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Abstract: In this investigation, a laboratory-scale study to extract copper (Cu) from its oxide ore
(0.425–11.2 mm particle size) was conducted using varied sulfuric acid (H2SO4) concentrations
(0.05–0.5 M) as a lixiviant. Through a physicochemical and mineralogical analysis of real field ore
samples from the Almalyk mine heap site (Tashkent, Uzbekistan), malachite was identified as a
Cu-bearing mineral. Extraction rates were analyzed according to the ore particle size and acid
concentration. The Cu extraction with the smallest particle size (in 24 h) varied between 76.7% and
94.26% at varied H2SO4 concentrations (0.05–0.5 M). Almost half (50%) of Cu was extracted from the
ore within 4 and 72 h of contact time for 0.425–2 mm and 5.6–11.2 mm particle sizes, respectively,
using 0.15 M H2SO4. Weeklong leaching experiments with 0.5 M H2SO4 revealed a higher copper
extraction rate (≥73%) from coarse ore particles (5.6–11.2 mm). Along with the copper extraction,
iron (29.6 wt%), aluminum (70.2 wt%), magnesium (85.4 wt%), and calcium (44.4 wt%) were also
leached out considerably through the dissolution of silicate and carbonate gangue minerals. In this
study, an 80.0–94.26% copper extraction rate with reduced acid consumption (20%) proved to be a
cost-effective approach.

Keywords: heap leaching; copper extraction; copper oxide; malachite; acid consumption

1. Introduction

Copper (Cu) is a widely used metal that is applied in electrical, electronics, con-
struction, and manufacturing sectors [1,2]. Currently, two important extraction methods
are employed: pyrometallurgy and hydrometallurgy. Pyrometallurgy is a conventional
method (concentration–smelting–refining) generally used to extract Cu from its ores [3].
However, pyrometallurgy has been used mainly for sulfide flotation concentrates instead
of its ores and is economically achievable with industrial-scale production, but only if the
feeding material is a Cu-rich ore [4]. By contrast, hydrometallurgy is an important Cu ex-
traction method used extensively worldwide. Different oxides of Cu such as tenorite (CuO),
malachite (Cu2(OH)2CO3), and chrysocolla ((Cu,Al)2H2Si2O5(OH)4·nH2O) are easily dis-
solved with a cost-effective acid lixiviant such as sulfuric acid (H2SO4) [5–7]. Therefore,
hydrometallurgical processes, including leaching, solvent extraction, and electro-winning,
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are considered as favorable and cost-effective approaches for copper extraction from oxide
ores [8,9].

Leaching is the first step of the hydrometallurgical process of Cu extraction, which
includes the dissolution of Cu from its raw ore into an aqueous phase. In most of the cases,
excavated ores are stacked near the mine site and dilute H2SO4 is poured from the top
of the reactor. The movement of leachate along with H2SO4 through a fixed bed of ore
particles enables the target metal to be leached into the aqueous phase, and the same is
collected downward through gravity [10]. This type of leaching is called “heap leaching”.
There are other methods that are similar to heap leaching, such as dump, in situ, and
vat leaching, which differ slightly from each other in terms of the methodology and ore
grade [11].

The method of heap leaching has been widely used to extract copper because of
its low operational cost, proximity to the site, simplicity in operation, short time for
construction, good yield, and environmental advantages [12,13]. As high-grade copper
ores are depleting globally, this approach is economical and facile and has, hence, received
considerable attention among copper extraction experts. Among different applications of
heap leaching, copper extraction from its oxide ores has been relatively less explored for a
long time, except for a few reports [14,15].

