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Abstract: During the Cretaceous period of the northern Songliao Basin (northeast of China), a 100 m
thick layer of fluvial-phase sandstone (Sifangtai Formation) with uranium potential was widely
deposited, but its geochemical characteristics, paleoenvironment, and provenance remain unknown.
This research proposes a new set of relevant geochemical data for sandstones to investigate their
paleoenvironment, provenance and tectonic setting. The results revealed that: (1) The sandstone
of the Sifangtai Formation was dominated by feldspar lithic sandstone. Geochemical signatures
demonstrate that these sandstones have a high silicon content (SiO2 = 68.30~83.60 wt%) and total
alkali content, but are poor in magnesium and calcium. They are also enriched in Rb, Th, U, K
and LREE, and depleted HFSE (e.g., Nb, Ta), with crustal magmatic source. (2) The paleoclimate
discriminant indicated that the rocks of the Sifangtai Formation might that the climate of Sifangtai
Formation is semi-arid, and the chemical weathering of the source rocks is weak under the semi-arid
climate environment. (3) The combination of element Sr/Ba, 100 MgO/Al2O3 and the combination
of v/v + Ni, V/Cr, Ni/Co, and Sr/Cu indicated that the paleo-water medium was deposited in
an oxygen-rich freshwater environment when the Sifangtai Formation was deposited. (4) The
discriminate diagrams showed that almost all the sandstones of the Sifangtai Formation fell in the
range of the active continental margin, indicating that the source area of the sandstones of Sifangtai
Formations is an active continental margin tectonic environment, and the source is a felsic rock
developed in the Xiaoxing’an Ridge and Zhangguangcailing area.
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1. Introduction

Uranium is an important strategic resource. In particular, sandstone-type uranium
deposits are typically targeted during exploration because of the reduced environmental
impact and lower mining costs associated with this type of deposit. A number of significant
sandstone-hosted uranium deposits are present in the Middle-Cenozoic basins in northern
China [1–5]. From east to west, these deposits form the southern region of the Songliao,
Erlian, Ordos, and Yili Basins. These basins comprise the Yaojia, Saihan, Zhiluo, and Xis-
hangyao uranium-bearing groups [6–11]. In recent years, two medium-sized deposits have
been discovered in the southern region of the basin. These deposits are characterized by
significant reserves of uranium resources and show suitable exploration potential [6,7]. Pre-
vious studies have investigated the conditions of uranium ore formation, the sedimentary
system, the chronology of uranium ore formation, geochemical characteristics, sedimentary
diagenesis of ore-bearing sand bodies, the degree of weathering, and the tectonic back-
ground [12–15]. These studies have demonstrated that uranium-bearing sandstones of the
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Yaojia Formation, which is a part of the Qianjiadian Deposit, were likely derived from acidic
volcanic rocks and granites from ancient uplift around the basin [6]. Moreover, the Yaojia
Formation is characterized by four types of sedimentary phases during the depositional
period: alluvial fan, river, delta, and lake, and fluvial deposits in this formation are related
to uranium mineralization [16,17]. Finally, the provenance of Yaojia Formation sandstone
in the Kailu Depression of the Qianjiadian Deposit were formed in a passive continental
margin environment and were predominately derived from a volcanic-sedimentary rock
system in the northern margin of the North China Craton [6,7,18].

However, most studies have focused on the southern region of the Songliao Basin, and
its northern region has not been extensively studied. Increased exploration and research
in recent years have resulted in several uranium industrial and mineralized drills in the
Sifangtai Formation, and these have revealed the significant uranium mineralization poten-
tial of this formation [16]. However, the geochemical characteristics, paleoenvironment,
and provenance of the Sifangtai Formation remain unclear. Therefore, the relationship
between the Sifangtai Formation sandstone and uranium mineralization in the area cannot
be accurately discerned, severely limiting uranium prospecting in the region.

Sedimentary geochemistry is an indispensable tool for constraining the geological
environment associated with sandstone-bearing uranium mineralization, such as the pale-
oenvironment, plate movement, and crustal evolution [17–22]. Trace elements and their
sedimentary contents record paleoenvironmental and paleoclimatic changes and can be
used to constrain the physical origin of sedimentary basins, tectonic background of source
areas, and relationship between orogenic processes and basin development [23–25]. In this
study, we aimed to reconstruct the depositional environment (host rock type, provenance,
paleoweathering, and paleoclimate) of the uranium-bearing Sifangtai Formation in the
Nenjiang–Fuyu area of northern Songliao Basin by investigating the whole-rock geochem-
istry of this formation as well as geochemical data obtained by various testing methods to
generate a reference for the exploration and development of this mineral resource.

2. Geological Setting and Sample Descriptions

The Songliao Basin is a large Miocene oil, gas and uranium-bearing basin in the
northeastern region of China [26–29]. The basin has a rhombus shape and covers an area of
260,000 km2 (Figure 1). The Songliao Basin is surrounded by the following mountain ranges:
the Lesser Xing’an Range to the northeast, the Great Xing’an Range in the northwest, the
Zhangguangcai Range to the east, and the North China Craton in the south (Figure 1). The
basement of the basin predominately comprises pre-Paleogene and Paleozoic metamorphic
and Late Paleozoic Era granites and amphibolites [26–28]. Moreover, the Songliao Basin
basement rocks are exposed around the basin and serve as the parent rocks for the Mesozoic
sedimentary rocks in the basin. The sedimentary cover of the upper region of the basin is
mainly composed of Middle Cenozoic sedimentary rocks. Sediments from the Upper-Late
Cretaceous, Huoshiling (K1hs), Shahezi (K1sh) and Yingcheng (K1yc) formations were
fracture phase. During this period, the subduction of the Pacific plate led to the thermal
expansion of upper mantle material, and the study area entered a stage of extensional
subsidence development, forming a group of independently spreading semi-graben and
graben-type subsidence basins [30]. The Quantou (K2q), Qingshankou (K2qn), Yaojia (K2y),
and Nenjiang (K2n) formations formed from the post-rift thermal subsidence of the basin
(Figure 2). After the conclusion of fracture deposition, the study area entered a stage of
thermal cooling depressional deposition development. The depositional environment and
sedimentary phase system in this period were typically characterized by overburden in
the west and a large, long-axis fluvial-deltaic sedimentary system in the northern region
of the Songliao Basin [30,31]. The Sifangtai (K2s) and Mingshui (K2m) formations formed
during the basin shrinkage stage [31–33]. Due to strengthening of the subducting Pacific
Plate and the extrusion of the peripheral plate, the basin shows significant fold reversal
and retrograde reversal fractures. The sediments are mainly distributed in the middle
and western regions of the basin, and the fluvial phase is well developed. The Nenjiang
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Formation was subjected to significant denudation in the northern region of the basin,
and it formed a series of denudation tectonic skylights [32,33]. The Sifangtai Formation of
the uranium ore-bearing layer developed from north to south in the sequence of alluvial
fan, river, delta, and lake deposits, with narrow spreading and thickness of approximately
100 m (Figure 3b,c).
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The study area is situated in northern Songliao Basin (Figure 3a), and uranium is
hosted in the Sifangtai Formation, which is located 300–500 m below the surface. The
ore-hosting sediments are mainly composed of fine-grained sandstone with a massive
structure. The sandstone units are angular and predominately composed of plagioclase
(15–20 vol.%), quartz (40–50 vol.%), potassium feldspar (10–15 vol.%), and trace amounts of
rock debris (15–20 vol.%). The cement comprises clay minerals (Figure 4), and the Sifangtai
formation was presumably formed by proximal deposition.

