + 2c cot ϕ] sin ϕ

}
(44)

Here, the original rock stress (p0) takes the value of 20 MPa, the cohesion (c) is 2 MPa,
the internal friction angle (ϕ) is 30◦, the support resistance (pi) is 0.2 MPa. The calculated
results show that the predictions from our model are slightly larger than those of the
Rubin’s solution. This can be justified by the fact that the factors such as strain softening
and dilatancy are further considered in our model. In addition, we use a three-zone
composite mechanical model while in the Rubin’s solution all the surrounding rock are
assumed as ideal elastic-plastic bodies. This indicates that our results are more accurate
while Rubin’s solution will underestimate the extent of EDZ. The detailed single factor
sensitivity analysis is presented as below:

5.1. Lateral Pressure Coefficient

When the lateral pressure coefficients are 0.5, 1, 1.5, 2, and 2.5, respectively, and other
parameters remain unchanged, the Rubin’s solution and the solution in this paper are
compared and shown in Figure 5.
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It can be seen from Figure 5 that the size of plastic zone is directly proportional to the
lateral pressure coefficient. The calculated result of plastic zone in this paper is slightly
larger than that of the Rubin’s solution. When the lateral pressure coefficient exceeds 2,
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the influence of the lateral pressure coefficient becomes more remarkable. Therefore, the
deeper the roadway is buried, the greater the lateral pressure coefficient, and the larger the
extent of EDZ.

5.2. Original Rock Stress

When the original rock stress is set as 5, 10, 15, 20, and 25, respectively, the lateral
pressure coefficient is taken as 2, and other parameters remain unchanged, the Rubin’s
solution of plastic zone distribution extent and the solution in this paper are compared and
shown in Figure 6.
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It can be seen from Figure 6 that with the increase of the original rock stress, the extent
of the plastic zone increases significantly. This is because the shallower surrounding rock
releases the stress by fractures and plastic deformation, and the stress concentration zone is
transferred to the deeper regions, resulting in the increase of plastic zone range. This can
also justify why the superposed mining pressure will increase the plastic zone extent and
the difficulty of roadway support.

5.3. Cohesion

When the cohesion is taken as 2, 3, 4, 5, and 6, respectively, and the lateral pressure
coefficient is taken as 2, and other parameters remain unchanged, the Rubin’s solution of
plastic zone distribution range and the solution in this paper are compared and shown in
Figure 7.
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It can be seen from Figure 7 that the range of plastic zone decreases significantly with
the increase of cohesion. This is because the increase of cohesion leads to the increased
strength of surrounding rock, and improved ability of rock mass to resist deformation. In
this case the range of plastic zone can be obviously contained. The integrity of rock mass
can be improved by means of grouting or injection anchor, so as to increase the cohesion of
rock mass and reduce the extent of plastic zone.

5.4. Support Resistance

When the support resistance is set as 0.2, 0.6, 1.0, 1.4, and 1.8, respectively, the lateral
pressure coefficient is taken as 9, and other parameters remain unchanged, the Rubin’s
solution of plastic zone distribution range and the solution in this paper are compared and
shown in Figure 8.
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It can be seen from Figure 8 that the support resistance of roadway also plays an
important role in reducing the extent of the surrounding rock plastic zone. However, the
support resistance provided by the support methods such as anchor bolt is very limited,
generally not more than 0.3 MPa. Therefore, for the large deformation roadway, unless the
bolt support strength is improved noticeably, the control effect of roadway deformation
would be rather poor. Accordingly, the comprehensive support method such as bolt plus
grouting should be adopted.

6. Case Study

Our established theoretical model is used to analyzed the EDZ development of a
roadway in a coal mine locating in Pingdingshan, Henan Province, China, subjected to the
influence of mining pressures. The extent of EDZ before and after mining was calculated.
Since the original cross section of this roadway was a straight-wall semicircular arch, the
radius of roadway was firstly corrected by the circumscribed circle radius method:

r∗ =
[
(2h + B) +

B2

2h + B

]
/4 (45)

where r∗ denotes the equivalent radius of roadway; h is the height of the straight wall; and
B stands for the net width. In this case, h = 1.4 m and B = 4.2 m, give r∗ = 2.38 m. The
Table 1 below gives the mechanical parameters of the surrounding rock.

Table 1. Mechanical parameters of roadway surrounding rock.

E (GPa) µ c0 (MPa) cb (MPa) ϕ0 (MPa) ϕb (MPa) p0 (MPa) pi (MPa)

7.5 0.25 1.52 0.5 30 24 15 0.2
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After mining, the stope line was 100 m away from the roadway, and the roadway
was subjected to the supporting pressure of the working face, which is about 5 MPa. In
addition, the original stress of surrounding rock increased from 15 MPa to 20 MPa after
mining. These parameters were substituted into the Equations (29), (36), (42), and (43), and
the results were shown in Table 2, which shows that after mining, the depth of crushed
zone increases from 1.1 m to 1.39 m, and the depth of plastic zone increases from 1.73 m to
2.08 m. Therefore, the extent of EDZ further increases after mining, which will significantly
shorten the effective anchoring section of the anchor bolt and reduced its anchoring force,
and increase the deformation of surrounding rock.

Table 2. The extent and deformation of plastic zone and crushed zone before and after mining.

Crushed Zone Plastic Zone

Depth (m) Displacement (mm) Depth (m) Displacement (mm)

Before mining 1.10 146 1.73 38
After mining 1.39 483 2.08 82

7. Conclusions

Based on the elastic-plastic mechanics, an analytical model for the excavation damage
zone in the tunnel surrounding rock is proposed, which considers the combined effects of
the strain softening and dilatancy during the rock deformation. The tunnel surrounding
rock is divided into three zones, including the elastic zone, plastic zone, and crushed zone.
The corresponding analytical expressions of stress state, displacement field, and extant
of EDZ in the tunnel surrounding rock were derived. The comparison and analysis with
classic Rubin’s solution verify the correctness of the theoretical model. By performing a
single factor sensitivity analysis, the influence of different factors such as lateral pressure
coefficient, in-situ stress, cohesion, and support resistance was analyzed. The proposed
model was further used to evaluate the EDZ development of a roadway subjected to the
mining influence. The calculation results show that the maximum displacement of the
roadway surface increases from 146 mm to 483 mm, and the depth of plastic zone increases
from 1.73 m to 2.08 m The proposed model can not only benefit for the future numerical
and experimental studies, but also the extensive engineering practices.
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