Using an appropriate identification technique for leaching behavior is important
during Cu extraction from its ore. Previous reports suggest that the kinetics of leaching
experiments using H2SO4 only lasted for a short time (few minutes to several hours) and
only on fine-grained ores (ten to hundreds of micrometers). A few research groups [6,16]
investigated the dissolution kinetics of malachite, whereas others conducted studies on
chrysocolla leaching with dilute H2SO4 [17,18]. Leaching kinetics of various Cu oxide ores
such as tenorite [1], cuprite (Cu2O) [19], and atacamite (Cu2Cl(OH)3) [20] have been exam-
ined. To the best of the authors’ knowledge, the Cu leaching kinetics have been thoroughly
explained based on the shrinking core model or logarithmic function. Some long-term
industrial-scale extractions of Cu were performed taking coarse grains of ores (millimeter to
centimeter size) [3,10]. However, a few limitations exist in applying the previous outcome
for Cu leaching, especially on an industrial scale. Detailed studies explaining accompanied
processes such as the dissolution of gangue minerals and changes in the ionic properties of
leachate in the ore leaching process are required. There is also a study that Cu is adsorbed
on the surface of gangue minerals such as smectites and mordenite with high CEC (Cation
Exchange Capacity), reducing the amount of extraction [21].

The present study investigated the leaching behavior of Cu from its oxide ore through-
out a weeklong (7 days) experiment using different sizes of ore particles, mimicking the
heap environment. A series of experiments were conducted to check the dissolution of
metals during the leaching process. Throughout the experiments, different concentrations
of H2SO4 were employed to examine the effect of acidity on Cu leaching. This study also in-
vestigated the economic perspectives and the amount of acid consumption during leaching
experiments. A sufficient leaching efficiency on larger particle ores and lower concentration
of acids led to reduced crushing costs and chemical consumption, respectively.

2. Materials and Methods
2.1. Sample Collection Site

The CuO ore samples were collected from Almalyk mine, the largest non-ferrous
open-pit mine located in the Western Central Asian Orogenic Belt, near Tashkent, Uzbek-
istan (Figure 1). The Almalyk copper mine has contained tons of copper in mineral oxide
form since the early 1960s [22]. This Cu is of the porphyry type and covers approximately
50–75% of global Cu production. Gold, silver, zinc, and lead were also produced from
these mines [23,24]. The Almalyk porphyry group comprises different deposits, namely
Kalmakyr, Sarycheku, and Dalnee. The samples used in this study were collected from
the mine site close to the Kalmakyr deposit. Kalmakyr (discovered in 1947) is the largest
Cu–Au porphyry deposit in the Almalyk region, with 3700 million tons of measured and
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indicated Cu resources [22,25]. Geologically, the mineralization of major ore bodies con-
sisting of oxidized, leached, and secondary sulfide-enriched zones range from the surface
to 60 m deep [26]. The principal mineral within the oxidized zone is malachite, with
chrysocolla being locally important [22]. In the primary sulfide-enriched zone, chalcopyrite
and bornite (Cu5FeS4) exist as major copper minerals. The gangue minerals comprise
quartz (SiO2), feldspar ((K, Na, Ca)AlSi3O8), biotite (K(Mg,Fe)3(AlSi3O10)(OH)2), chlo-
rite ((Mg,Fe)3(Si,Al)4O10(OH)2·(Mg,Fe)3(OH)6), sericite (KAl2(AlSi3)10)(OH)2), anhydrite
(CaSO4), and calcite (CaCO3) [26]. A substantial amount of Cu has been extracted from chal-
copyrite and bornite (copper sulfide ores) at the open-pit mine site of Kalmakyr. However,
a significant quantity of ores remains excavated from the oxidized zone and is stockpiled
near the mine site. The ores may be used for Cu extraction via heap leaching using H2SO4.
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Figure 1. Location of the oxide heap in Almalyk mine, Uzbekistan.

2.2. Sample Preparation and Characterization

Physicochemical properties of raw ore samples were examined to confirm the presence
of Cu-bearing and gangue minerals. The ore samples were crushed to less than 1 cm using
a jaw crusher. The aqua regia (HCl:HNO3, 3:1 v/v) method (ISO 11466) was used to
digest the samples. An inductively coupled plasma-optical emission spectrometer (ICP-
OES; VARIAN, 720-ES, Palo Alto, Santa Clara, CA, USA) was used to investigate the
composition of the extractable metals of the ores (particle size of <150 µm).