The minerals associated with uranium in the study area are mainly star-shaped pyrite
and organic matter derived from plant charcoal debris. Overall, this area of tectonic evo-
lution has undergone four stages: Early Cretaceous faulting, Late Early Cretaceous uplift
denudation, Late Cretaceous depression, and tectonic inversion and uplift denudation. The
tectonic inversion represents the recharge area for groundwater and a discharge area for
groundwater within the aquifer, and these conditions are extremely favorable for uranium
ore formation [34–36].
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the study area.
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Pl—plagioclase, Kfs—potassium feldspar, Bi—Biotite, Lv—Debris.

3. Analytical Methods

Elemental geochemical data were determined by the Beijing Research Institute of
Uranium Geology (Beijing, China), CNNC (Beijing, China). Major elements were tested
using XRF analysis with a relative error of less than 5%, and trace and rare earth elements
(REEs) were analyzed using a Perkin Elmer Elan 6100 DRC inductively coupled plasma
mass spectrometer (ICP-MS) (Perkin Elmer, Waltham, MA, USA). The sample analysis
was monitored using reference materials AVG-1 and BHVO-1, and the relative error was
generally less than 5% [37].

4. Analytical Results
4.1. Major Elements

The sandstones in the northern Songliao Basin had a high SiO2 content range of
68.30–83.60 wt%, with an average value of 77.70 wt%. The total alkali (Na2O + K2O)
content ranged from 4.24 wt% to 7.03 wt%, with an average value of 5.89 wt%. The rocks
also had a high aluminum content (Al2O3 = 8.71–15.06 wt%) and low magnesium and
calcium content (MgO = 0.12–1.38 wt%; CaO = 0.35–1.07 wt%).

With respect to the SiO2−Al2O3 plot, most of the sandstones were plotted in the plagio-
clase, potassium feldspar, and quartz regions (Figure 5a), whereas for the log(SiO2/Al2O3)−
log(TFe2O3/K2O) plot, all the sandstones were plotted in the feldspar sandstone region
(Figure 5b). Overall, the trace amounts of MnO and P2O5 detected in the samples suggest
the presence of heavy minerals, such as apatite and chlorite, in the rocks of this area.
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Figure 5. Diagram of the sandstones (a) and log(SiO2/Al2O3)−log(TFe2O3/K2O) diagram (b) (after Herro et al. [38]).

4.2. Trace and Rare Earth Elements

Chondrite-normalized REE patterns revealed similar patterns for all the sandstone
samples (ΣREE = 65.54–283.55 ppm, with an average value of 105.27 ppm). Moreover, the
REE distribution pattern was right-inclined (Figure 6a), with relatively enriched light rare
earth elements (LREEs) and depleted heavy rare earth elements (HREEs). The LREE and
HREE ratios ranged from 6.89 to 12.90. Moreover, the fractionation coefficients ranged
from 2.95 to 5.35 for the LREEs (La/Sm)N and from 1.09 to 2.24 for the HREEs (Gd/Yb)N,
with a more substantial trend of LREE fractionation than HREE fractionation. A weak Eu
negative anomaly (δEu = 0.57–1.00), which was slightly higher than PAAS (0.65) and closer
to UCC (0.70), was detected, indicating that the sandstone host rock was derived from
rocks of the upper crust.
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Figure 6. Chondrite normalized REE pattens (a) and primitive mantle normalized trace element spider diagrams (b) for the
Sandstones in northern Songliao Basin (after Sun, S.S. and McDonough. [39]).

The primitive mantle-normalized spider diagram indicated a consistent evolutionary
trend for all the samples (Figure 6b) characterized by the enrichment of large-ion lithophile
elements (e.g., Rb, Th and U), strong depletion of Sr, P, and Ti, and a relative depletion of
Nb and Ta (Table 1).
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Table 1. Geochemical analysis of sandstone in the Sifangtai Formation.