The mineral content of the ores was estimated through X-ray diffraction (XRD; Rigaku,
SmartLab, Tokyo, Japan), reflecting microscopy (Leica, DVM2500 VZ80, Wetzlar, Germany),
polarization microscopy (Leica, DM750P, Wetzlar, Germany), and scanning electron mi-
croscopy coupled with energy dispersive X-ray spectrometry (SEM-EDS; FEI, Verios G4
UC, Hillsboro, OR, USA). For reflecting microscopy and SEM-EDS, the ore samples were
polished with sandpaper to ensure a smooth surface. A thin section was prepared to
observe the minerals present in the ore under the polarization microscope.
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2.3. Leaching Experiments

To determine the effect of particle size on Cu leaching, different sizes of the ore samples
(0.425–2, 2–5.6, and 5.6–11.2 mm) were prepared. The effect of H2SO4 concentration
(0.05–0.5 M) on the dissolution of Cu and other metal ions in ore samples was checked. An
aliquot of H2SO4 (500 mL) was agitated with an ore sample (100 g) for a week (7 days) using
an incubator shaker (25 ◦C, 150 rpm). Malachite, a carbonate form of copper, upon reacting
with H2SO4 produces carbon dioxide (CO2); hence, the reactor bottle was covered with
a perforated paper foil to avoid gas pressure. The pH of the suspension was periodically
checked using a fixed amount of collected aliquot (3 mL). The pH of the suspension was
adjusted to initial pH by adding a 5 M H2SO4 solution when more than 50% of the initial
acid was consumed. A sampled pregnant leaching solution (PLS) was filtered (0.45 µm)
and followed by Cu, Fe, Al, Mg, and Ca analysis using ICP-OES. After a weeklong (7 days)
leaching experiment, the total dissolved solids (TDS) were measured for each PLS. The
ores, after the reaction, were washed with deionized (DI) water and dried at 80 ◦C for 24 h
to conduct XRD analysis.

3. Results and Discussion
3.1. Characterization of the Ore Samples

The elemental compositions of the ore samples are shown in Table 1. The average Cu
contents of the sample, determined via an ICP-OES analysis (1.56 wt%), are valuable, as
the general Cu grade (in porphyry deposits) is in the range between 0.3 and 2.5 wt% [27].
The extracted Cu (0.35 wt%) exceeded its original content (0.28 wt%), which might have
been caused by the heterogeneity of ore samples. The residual elements were not released
during digestion, as they are considered as bound to silicate minerals [28], and may require
more time for extraction. The XRD analysis (Figure 2a) indicated that malachite was the
main Cu-bearing mineral in the ore, whereas gangue minerals contained quartz, orthoclase,
muscovite, and chlorite. Several ore samples also contained albite and biotite as gangue
minerals. Malachite was the most important Cu oxide mineral, as it contained 57.5% Cu sto-
ichiometrically [7,16]. The gangue minerals were the same as silicate minerals, which were
commonly present in porphyry Cu deposits and the Kalmakyr deposit, Uzbekistan [29].

Table 1. Composition of element eluted through aqua regia extraction in the ore sample collected
from Almalyk mine in Uzbekistan.

Elements ICP-OES (%) *

Cu 1.56
Fe 4.10
Al 0.588
Mg 0.422
Ca 0.345

* Ore sample was digested in aqua regia (ISO 11466).

The dominant minerals in the ore and their microstructure were studied using SEM-
EDS and optical microscopy, respectively. The greenish color of the malachite minerals
(Figure 3) was observed using both the reflecting and polarization microscopes. The
texture of the greenish mineral in the polarization microscope image showed a fibrous
or needle-like shape (Figure 3a,b), which is a general crystal habit of malachite [30]. The
micro-scale visualization of the greenish mineral specimen by SEM is shown in Figure 3d.
The elemental analysis detected peaks of Cu, C, and O, thereby proving the presence
of malachite (Figure 3e). Quartz, feldspars, and iron-rich chlorite and biotite were also
examined by optical microscopes and SEM-EDS.
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3.2. Leaching Experiments
3.2.1. Dissolution of Malachite

The reaction of malachite dissolution with H2SO4, which occurred in a reactor during
the batch leaching, was as follows:

Cu2(OH)2CO3 + 2H2SO4 → 2Cu2+ + 2SO4
2− + CO2 + 3H2O (1)

Herein, Cu released into the solution by consuming the protons from H2SO4. During
the leaching experiments, the solution color changed from transparent to blue (Figure 4),
indicating the dissolution of divalent copper ions.

A change during the weeklong (7 days) reaction with 0.15 M H2SO4 was visually ob-
served (Figure 5). The green color of malachite both inside and outside the ores disappeared
and turned into white after leaching. The XRD analysis of the same ores also confirmed
the disappearance of malachite and the presence of only gangue minerals (Figure 2b).
Thermodynamically, the dissolution of malachite in acidic sulfate solution started at pH 4,
and gradually completed below pH 3 [16]. The weakest acidic condition (0.05 M H2SO4)
during this experiment showed an average pH of 1.45. Thus, the malachite that could
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contact protons was completely dissolved during the mass transport between the H2SO4
solution and mineral surface.
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3.2.2. Effect of Ore Particle Size and Sulfuric Acid Concentration on Copper Extraction

The results of Cu extraction from ore during the weeklong (7 days) batch experiments
with varied ore particle size and H2SO4 concentration are shown in Figure 6. In this study,
7 days leaching was sufficient to reach equilibrium and longer leaching was deemed non
necessary. The maximum amount of Cu was extracted from the smallest (0.425–2 mm)



Minerals 2021, 11, 1020 8 of 14

particles of ore and the highest H2SO4 concentration (0.5 M). The Cu extraction was
determined by dividing the copper concentration in PLS with an average copper grade
(1.56 wt%). The Cu extraction with the smallest particle size (0.425–2 mm) varied from 11.4
to 88.6% with increasing H2SO4 concentrations (0.05–0.5 M) in 24 h.
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Figure 6. Effect of particle size and sulfuric acid (H2SO4) concentration on copper extraction degree (%) with time (a–c) and
total copper recoveries (%) after a weeklong (7 days) experiment (d).

Approximately half (50%) of the Cu was extracted with 0.15 M H2SO4 after 4 and
72 h from the ore particles with sizes of 0.425–2 and 5.6–11.2 mm, respectively. The large
surface area of fine particles (0.425–2 mm) promoted a rapid reaction between the malachite
and protons, leading to a rapid Cu dissolution in the ore. An increase in the ore particle
size resulted in a decrease in Cu extraction (Figure 6). The strong acidity (0.5 M H2SO4)
overshadowed the effect of the ore particle size, showing a higher Cu extraction, especially
from the ore of the largest particle size (5.6–11.2 mm).

3.2.3. Leaching Kinetics of Copper from Ore

The Cu leaching was initially rapid, gradually slowed, and, finally, stabilized when Cu
extraction was arrested. The overall Cu leaching c be interpreted by a shrinking core model,
which includes a surface chemical reaction and proton diffusion through the product
layer. The shrinking core model represents heterogeneous reactions between the fluid
(H2SO4) and solid surface (ore particles) [31]. As widely accepted, to explain the leaching
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kinetics of Cu oxide ores in most of the studies [1,16–19,32,33], the shrinking core model
may well describe the Cu leaching kinetics followed in the present investigation. Based
on the dissolution behavior of Cu and other metals, the leaching behavior of Cu can be
divided into three steps: (i) extremely rapid leaching of Cu owing to the dissolution of
free malachite on the ore surface, (ii) a gradual decrease in the Cu dissolution rate, and (iii)
the decomposition of high to moderate soluble silicate gangue minerals and the reaction
of the malachite wrapped inside them with the acid. The third step corresponds to the
part, which is the almost horizontal slope of the graph, as shown in Figure 6. Moderately
to poorly soluble silicate minerals dissolved continuously, and the Cu minerals trapped
inside dissolved. A similar interpretation involving three-step dissolution kinetics has been
proposed elsewhere [32].