No SampleNo. SiO2 TiO2 Al2O TFe2O3 MnO CaO MgO Na2O K2O P2O5 LOI TOTAL Na2O
+K2O

SiO2/
Al2O3

Na2O
+Ca2O

100MgO/
Al2O3

CIA ICV

1 Y4-2-1 74.52 0.26 13.16 0.65 0.03 0.54 0.35 3.05 3.52 0.02 2.94 99.04 6.57 5.66 3.59 2.68 56.13 0.64
2 Y4-2-2 78.04 0.18 11.45 0.35 0.02 0.48 0.26 2.80 3.28 0.02 2.25 99.13 6.08 6.82 3.28 2.29 54.75 0.64
3 Y4-2-3 82.46 0.13 8.72 1.03 0.03 0.38 0.21 2.10 2.69 0.02 1.55 99.32 4.79 9.46 2.48 2.42 54.18 0.75
4 Y4-2-4 81.24 0.20 9.53 0.35 0.02 0.62 0.17 2.42 2.81 0.03 1.49 98.87 5.23 8.52 3.04 1.75 52.86 0.69
5 Y4-2-5 72.65 0.50 12.86 0.65 0.06 0.84 0.60 2.38 2.83 0.05 4.46 97.88 5.21 5.65 3.22 4.68 59.40 0.61
6 Y4-2-6 79.38 0.22 11.00 0.50 0.02 0.55 0.22 2.95 3.22 0.02 1.41 99.49 6.17 7.22 3.50 1.95 52.89 0.70
7 Y4-2-7 78.82 0.23 11.31 0.50 0.01 0.60 0.23 3.05 3.32 0.05 1.46 99.57 6.37 6.97 3.65 2.00 52.81 0.70
8 Y4-2-8 80.39 0.18 10.57 0.35 0.01 0.51 0.16 2.83 3.26 0.03 1.30 99.59 6.09 7.61 3.34 1.54 52.60 0.69
9 Y4-2-9 75.56 0.37 12.57 0.30 0.02 0.64 0.33 3.24 3.46 0.03 2.04 98.55 6.70 6.01 3.88 2.60 53.96 0.66
10 Y4-2-10 79.38 0.15 10.74 0.50 0.01 0.53 0.28 2.90 3.26 0.02 1.81 99.58 6.16 7.39 3.43 2.59 52.47 0.71
11 Y4-2-11 78.89 0.17 11.01 0.55 0.02 0.53 0.27 3.00 3.34 0.01 1.78 99.57 6.34 7.17 3.53 2.47 52.39 0.71
12 Y3-2-1 79.18 0.24 10.87 0.44 0.01 0.41 0.20 2.81 3.34 0.02 1.64 99.15 6.15 7.28 3.22 1.88 53.56 0.68
13 Y3-2-2 79.74 0.20 11.01 0.40 0.01 0.41 0.15 3.03 3.59 0.02 1.32 99.87 6.62 7.24 3.44 1.40 52.17 0.71
14 Y3-2-3 80.16 0.17 10.78 0.50 0.01 0.39 0.20 2.68 3.39 0.02 1.46 99.76 6.07 7.44 3.07 1.85 53.93 0.68
15 Y3-2-4 78.82 0.20 10.84 0.50 0.02 0.44 0.24 2.71 3.28 0.02 2.38 99.45 5.99 7.27 3.15 2.24 53.98 0.68
16 Y3-2-5 80.93 0.20 9.74 0.49 0.01 0.43 0.21 2.59 2.93 0.02 1.40 98.95 5.52 8.31 3.02 2.13 53.07 0.70
17 Y3-2-6 81.02 0.19 9.66 0.50 0.01 0.39 0.17 2.56 3.16 0.02 1.60 99.29 5.72 8.39 2.95 1.73 52.51 0.72
18 Y3-2-7 75.74 0.24 11.85 0.50 0.03 0.56 0.31 3.18 3.29 0.03 2.22 97.95 6.47 6.39 3.74 2.62 53.52 0.68
19 Y3-2-8 82.13 0.17 9.47 0.45 0.01 0.41 0.16 2.64 2.90 0.02 1.41 99.77 5.54 8.67 3.05 1.67 52.32 0.71
20 Y3-2-9 83.60 0.13 8.71 0.39 0.01 0.35 0.14 2.45 2.80 0.02 1.18 99.77 5.25 9.60 2.80 1.62 51.92 0.72
21 Y3-2-10 78.25 0.19 11.52 0.44 0.02 0.45 0.25 3.09 3.51 0.02 1.48 99.22 6.6 6.79 3.54 2.20 53.07 0.69
22 Y3-2-11 81.02 0.12 10.34 0.44 0.01 0.36 0.12 2.96 3.28 0.02 1.03 99.69 6.24 7.84 3.32 1.15 51.99 0.70
23 Y2-2-1 78.75 0.38 12.01 0.50 0.04 0.93 0.33 3.12 2.82 0.04 0.60 99.52 5.94 6.56 4.05 2.76 53.78 0.67
24 Y2-2-2 77.07 0.35 11.84 0.65 0.03 0.59 0.26 3.09 3.34 0.02 1.97 99.21 6.43 6.51 3.68 2.19 53.59 0.70
25 Y2-2-3 77.11 0.11 9.32 0.40 0.01 0.40 0.19 2.41 3.07 0.02 1.04 94.07 5.48 8.27 2.81 2.03 52.65 0.71
26 Y2-2-4 72.62 0.30 10.43 0.45 0.02 0.50 0.19 2.98 3.10 0.02 1.22 91.83 6.08 6.96 3.48 1.78 52.00 0.72
27 Y2-2-5 72.39 0.22 10.74 5.43 1.66 0.52 0.48 2.19 2.23 0.03 3.47 99.35 4.42 6.74 2.71 4.43 59.61 1.03
28 Y2-2-6 76.91 0.25 12.28 0.65 0.02 0.54 0.20 3.35 3.46 0.02 1.61 99.27 6.81 6.26 3.89 1.59 53.30 0.69
29 Y2-2-7 76.39 0.36 11.90 0.85 0.02 0.88 0.68 2.45 2.90 0.07 3.03 99.53 5.35 6.42 3.33 5.71 56.87 0.68
30 Y2-2-8 75.66 0.55 11.33 0.94 0.02 0.87 0.60 2.42 2.75 0.07 2.55 97.77 5.17 6.68 3.29 5.33 56.30 0.72
31 Y2-2-9 76.93 0.18 11.73 0.42 0.01 0.37 0.20 2.77 4.04 0.02 1.65 98.32 6.81 6.56 3.14 1.73 53.86 0.68
32 Y2-2-10 76.39 0.25 9.07 0.59 0.04 0.94 0.93 1.82 2.42 0.15 6.53 99.12 4.24 8.42 2.76 10.21 55.47 0.77
33 Y2-2-11 77.89 0.20 11.65 0.60 0.02 0.39 0.24 2.79 3.91 0.02 1.60 99.30 6.7 6.69 3.18 2.03 53.90 0.70
34 Y7-2-1 68.30 0.69 15.06 0.50 0.02 0.76 1.06 2.82 3.16 0.13 1.88 94.38 5.98 4.54 3.58 7.04 61.02 0.60
35 Y7-2-2 78.13 0.14 9.68 0.30 0.01 0.39 0.17 2.86 3.03 0.02 1.97 96.70 5.89 8.07 3.25 1.75 51.44 0.71
36 Y7-2-3 77.36 0.36 12.42 0.35 0.02 0.52 0.24 3.49 3.54 0.03 1.04 99.37 7.03 6.23 4.01 1.96 52.91 0.69
37 Y7-2-4 77.35 0.30 12.42 0.25 0.01 0.54 0.27 3.48 3.48 0.03 1.22 99.33 6.96 6.23 4.02 2.15 53.03 0.67
38 Y7-2-5 78.76 0.18 9.73 0.30 0.01 0.39 0.25 2.60 2.92 0.03 4.47 99.63 5.52 8.09 2.99 2.57 53.29 0.68
39 Y7-2-6 80.38 0.19 10.61 0.40 0.01 0.47 0.28 2.89 3.10 0.02 1.61 99.96 5.99 7.58 3.36 2.67 53.01 0.69
40 Y7-2-7 79.20 0.34 10.19 0.50 0.17 0.53 0.65 2.31 2.52 0.38 3.03 99.83 4.83 7.77 2.84 6.40 59.37 0.67
41 Y7-2-8 72.27 0.49 12.66 0.75 0.02 0.97 0.89 2.83 2.75 0.03 2.55 96.21 5.58 5.71 3.80 7.05 56.34 0.69
42 Y7-2-9 76.08 0.53 12.07 0.60 0.02 0.90 0.66 2.88 2.75 0.03 1.65 98.17 5.63 6.30 3.78 5.50 55.26 0.69
43 Y7-2-10 74.10 0.62 14.39 1.46 0.03 0.77 0.46 2.48 2.79 0.06 2.53 99.69 5.27 5.15 3.25 3.20 62.07 0.60
44 Y7-2-11 77.04 0.62 11.52 0.75 0.05 1.07 1.38 2.73 2.50 0.22 1.60 99.47 5.23 6.69 3.80 11.98 55.87 0.79
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Table 1. Cont.

No. SampleNo. PIA La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y ΣREE LREE HREE LREE/HREE