The ore particle size significantly influenced the rate by three-step leaching reactions.
Acid and minerals, initially contacted superficially followed by the entry of acid into the ore
via small pores leading to continuous chemical reactions and mineral dissolution. The ore
grain size was a critical factor as the mass transfer process enabled the leaching of metals
in ore and influenced the leaching kinetics. The large ore particle size (i.e., small specific
surface area) could lead to a slow reaction at the internal pores. Thus, once the minerals
near the surface pores dissolved, they created deep micro-pores resulting in steady and
slow leaching.

The data of dissolved ions and TDS in PLS during a weeklong (7 days) leaching exper-
iment are provided in Table 2. The concentration of metals increased in the case of fine ore
particles and with a high acid concentration (0.5 M H2SO4). The sulfate ions (SO4

2−) in PLS
contributed to TDS because of the addition of H2SO4 into the solution. An increase in the
acidity and specific surface area caused metal dissolution from gangue minerals. Potassium
and silicon in gangue minerals (Figure 2), other than the metals under investigation, may
have also contributed to TDS. The difference between TDS and SO4

2− increased (7.47
to 25.79 g/L) with a rise in the H2SO4 concentration (0.05 to 0.5 M; 0.425–2 mm) and de-
creased (10.31 to 7.2 g/L) with the ore particle size (0.425–2 to 5.6–11.2 mm; 0.15 M H2SO4).

Table 2. Metals (Cu, Fe, Al, Ca, Mg), sulfate, and total dissolved solids (TDS) in a pregnant leaching solution (PLS) of ore
after a weeklong (7 days) leaching experiment.

Particle Size
(mm)

Concentration
of H2SO4 (M) Cu (g/L) Fe (g/L) Al

(g/L) Ca (g/L) Mg
(g/L)

SO42−

(g/L) * TDS (g/L) Cu Yield
(wt%)

0.425–2

0.05 2.64 0.498 0.359 0.498 0.235 10.8 18.3 76.6
0.10 2.74 1.05 0.449 0.490 0.330 17.2 27.2 87.9
0.15 2.83 1.31 0.575 0.507 0.440 19.9 30.2 90.6
0.50 2.94 3.63 1.20 0.474 1.10 69.0 94.8 94.3

2–5.6

0.05 1.91 0.378 0.260 0.426 0.189 10.6 17.4 61.3
0.10 1.99 0.713 0.399 0.405 0.320 15.2 24.6 63.8
0.15 2.12 1.15 0.563 0.469 0.471 23.5 33.1 68.1
0.50 2.22 2.92 1.08 0.446 0.984 65.2 85.5 71.3

5.6–11.2

0.05 1.47 0.224 0.197 0.299 0.114 8.3 14.9 47.2
0.10 1.60 0.647 0.398 0.340 0.260 15.5 22.7 51.3
0.15 1.72 0.925 0.442 0.316 0.318 23.6 30.8 55.0
0.50 2.28 2.43 0.829 0.311 0.717 64.3 84.2 73.0

* Calculated from the amount of H2SO4 added to the solution (the pH of the suspension was adjusted to initial pH by adding 5 M H2SO4
solution when more than 50% of the initial acid was consumed).

3.2.4. Dissolution of Metal Ions from Gangue Minerals

Iron, aluminum, manganese, and calcium were analyzed after the reaction with acid
(H2SO4) (Table 2). The acid (H2SO4) treatment caused the leaching of iron, aluminum,
manganese, and calcium from gangue minerals in the ores. The XRD analysis did not
reveal that these atoms were eluted from gangue minerals, as it was not able to identify all
minerals containing those atoms (Figure 2). Dissolved ions showed, however, that other
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minerals such as calcite and biotite were also dissolved through various chemical reactions
(Table 3) [34–36]. Figure 7 presents the leaching kinetics of metal from ores with particle
sizes in the range of 5.6–11.2 mm and various H2SO4 concentrations (0.05, 0.1, 0.15, and
0.5 M). The dissolution (%) of copper along with iron, aluminum, magnesium, and calcium
increased over the reaction time.