1 Y4-2-1 59.08 17.70 32.00 3.79 13.90 2.35 0.58 1.98 0.31 1.69 0.33 0.97 0.18 1.12 0.11 9.24 77.00 70.32 6.68 10.53
2 Y4-2-2 57.19 15.30 27.90 3.42 12.50 2.04 0.57 1.67 0.28 1.47 0.28 0.83 0.14 0.97 0.12 7.90 67.49 61.73 5.76 10.71
3 Y4-2-3 56.54 15.80 27.20 3.50 12.60 1.94 0.49 1.62 0.24 1.18 0.23 0.71 0.12 0.81 0.27 6.31 66.71 61.53 5.18 11.87
4 Y4-2-4 54.31 20.20 34.10 4.50 16.60 2.71 0.71 2.22 0.34 1.63 0.28 0.82 0.14 0.88 0.12 7.61 85.23 78.82 6.42 12.29
5 Y4-2-5 63.11 34.00 67.30 7.92 28.80 5.17 1.13 4.23 0.70 3.57 0.66 1.85 0.32 2.03 0.15 17.20 157.83 144.32 13.51 10.68
6 Y4-2-6 54.35 16.00 26.40 3.39 12.20 1.82 0.52 1.56 0.25 1.25 0.24 0.75 0.13 0.91 0.12 6.95 65.54 60.33 5.21 11.58
7 Y4-2-7 54.23 18.00 30.00 4.13 15.80 2.50 0.62 2.04 0.32 1.64 0.31 0.88 0.16 0.98 0.19 8.43 77.57 71.05 6.52 10.90
8 Y4-2-8 54.01 17.70 29.20 3.87 14.20 2.32 0.61 1.90 0.30 1.50 0.27 0.81 0.14 0.87 0.12 7.42 73.80 67.90 5.90 11.52
9 Y4-2-9 55.84 24.40 41.30 5.24 19.20 3.22 0.80 2.62 0.43 2.14 0.40 1.15 0.20 1.34 0.13 10.50 102.58 94.16 8.41 11.19
10 Y4-2-10 53.77 19.30 34.50 4.33 16.50 2.56 0.69 2.13 0.33 1.53 0.28 0.79 0.13 0.86 0.16 7.23 84.08 77.88 6.20 12.55
11 Y4-2-11 53.65 18.80 33.60 4.28 17.10 2.59 0.75 2.16 0.33 1.59 0.29 0.83 0.14 0.90 0.13 7.76 83.49 77.12 6.37 12.11
12 Y3-2-1 55.53 21.00 39.10 4.75 18.30 2.90 0.70 2.29 0.37 1.74 0.33 0.94 0.16 1.08 0.16 8.65 93.82 86.75 7.07 12.27
13 Y3-2-2 53.43 19.60 37.80 4.51 16.20 2.69 0.72 2.13 0.33 1.59 0.30 0.89 0.15 0.95 0.15 8.39 88.01 81.52 6.49 12.56
14 Y3-2-3 56.21 21.90 42.10 4.96 18.50 3.00 0.76 2.44 0.39 1.94 0.36 1.04 0.17 1.12 0.14 9.99 98.82 91.22 7.61 11.99
15 Y3-2-4 56.16 23.60 42.90 5.23 19.40 3.17 0.78 2.52 0.37 1.83 0.33 0.98 0.16 1.07 0.15 8.79 102.49 95.08 7.41 12.83
16 Y3-2-5 54.69 19.30 35.70 4.43 16.80 2.58 0.66 2.18 0.34 1.66 0.31 0.88 0.16 1.04 0.14 8.32 86.19 79.47 6.71 11.84
17 Y3-2-6 54.00 21.70 40.00 4.76 17.80 2.93 0.73 2.40 0.37 1.77 0.33 0.95 0.16 1.02 0.13 8.85 95.03 87.92 7.12 12.35
18 Y3-2-7 55.19 16.00 27.20 3.52 12.80 1.96 0.59 1.64 0.26 1.36 0.27 0.82 0.14 0.91 0.11 7.70 67.59 62.07 5.52 11.25
19 Y3-2-8 53.55 19.60 32.40 4.19 15.30 2.38 0.60 1.98 0.30 1.44 0.28 0.83 0.14 0.89 0.13 7.54 80.45 74.47 5.98 12.45
20 Y3-2-9 53.00 20.20 35.80 4.51 15.80 2.63 0.64 2.25 0.32 1.47 0.27 0.78 0.13 0.85 0.11 7.07 85.75 79.58 6.17 12.90
21 Y3-2-10 54.73 20.50 34.50 4.44 16.20 2.52 0.65 2.20 0.33 1.54 0.30 0.86 0.15 0.95 0.16 8.12 85.29 78.81 6.49 12.15
22 Y3-2-11 53.10 18.70 30.00 4.00 14.20 2.22 0.57 1.82 0.28 1.27 0.24 0.72 0.12 0.78 0.17 6.51 75.09 69.69 5.40 12.90
23 Y2-2-1 55.21 23.10 38.40 4.96 18.30 3.08 0.78 2.56 0.41 2.00 0.37 1.06 0.18 1.17 0.11 9.28 96.48 88.62 7.85 11.28
24 Y2-2-2 55.34 21.10 35.60 4.52 17.00 2.72 0.66 2.24 0.36 1.78 0.36 1.04 0.18 1.20 0.15 9.53 88.90 81.60 7.30 11.18
25 Y2-2-3 54.24 18.30 31.30 3.99 13.80 2.38 0.61 1.98 0.30 1.53 0.28 0.77 0.13 0.83 0.17 7.37 76.37 70.38 5.99 11.75
26 Y2-2-4 53.00 18.90 32.40 3.97 15.00 2.47 0.63 2.08 0.33 1.77 0.35 0.99 0.17 1.11 0.15 9.30 80.32 73.37 6.96 10.54
27 Y2-2-5 63.12 18.80 33.20 4.28 15.40 2.60 0.62 2.09 0.35 1.80 0.35 1.00 0.18 1.21 0.24 9.74 82.11 74.90 7.22 10.38
28 Y2-2-6 54.89 17.40 30.10 3.72 14.40 2.33 0.63 2.00 0.32 1.61 0.33 0.94 0.17 1.08 0.27 8.93 75.29 68.58 6.72 10.21
29 Y2-2-7 59.82 30.30 54.00 6.38 24.60 4.30 0.94 3.63 0.62 3.20 0.62 1.66 0.27 1.80 0.16 16.00 132.49 120.52 11.96 10.07
30 Y2-2-8 58.95 43.10 84.30 9.25 32.40 5.72 0.97 4.79 0.73 3.64 0.67 1.79 0.30 1.98 0.19 17.40 189.83 175.74 14.09 12.47
31 Y2-2-9 56.44 19.40 42.10 4.28 15.40 2.60 0.73 2.13 0.35 1.74 0.33 0.98 0.16 1.06 0.15 8.49 91.41 84.51 6.89 12.26
32 Y2-2-10 58.05 16.20 32.30 3.47 12.40 2.15 0.55 1.83 0.31 1.67 0.34 1.06 0.20 1.34 0.40 10.70 74.22 67.07 7.15 9.38
33 Y2-2-11 56.41 20.60 42.40 4.45 16.50 2.79 0.74 2.20 0.35 1.71 0.32 0.98 0.16 1.02 0.15 8.41 94.37 87.48 6.89 12.70
34 Y7-2-1 65.24 42.30 86.50 9.48 36.50 6.36 1.29 5.61 0.98 4.96 0.96 2.64 0.47 2.88 0.21 26.10 201.14 182.43 18.71 9.75
35 Y7-2-2 52.21 24.40 44.10 5.27 19.40 3.13 0.81 2.67 0.41 1.95 0.36 0.98 0.16 1.05 0.18 8.95 104.87 97.11 7.77 12.51
36 Y7-2-3 54.32 25.80 45.10 5.30 18.80 3.12 0.84 2.70 0.42 2.24 0.42 1.27 0.23 1.42 0.16 10.60 107.82 98.96 8.86 11.17
37 Y7-2-4 54.46 24.70 43.10 5.23 18.90 3.07 0.80 2.70 0.42 2.05 0.39 1.12 0.20 1.31 0.14 9.75 104.14 95.80 8.34 11.49
38 Y7-2-5 55.03 26.60 51.60 5.83 21.20 3.56 0.82 3.10 0.47 2.15 0.37 1.06 0.18 1.11 0.59 9.13 118.65 109.61 9.04 12.13
39 Y7-2-6 54.53 22.10 40.00 4.69 17.30 2.83 0.71 2.43 0.38 1.79 0.32 0.95 0.17 1.03 0.26 8.23 94.96 87.63 7.33 11.96
40 Y7-2-7 63.74 62.90 112.00 13.20 52.70 9.70 1.93 8.88 1.63 9.29 1.72 4.49 0.72 4.13 0.27 53.20 283.55 252.43 31.12 8.11
41 Y7-2-8 58.63 28.70 51.60 6.20 23.20 4.04 0.89 3.54 0.57 2.94 0.56 1.62 0.30 1.73 0.41 14.20 126.30 114.63 11.67 9.82
42 Y7-2-9 57.24 30.50 58.20 6.62 24.70 4.28 0.93 3.80 0.59 2.92 0.56 1.62 0.28 1.82 0.56 14.00 137.37 125.23 12.14 10.31
43 Y7-2-10 66.33 34.10 67.80 7.49 28.60 5.19 1.02 4.46 0.76 4.12 0.81 2.37 0.43 2.75 0.16 20.40 160.06 144.20 15.86 9.09
44 Y7-2-11 57.95 39.70 85.90 9.64 39.50 8.20 1.61 7.44 1.42 7.92 1.51 3.95 0.64 3.77 0.13 43.00 211.33 184.55 26.78 6.89
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Table 1. Cont.