Table 3. Acid dissolution of typical gangue minerals.

Solubility Mineral Chemical Reaction

Readily Soluble Calcite CaCO3 + 2H+ = Ca2+ + H2CO3
Biotite K(Fe, Mg)3AlSi3O10(OH)2 + 10H+ = K+ + 2(Fe, Mg)2+ + Al3+ + 3H4SiO4

Moderately Soluble
Chlorite (Fe, Mg)5Al2Si3O10(OH)8 + 16H+ = 5(Mg, Fe)3+ + 2Al3+ + 3H4SiO4 + 6H2O

Pyroxene Ca(Mg, Fe)Si2O6 + 4H+ + 2H2O = Ca2+ + (Mg, Fe)3+ + 2H4SiO4
Anorthite CaAl2Si2O8 + 8H+ = Ca2+ + 2Al3+ + 2H4SiO4

Poorly Soluble

Muscovite KAl3Si3O10(OH)2 + 10H+ = K+ + 3Al3+ + 3H4SiO4
Albite NaAlSi3O8 + 4H+ + 4H2O = Na+ + Al3+ + 3H4SiO4

Orthoclase KAlSi3O8 + 4H+ + 4H2O = K+ + Al3+ + 3H4SiO4
Quartz SiO2 + 2H2O = H4SiO4

Anhydrite CaSO4 = Ca2+ + SO4
2−
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Linear and logarithmic leaching patterns of metal ions with time and the acid concen-
tration were observed in Figures 6 and 7, respectively. The concentrations of aluminum,
magnesium, and iron in PLS increased linearly with time. Further, the leaching of metal
ions increased substantially (Fe: 2.7 to 29.6 wt%, Al: 16.7 to 70.2 wt%, Mn: 13.6 to 85.4 wt%)
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with a rise in the H2SO4 concentration (0.05 to 0.5 M). However, the effect of H2SO4 con-
centration on calcium leaching was negligible (42.7 and 48.6% from Figure 7). Calcium
and copper showed similar leaching behaviors (logarithmic pattern); the leaching initially
increased rapidly followed by a gradual decrease with time as reported in the literature
for the H2SO4 dissolution of malachite [6]. The fast early stage leaching of calcium might
be attributed to calcite (CaCO3) dissolution. Calcite dissolves readily in acids, being the
most aggressive acid consumer [37,38]. The leaching patterns of metals other than copper
were different, as their leaching rates increased linearly with time (Figure 7). Calcite and
malachite reacted quickly with acids and completely dissolved, resulting in the simultane-
ous leaching of calcium and copper, respectively. A similar leaching of calcium (40–50%) at
varied H2SO4 concentrations (0.05–0.5 M) implied that calcite was a major mineral form
of calcium present in the ores. The remaining portion of calcium (50–60%), which existed
as anhydrite (CaSO4) or anorthite (CaAl2Si2O8), had a poor and moderate acid solubility,
respectively. Although calcite, anhydrite, and anorthite were not detected in the XRD
analysis of ore samples, these minerals were, nonetheless, included in the major gangue
minerals present at the Kalmakyr ore deposit [26].

The dissolution patterns of silicate minerals with more complex kinetics are different
from those of carbonate minerals [38]. A linear increase in iron, magnesium, and aluminum
concentrations in leachate over time was caused by the dissolution of silicate gangue
minerals in the ore (Figure 7). Biotite and chlorite, displaying high and medium acid
solubility, respectively, may have significantly contributed iron, magnesium, and aluminum.
Muscovite, albite, orthoclase, and quartz were not dissolved in the acid and, thus, did not
contribute to the generation of metal ions.

In the reactions of silicate minerals with protons, their structures can completely or
partially collapse, leading to the release of metal ions [39] forming silica gel (owing to the
polymerization of silica in the solution) and silica residue, respectively. An increase in the
amount of amorphous silica can be a factor responsible for low copper extraction because
of precipitation on the ore surface and a decrease in permeability [40,41]. The intensities of
peaks in the XRD spectrum of acid-treated ore were reduced because of the presence of
amorphous silica, defective silicates, and low crystallinity (Figure 2b).

3.2.5. Acid Consumption Analysis

Acid consumption is a major economic factor in the extraction of metal from their ores
via heap leaching [42]. Therefore, different H2SO4 concentrations and ore particulate sizes
were tested for copper extraction to investigate H2SO4 consumption in the heap leaching
process (Figure 8). The amounts of H2SO4 consumed (g of H2SO4/kg ore) during copper
leaching at different pH values were calculated; H2SO4 used for pH adjustment was also
included. The copper extraction rate improved with a rise in acid concentration. A steep
slope indicates a higher amount of acid consumption as compared to copper extraction,
causing an economic loss (Figure 8). The copper extraction with 0.5 M H2SO4 was ap-
proximately 72.4%, with 23.0 g of H2SO4 consumption per kilogram of ore (Figure 6c). To
approach a 73.0% extraction rate, acid consumption reached 28.8 g of H2SO4 per kg of the
ore sample. The amount of acid consumption to improve the copper extraction was up
to 66.8%, which increased linearly; this was followed by an exponential rise caused by
the minerals’ dissolution and a subsequent release of metal ions (Figure 7). Protons (H+)
played an important role in the chemical reactions of mineral dissolution (Table 3). Biotite
and chlorite consumed 10 and 16 protons, respectively, for dissolution; thus, denoting
their role as key acid consumers [35,38,43]. In this study, iron-rich chlorite and biotite were
dominant in the ore samples. The solubility of both minerals in acid was relatively high.
Thus, the continuous increase in Fe, Mg, and Al contents in the solution indicated that
biotite and chlorite continuously dissolved during the study time, which resulted in acid
consumption in the long term.
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When the H2SO4 concentration was high (0.5 M), acid consumption was higher (green,
the diamond in Figure 8) than the copper extraction for the dissolution of gangue minerals.
Hence, it is recommended to use a low H2SO4 concentration. In general, the copper
extraction rate for ore samples with particle sizes in the range of 5.6–11.2 mm and acid
concentrations of 0.05–0.15 M of H2SO4 was approximately 47–55%. However, in actual
heap leaching, issues such as poor permeability and increased comminution costs will arise
if an ore must be processed into smaller particles. Therefore, the ores should be crushed
to achieve the particle size below 25 mm [10]. Thus, the pattern as depicted in Figure 8c
may be observed in the case of a real heap leaching process. An increase in the particle size
and low acid concentration suppresses copper extraction, rendering the leaching process
as time consuming in achieving the desired copper extraction.

4. Conclusions

The oxide ore in the Almalyk mine heap site (Uzbekistan) contained copper in an
average grade of 1.56 wt% as malachite. Its major gangue minerals were quartz, orthoclase,
muscovite, and chlorite. A weeklong (7 days) leaching experiment in batch mode indicated
that the copper extraction rate was high with a smaller size of ore particles (0.425–2 mm)
and a higher concentration of sulfuric acid (H2SO4) (0.5 M). The copper extraction from
relatively coarse particles (generally used in practical cases of heap leaching) decreased
significantly with a slow reaction. During leaching, the dissolution of minerals in ore
caused an increase in the content of copper and other metal ions in a PLS. The contents of
Fe, Al, and Mg increased linearly with time because of the dissolution of relatively easy-to-
dissolve silicate minerals (biotite and chlorite). The Cu and Ca showed a rapid increase in
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the dissolution rate initially, followed by a gradual decrease caused by the dissolution of
carbonate minerals (malachite and calcite). The acid consumption in comparison to copper
extraction increased at the lag of the leaching experiment. The extra acid consumption was
caused by the dissolution of gangue minerals (biotite and chlorite). Thus, in the case of
actual heap leaching, the optimal leaching conditions should be determined by considering
the factors such as acid consumption, extraction, and leaching time for cost-effective
copper extraction.
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