No. SampleNo. LaN/YbN LaN/SmN GdN/YbN δEu δCe Rb Ba Th U Nb Ta Sr Zr Hf V Co Cu Cr Ti

1 Y4-2-1 11.34 4.58 1.42 0.82 0.96 106 776 6.14 1.75 7.08 0.592 238 81.6 2.64 24.80 3.02 6.20 9.12 1556
2 Y4-2-2 11.37 4.56 1.39 0.94 0.95 98.3 756 4.84 1.47 5.35 0.46 225 64.8 2.21 17.60 1.24 4.75 8.06 1101
3 Y4-2-3 13.96 4.96 1.60 0.84 0.90 71.9 607 4.02 1.26 4.39 0.418 161 52.9 1.84 15.20 1.68 3.59 5.11 784
4 Y4-2-4 16.56 4.54 2.03 0.88 0.88 69.1 643 2.94 1.62 4.82 0.429 204 44.1 1.5 14.70 1.71 3.87 7.41 1191
5 Y4-2-5 12.01 4.00 1.67 0.74 1.01 88.8 694 7.53 9.99 10.8 0.856 236 105 3.38 47.00 12.20 13.30 27.00 2986
6 Y4-2-6 12.65 5.35 1.38 0.95 0.88 84.2 702 4.13 1.13 6.32 0.546 229 57.7 1.96 21.80 1.69 4.15 5.37 1335
7 Y4-2-7 13.13 4.38 1.66 0.84 0.85 86.5 746 4.46 1.08 6.39 0.544 228 59.3 2.03 16.00 2.13 5.07 5.21 1347
8 Y4-2-8 14.64 4.64 1.75 0.89 0.87 83.7 739 4.23 0.906 5.01 0.432 212 51.9 1.76 14.60 1.62 4.39 4.99 1089
9 Y4-2-9 13.06 4.61 1.57 0.85 0.90 102 827 6.71 1.45 9.68 0.784 256 95.5 3.23 25.50 3.44 6.68 11.00 2190
10 Y4-2-10 16.04 4.59 1.98 0.90 0.93 85.8 762 4.31 0.868 4.74 0.416 230 50.4 1.68 13.70 2.18 3.57 5.38 904
11 Y4-2-11 14.93 4.42 1.92 0.97 0.92 86.2 794 4.59 0.929 5.56 0.478 243 54.4 1.77 14.50 2.23 3.97 5.64 1011
12 Y3-2-1 13.95 4.41 1.70 0.83 0.96 91.4 742 5.41 1.58 6.82 0.588 210 70.2 2.4 14.50 1.52 4.95 5.68 1424
13 Y3-2-2 14.80 4.43 1.80 0.92 0.99 99.8 771 4.59 1.67 5.91 0.514 218 58.1 1.97 12.10 7.78 3.61 4.68 1197
14 Y3-2-3 14.03 4.44 1.74 0.86 0.99 99.6 798 5.07 1.87 5.61 0.473 208 64.7 2.21 15.30 2.71 4.81 6.00 1035
15 Y3-2-4 15.82 4.53 1.89 0.84 0.95 92.4 763 5.33 1.62 6.02 0.55 209 62.4 2.12 18.60 2.30 4.65 6.80 1209
16 Y3-2-5 13.31 4.55 1.68 0.86 0.95 79.9 721 4.56 1.41 6.39 0.549 198 53.6 1.79 17.00 1.66 3.53 4.99 1209
17 Y3-2-6 15.26 4.51 1.88 0.84 0.96 81.6 688 4.84 2.41 5.51 0.487 179 60.2 2.05 13.40 1.92 3.75 6.23 1161
18 Y3-2-7 12.60 4.97 1.44 1.00 0.89 88.7 796 4.99 1.24 6.56 0.546 241 71.6 2.33 24.40 1.88 4.45 7.46 1424
19 Y3-2-8 15.87 5.01 1.79 0.85 0.88 78.2 686 4.3 1.99 5.1 0.44 194 52.2 1.68 11.80 1.81 3.61 4.36 993
20 Y3-2-9 17.13 4.67 2.13 0.81 0.92 75 669 4.35 2 4.09 0.374 175 44 1.48 11.40 2.04 3.24 3.57 790
21 Y3-2-10 15.54 4.95 1.86 0.84 0.89 100 832 5.13 1.91 5.61 0.489 232 60.6 2.01 14.90 2.41 3.88 5.20 1113
22 Y3-2-11 17.11 5.13 1.86 0.86 0.85 90.4 776 4.38 2.29 4.12 0.378 214 49 1.68 9.61 4.06 2.85 2.63 700
23 Y2-2-1 14.16 4.56 1.75 0.85 0.88 66.6 649 4.47 2.68 7.63 0.604 282 64.7 2.14 28.80 3.81 5.86 14.50 2250
24 Y2-2-2 12.61 4.72 1.49 0.82 0.89 89.5 784 6.32 1.63 9.12 0.754 242 76.8 2.71 23.10 2.10 4.73 8.41 2119
25 Y2-2-3 15.80 4.68 1.91 0.86 0.90 79.5 682 3.68 1.22 3.54 0.314 180 42.4 1.42 10.00 1.96 2.88 4.10 640
26 Y2-2-4 12.21 4.66 1.50 0.84 0.92 80.2 678 4.73 3.4 7.87 0.67 215 58.9 1.98 17.10 4.78 4.38 6.60 1813
27 Y2-2-5 11.14 4.40 1.38 0.81 0.91 67.9 462 5.25 1.67 6.11 0.477 190 71 2.13 18.60 1.89 5.33 10.50 1323
28 Y2-2-6 11.56 4.54 1.48 0.89 0.92 92.4 783 5.38 2.52 6.93 0.554 259 65 2.1 16.90 2.33 4.44 6.27 1484
29 Y2-2-7 12.07 4.29 1.61 0.73 0.95 91.6 710 7.61 3.23 8.63 0.651 227 81.2 2.61 38.60 10.30 6.36 25.40 2149
30 Y2-2-8 15.61 4.58 1.94 0.57 1.04 84.3 665 12.8 3.03 11.6 0.847 214 104 3.22 43.50 6.56 7.32 33.80 3280
31 Y2-2-9 13.13 4.54 1.61 0.95 1.13 116 881 5.15 2.1 5.55 0.486 214 55.7 1.95 17.40 5.58 3.68 4.67 1059
32 Y2-2-10 8.67 4.58 1.09 0.84 1.06 64.3 477 4.33 2.18 5.99 0.485 158 49.2 1.67 36.80 7.98 4.08 7.62 1490
33 Y2-2-11 14.49 4.49 1.73 0.91 1.09 110 836 5.44 2.06 6.22 0.524 209 59.2 2.06 18.90 3.68 3.91 5.86 1197
34 Y7-2-1 10.54 4.05 1.56 0.66 1.06 122 755 12.5 5.12 16.2 1.23 254 153 4.82 64.00 5.80 17.40 27.20 4147
35 Y7-2-2 16.67 4.74 2.04 0.85 0.95 83.3 837 4.72 3.17 5.16 1.29 221 54.8 1.82 16.00 22.90 37.10 5.28 844
36 Y7-2-3 13.03 5.03 1.52 0.89 0.95 94.4 910 6.98 4.32 9.76 0.793 262 93.8 3.17 20.20 2.38 21.10 7.72 2178
37 Y7-2-4 13.52 4.90 1.65 0.85 0.93 92.7 347 6.29 4.02 8.32 0.714 260 81.8 2.69 19.60 2.96 17.70 7.08 1771
38 Y7-2-5 17.19 4.55 2.24 0.76 1.02 78.1 761 4.91 3.2 5.26 0.593 190 57.9 1.92 16.80 6.29 9.09 5.98 1053
39 Y7-2-6 15.39 4.75 1.89 0.83 0.96 72.9 669 4.53 2.64 4.83 0.516 193 55.7 1.87 16.90 5.26 7.09 5.54 1113
40 Y7-2-7 10.92 3.95 1.72 0.64 0.95 78.5 664 7.18 61.7 8.64 0.732 297 88.7 2.88 63.90 18.00 31.20 15.30 2059
41 Y7-2-8 11.90 4.32 1.64 0.72 0.95 94 754 8.8 2.24 9.78 0.8 246 101 3.24 63.50 7.41 12.60 37.30 2956
42 Y7-2-9 12.02 4.34 1.67 0.70 1.00 90.2 777 9.57 1.76 10 0.761 254 113 3.73 55.90 6.18 9.35 35.70 3142
43 Y7-2-10 8.89 4.00 1.30 0.65 1.04 123 725 11.1 17.3 13.5 1.02 234 129 3.95 102.00 23.70 22.00 51.90 3734
44 Y7-2-11 7.58 2.95 1.58 0.63 1.08 112 778 12.3 10.9 13.1 0.964 268 130 4.31 64.60 31.00 20.30 46.10 3717
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Table 1. Cont.

No. SampleNo. P Ni Sr/Ba V/(V + Ni) V/Cr Ni/Co Sr/cu Zr/Sc Th/Sc La/Sc Ti/Zr La/Th

1 Y4-2-1 126 3.95 0.31 0.86 2.72 1.31 38.39 25.50 1.92 5.53 19.07 2.88
2 Y4-2-2 119 2.00 0.30 0.90 2.18 1.61 47.37 27.23 2.03 6.43 16.99 3.16
3 Y4-2-3 119 2.04 0.27 0.88 2.97 1.21 44.85 36.74 2.79 10.97 14.82 3.93
4 Y4-2-4 172 2.32 0.32 0.86 1.98 1.36 52.71 26.41 1.76 12.10 27.01 6.87
5 Y4-2-5 344 16.90 0.34 0.74 1.74 1.39 17.74 15.11 1.08 4.89 28.44 4.52
6 Y4-2-6 146 2.29 0.33 0.90 4.06 1.36 55.18 28.99 2.08 8.04 23.13 3.87
7 Y4-2-7 325 2.69 0.31 0.86 3.07 1.26 44.97 29.80 2.24 9.05 22.71 4.04
8 Y4-2-8 199 2.05 0.29 0.88 2.93 1.27 48.29 31.45 2.56 10.73 20.99 4.18
9 Y4-2-9 185 3.80 0.31 0.87 2.32 1.10 38.32 26.98 1.90 6.89 22.94 3.64
10 Y4-2-10 106 2.49 0.30 0.85 2.55 1.14 64.43 26.67 2.28 10.21 17.93 4.48
11 Y4-2-11 93 2.45 0.31 0.86 2.57 1.10 61.21 28.63 2.42 9.89 18.59 4.10
12 Y3-2-1 99 2.03 0.28 0.88 2.55 1.34 42.42 34.08 2.63 10.19 20.29 3.88
13 Y3-2-2 106 3.80 0.28 0.76 2.59 0.49 60.39 33.58 2.65 11.33 20.60 4.27
14 Y3-2-3 139 2.49 0.26 0.86 2.55 0.92 43.24 30.52 2.39 10.33 16.00 4.32
15 Y3-2-4 113 2.79 0.27 0.87 2.74 1.21 44.95 25.89 2.21 9.79 19.37 4.43
16 Y3-2-5 132 1.73 0.27 0.91 3.41 1.04 56.09 30.45 2.59 10.97 22.55 4.23
17 Y3-2-6 146 1.96 0.26 0.87 2.15 1.02 47.73 35.41 2.85 12.76 19.29 4.48
18 Y3-2-7 199 2.23 0.30 0.92 3.27 1.19 54.16 28.08 1.96 6.27 19.89 3.21
19 Y3-2-8 152 1.91 0.28 0.86 2.71 1.06 53.74 36.25 2.99 13.61 19.03 4.56
20 Y3-2-9 126 1.86 0.26 0.86 3.19 0.91 54.01 32.84 3.25 15.07 17.95 4.64
21 Y3-2-10 132 2.05 0.28 0.88 2.87 0.85 59.79 28.72 2.43 9.72 18.37 4.00
22 Y3-2-11 113 2.01 0.28 0.83 3.65 0.50 75.09 39.52 3.53 15.08 14.29 4.27
23 Y2-2-1 258 4.66 0.43 0.86 1.99 1.22 48.12 19.09 1.32 6.81 34.78 5.17
24 Y2-2-2 159 2.76 0.31 0.89 2.75 1.31 51.16 28.03 2.31 7.70 27.59 3.34
25 Y2-2-3 119 1.75 0.26 0.85 2.44 0.89 62.50 32.37 2.81 13.97 15.10 4.97
26 Y2-2-4 146 3.78 0.32 0.82 2.59 0.79 49.09 29.90 2.40 9.59 30.79 4.00
27 Y2-2-5 172 2.50 0.41 0.88 1.77 1.32 35.65 24.57 1.82 6.51 18.63 3.58
28 Y2-2-6 132 2.21 0.33 0.88 2.70 0.95 58.33 28.26 2.34 7.57 22.83 3.23
29 Y2-2-7 457 14.70 0.32 0.72 1.52 1.43 35.69 15.65 1.47 5.84 26.46 3.98
30 Y2-2-8 464 9.86 0.32 0.82 1.29 1.50 29.23 19.29 2.37 8.00 31.53 3.37
31 Y2-2-9 106 2.61 0.24 0.87 3.73 0.47 58.15 30.44 2.81 10.60 19.02 3.77
32 Y2-2-10 960 3.30 0.33 0.92 4.83 0.41 38.73 18.43 1.62 6.07 30.29 3.74
33 Y2-2-11 119 2.61 0.25 0.88 3.23 0.71 53.45 28.06 2.58 9.76 20.22 3.79
34 Y7-2-1 848 10.10 0.34 0.86 2.35 1.74 14.60 18.21 1.49 5.04 27.11 3.38
35 Y7-2-2 139 5.32 0.26 0.75 3.03 0.23 5.96 35.13 3.03 15.64 15.40 5.17
36 Y7-2-3 185 2.21 0.29 0.90 2.62 0.93 12.42 37.22 2.77 10.24 23.22 3.70
37 Y7-2-4 179 2.55 0.75 0.88 2.77 0.86 14.69 31.83 2.45 9.61 21.66 3.93
38 Y7-2-5 166 3.11 0.25 0.84 2.81 0.49 20.90 28.38 2.41 13.04 18.19 5.42
39 Y7-2-6 139 2.66 0.29 0.86 3.05 0.51 27.22 27.57 2.24 10.94 19.98 4.88
40 Y7-2-7 2543 16.90 0.45 0.79 4.18 0.94 9.52 16.61 1.34 11.78 23.21 8.76
41 Y7-2-8 192 11.10 0.33 0.85 1.70 1.50 19.52 14.33 1.25 4.07 29.27 3.26
42 Y7-2-9 192 9.38 0.33 0.86 1.57 1.52 27.17 18.37 1.56 4.96 27.81 3.19
43 Y7-2-10 364 23.60 0.32 0.81 1.97 1.00 10.64 10.32 0.89 2.73 28.95 3.07
44 Y7-2-11 1424 25.60 0.34 0.72 1.40 0.83 13.20 12.62 1.19 3.85 28.59 3.23



Minerals 2021, 11, 1019 12 of 27

5. Discussion
5.1. Sedimentary Sorting and Recycling

Detailed geological data obtained in recent years have shown that LREEs (Th, Sc,
La and Zr) are chemically stable and not easily fractionated during the deposition cycle.
Moreover, these elements are insoluble in water and are thus negligibly affected by meta-
morphism [39,40]. LREEs can be used as primary indicators to distinguish rock types in
provenance areas. Therefore, Th/Sc and Zr/Sc ratios can be used to constrain the parent
rock components. The Th/Sc ratios measured in the sandstone samples from the study
area varied between 0.89 and 3.03, with an average of 2.20, exceeding the upper crustal
Th/Sc ratio of 1.0. The Zr/Sc ratio for the samples ranged from 10.32 to 39.52 and showed a
significant positive correlation with the Th/Sc ratios (Figure 7). Moreover, the relationship
between the two ratios formed an unparallel trend line to the depositional cycle, implying
compositional homogeneity and minimal influence of sedimentary sorting. To summarize,
it can be concluded that the fine-grained sandstones of Sifangtai Group are first-cycled
sediments and undergo no or minimal mineral sorting.
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5.2. Weathering Degree

The degree of provenance chemical weathering is dominated by the source rock com-
position, duration of weathering, climatic conditions, and tectonic activities [20,41–44].
Ca, Na, and K are typically removed during the weathering of source rocks, and the
residual amounts of these elements in soil profiles and sediments are sensitive indicators
for determining the degree of chemical weathering. The chemical index of alteration
(CIA) is considered an effective indicator of the degree of source weathering, where CIA
values from 50–60 and 60–80 suggest weak weathering and moderate weathering, respec-
tively [42–44]. Moreover, the index chemical variation (ICV) can be used to determine
the compositional maturity of the sediment; high ICV values represent low sedimentary
component maturity and strong tectonics, while low ICV values represent high maturity of
sedimentary components and relatively stable tectonics. The plagioclase index of alteration
(PIA) can also be used to assess the source weathering and elemental redistribution during
diagenesis [42–44].

The CIA values of the sandstone samples from the Sifangtai Formation ranged from
51.99–62.07, with an average of 54.35, indicating that the parent rocks were subjected to
weak weathering. The ICV values of the samples ranged from 0.60 to 1.03, with an average
of 0.69, suggesting immature parent rocks (Figure 8a). Moreover, all the sandstone samples
showed an evolutionary trend of weak weathering when plotted in a CIA-ICV plot, which
revealed a dominant granite parent rock for the samples (Figure 8b).
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Besides the CIA, the PIA can also determine the weathering intensity of plagioclase.
Unweathered rocks have PIA values around 50, and weathered clay mineral PIA val-
ues in weathered clay minerals are close to 100 [45,46]. Sifangtai Formation sandstone
PIA = 54.01–66.33. It reflects the weak chemical weathering of the sandstone source area of
the Sifangtai Formation.

5.3. Depositional Environment
5.3.1. Paleosalinity Determination

The Sr and Ba content of rocks and their ratios can be used to determine the placement
of the medium. An Sr content range of 200–300 ppm in sandstones represents a freshwater
depositional environment, whereas 200–1000 ppm indicates a marine environment [47].
Moreover, Sr/Ba ratios can also be used to constrain the depositional environment of
formation, with ratios > 1 indicating a marine environment and ratios < 1 suggesting a
freshwater environment. In this study, Sr concentration of the samples ranged from 161 to
297 ppm, and Sr/Ba ratios ranged between 0.25 and 0.75, indicating that uranium-bearing
sandstones in the study area were deposited in a freshwater environment (Figure 9).

5.3.2. Palaeoredox Conditions

The elements V, Ni, Cr and Co are characterized by the following unique character-
istics: they do not readily migrate during diagenesis, they are autogenously enriched in
oxygen-poor depositional environments, they are readily soluble under oxidizing condi-
tions, and they maintain a pristine sedimentary record. Therefore, the content of these
elements in rocks can be used to constrain depositional oxidation-reduction environments.

Jones et al. [48] reported that V/Cr, Ni/Co, and V(V + Ni) ratios are the most re-
liable parameters for determining the oxidation-reduction environment of hydrological
bodies during sediment deposition by studying the paleooxic phases of Late Jurassic dark
mudstones and sandstones in Northwest Europe.

The ratio of V/(V + Ni) is typically used to determine the degree of water stratification
during sediment deposition, where ratios between 0.4 and 0.6 indicate weak stratification
and oxygen-poor depositional environments, ratios between 0.6 and 0.8 suggest medium
stratification and a sub-oxygenated environment, and ratios > 0.8 represent strong stratifi-
cation and an oxygen-rich environment. In this study, the ratios of the samples ranged from
0.72 to 0.92, with an average ratio of 0.85, suggesting that the hydrological depositional
environment was rich in oxygen and characterized by significant stratification (Figure 9).

V and Cr display relatively similar characteristics; both are readily enriched in sed-
iments in reducing environments and are water-soluble in oxidizing environments. As
shown in Figure 9, we obtained relatively consistent results in our analysis of the redox
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state by applying these indexes. Overall, our analyses suggested an oxygen-rich water
environment.
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in the study area.

5.3.3. Paleoclimate Conditions

Elemental geochemical signatures can be used to effectively reconstruct paleoclimatic
conditions. For example, Sr and Cu content as well as Sr/Cu ratios are suitable parameters
for reconstructing the paleoclimate. Previous studies have also shown that a Sr/Cu ratio
between 1.3 and 5 indicates a wet climate, whereas ratios > 5 denote arid climates [49,50].
In this study, the Sr/Cu ratios of the samples were > 5, implying arid climatic conditions
during sandstone deposition (Figure 9).

In addition to the Sr/Cu ratio, SiO2/Al2O3 reflects the extent of chemical leaching
and dissolution transport in host rocks. SiO2/Al2O3 ratios < 4 denote wet environments
and long transportation distances, and ratios > 4 indicate arid environments and short
transportation distances [6,7]. In this study, we obtained SiO2/Al2O3 ratios of the sandstone
samples between 4.54 and 9.46, indicating arid climatic conditions.

5.4. Provenance Conditions

Our elemental geochemical analysis of the sandstone samples from the Sifangtai
Formation indicated that the sandstone was predominately derived from the upper crust.
Table 1 shows that TiO2 concentration varied between 0.11 wt% and 0.69 wt%, with an
average value of 0.28%; Al2O3 content ranged from 8.71 wt% to 15.06 wt%, with an average
of 11.15%; Ni content ranged from 1.73 ppm to 23.60 ppm, with an average of 5.25 ppm;
and Zr content ranged from 44.00 ppm to 130 ppm, with an average of 71.61 ppm. On a
graph of TiO2 versus Al2O3, all the samples were plotted in the area between calc-alkaline
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granite and granodiorite (Figure 10a [51]). As illustrated by the TiO2-Zr, K2O-Rb and TiO2
-Ni diagrams, all the samples were clustered in the acid volcanic rock region of the plots
(Figure 10b–d [52–54]). Therefore, these results suggest a felsic source area for the Sifangtai
Formation sandstones.
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Songliao Basin. (a) TiO2-Al2O3 (after Schieber [51]), (b) TiO2-Zr (afte Hayashi et al. [52]); (c) Rb-K2O (after Floydand
Leveridge [53]); (d) Ni-TiO2 (after Floyd [54]); (e) Ti/Zr-La/Sc and (f) La/Th-Hf(after Bhatia and Crook [55]).

To analyze the source rock properties of clastic rocks in the study area, Ti/Zr-La/Sc
and La/Th-Hf trace diagrams were used for a direct analysis. The Ti/Zr ratios of the
sandstone samples varied significantly from 14.29 to 34.78, with an average ratio of 22.29.
The La/Sc ratio also showed a similar trend of significant variation (La/Sc = 2.73–15.08,
average = 9.19). Moreover, the sandstone samples were plotted between felsic volcanic
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rocks and granites in the Ti/Zr-La/Sc diagram (Figure 10e [55]) and almost exclusively in
the felsic volcanic rock region on the La/Th-Hf diagram (Figure 10f [55]). These results
further confirmed an intermediate felsic source for the Sifangtai Formation sandstones.

In the present study, the patterns and characteristics of REEs in the sandstone samples
were used to confirm the parent material of the uranium-bearing sandstone unit in the
study area. Previous studies have demonstrated that felsic rocks typically exhibit high
LREE/HREE ratios and negative Eu anomalies. Conversely, mafic rocks display low
LREE/HREE ratios and almost no significant Eu anomalies. In our samples, the REE
distribution pattern was right-inclined (Figure 6a), showing relatively enriched LREE
and depleted HREE characteristics and weak Eu negative anomalies (δEu = 0.57–1.00).
Therefore, these results further confirmed an intermediate felsic parent rock for the uranium-
bearing sandstone unit in the study area.

To determine the specific intermediate felsic parent rock of uranium-bearing sandstone
in the study area, the geochemical characteristics of the felsic rocks in the Xiaoxing’an and
Zhangguangcailing areas around the Songliao Basin were analyzed (Figure 11) [56–62]. The
geochemical characteristics of these units were highly consistent with the REE partitioning
pattern of the Sifangtai Formation sandstones in the study area. Combined with the
location of the study area, we deduced that the Sifangtai Formation sediments in the
northern region of the Songliao Basin most likely served as the source region for sediments
in the Xiaoxing’an and Zhangguangcailing areas.
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The study area is predominately located in the northern plunge and central downwarp
of the Songliao Basin. Therefore, the Zhang Guangcai Ridge in the east, the Xiao Xing’an
Ridge in the northeast, and the Daxing’an Ridge and surrounding areas in the west are all
potential source areas for the Sifangtai Formation. During the Late Cretaceous, the Songliao
Basin was controlled by the transformation of the Paleo-Asian tectonic system into the
Paleopacific tectonic domain system. The basin experiences northwestward stress com-
pression, whereas the southeast is relatively uplifted, and sedimentation and subsidence
occurring in the center of the basin continue to shift in a northwestern direction [63,64].
Therefore, the possibility of the Daxing’an Ridge serving as the sediment source for the
Sifangtai Formation is highly unlikely.

Furthermore, during the Early Cretaceous, magmatism was prominent in the Dax-
ing’an Ridge (particularly between 110 and 150 Ma). Moreover, numerous studies have
demonstrated a general lack of clastic rocks with ages between 110 Ma and 150 Ma in this
area [65–67]. Therefore, based on the sedimentary-tectonic evolution and isotope dating
results, we concluded that the Daxing’an Ridge does not serve as the source area for the
Sifangtai Formation.

Based on the results of the age dating analysis of three detrital zircons obtained
from the Sifangtai Formation sandstone, the following ages were obtained: 80–105 Ma,
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175–240 Ma, and 1.8 Ga [68]. The zircon age of 1.8 Ga has been reported in boreholes within
and around the basin. It is still mainly concentrated in the northern region of the Songliao
Basin. The Sifangtai Formation was formed from a sequence of layers deposited from the
late tectonic movements of the Nengjiang Formation, during which the southeastern region
of the basin underwent denudation. Therefore, the 1.8 Ga zircon age indicates sources
from the northern region of the basin. The 80–105 Ma age range corresponds with Late
Cretaceous magmatism, which was widespread in eastern Jihei, and the 175–240 Ma age
range corresponds with the Late Triassic-Middle Jurassic age of the Zhangguangcai Ridge
in eastern Songliao [68]. In summary, the peak detrital zircon ages coincide with ages
obtained for the Zhang Guangcai Ridge, eastern Jihei, and northern basin areas. Moreover,
the sand body shows significant spreading characteristics in a north–south direction, and
the depositional environment transitioned from a partial oxidation environment in the
north to a partial reduction environment in the south, with a gradual weakening in the
hydrodynamic force. Accordingly, the Xiaoxing’an Ridge served as the predominant
sediment source for the Sifangtai Formation, followed by the eastern region of Jihei and
Zhangguangcailing.

In addition, the distribution map of water systems in the northern part of the Songliao
Basin has shown that six major water systems are developed in the basin, among which the
Nehe and Baiquan water systems are the main ones in the study area (Figure 12), which
can provide a constant source of material for the sandstones of the Sifangtai Formation.
The distribution of this water system is also mainly located in the tectonic position of the
Xiaoxing’an and Zhangguangcailing areas.
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5.5. Tectonic Background

The siliciclastic rocks in the study area were derived from different tectonic settings
and display terrain-specific characteristics [51–55]. Numerous tectonic discrimination
diagrams for sedimentary basins have been proposed based on major and trace element
compositions [69–71]. As illustrated in Figure 13, the sandstone samples clustered in the
diagram in the active continental margin region, and the tectonic setting was relatively
similar, reflecting a strong subduction plate regime.
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and Korsch. [69]); (d) SiO2/Al2O3-K2O/Na2O (after Maynard et al. [70]).

Furthermore, REEs are often used to determine the tectonic properties of clastic
rocks. McLennan [21] used PAAS for standardization and found different values of δCe in
different tectonic contexts, where a significantly negative δCe anomaly denoted a spreading
oceanic ridge, a moderate negative δCe anomaly indicated an ocean basin, and a weak
negative δCe anomaly indicated a continental margin zone. The δCe of the sandstone
samples obtained from the Sifangtai Formation ranged from 0.85 to 1.13, with an average
of 0.95, suggesting that the depositional environment of this formation was an active
continental margin environment.

This finding was further supported by the following geological observations of the
study area: In terms of tectonic position, the northern region of the Songliao Basin crosses
the Xingmeng Orogenic Belt and represents the superposition of the Pacific tectonic and
the ancient Asian Oceanic tectonic system. Since the Mesozoic, it has undergone significant
tectonic deformation and orogenesis, and the rocks comprising the basin were formed
in a subducting plate tectonic setting, whereby the Pacific Ocean Plate subducted in a
southward direction [72,73].

In addition, the Songliao Basin is a faulted Meso-Cenozoic basin, and previous studies
have reported a wide distribution of felsic rocks in the Xiaoxing’anling and Zhangguang-
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cailing areas, including the fine-grained synogranite of the Dong’an Gold Mine in the
Xiaoxing’an Mountains, which were formed 184 Ma in an ancient active continental margin
setting of the subducting Pacific Plate [74]. Moreover, based on the study conducted by
Ge et al. [75], combined with previously published geochronological and geochemical data,
we inferred that the Xiao Hinggan-Zhangguangcai Mountains formed in an active conti-
nental margin setting during the Late Paleozoic to Mesozoic. Finally, the Early Jurassic
granite of the southern Zhangguangcai Mountains formed in a post-collisional tectonic
setting, representing an extensional episode in the collisional event, and the geotectonic
setting was an extensional tectonic setting after subduction of the Pacific Plate [76].

Overall, our results indicate that the host rocks of the Sifangtai Formation are predomi-
nately felsic, and this observation is consistent with rocks in the northern Xiaoxing’an Ridge
and Zhangguangcailing regions. Combining previous research results and the elemental
geochemical characteristics of the sandstone samples obtained in the present study, we
concluded that the sandstones of the Sifangtai Formation formed in an active continental
margin environment closely related to Pacific subduction.

5.6. Relationship between the Sandstones and Uranium Mineralization

For sandstone uranium ores, the mineralization potential is generally analyzed in
terms of the uranium source conditions, tectonic evolution, sand bodies, post-generation
alteration (oxide zone development), paleoclimatic conditions, and known uranium miner-
alization anomalies [1–6].

5.6.1. Uranium Source Conditions

As mentioned, the source area of the Sifangtai Formation sandstone was determined
as an active continental margin tectonic environment, and the parent rocks were felsic
and sourced from the Xiaoxing’an and Zhangguangcailing areas. The average uranium
content of granite from these areas ranged from 7.02 to 5.93 ppm, and the uranium leaching
rate of the granites (percentage of U by weight leached from granite since its formation)
was 22.13 wt%, representing a fast leaching rate. The total amount of activated uranium
migrating into the basin from the eroded source area in the northern region of the Songliao
Basin was 4.32 million tons, indicating that the northern region of the basin is enriched
with uranium sources ([28] Table 2). Table 3 shows the average mineral contents of granites
from the Zhang Guangcailing-Xiaoxing’an region. Compared with the mineral content
of sandstones from the Sifangtai Formation in the study area, these data indicate that
the mineral content of orthogranite and diorite is more similar to that of the Sifangtai
Formation sandstone. The material source of the sandstone was most likely Triassic-Jurassic
orthogranite and diorite granite [74–76].

Table 2. Calculation of the total amount of activated uranium remitted to the basin from uranium-bearing granite alteration
source areas in the northern part of the Songliao Basin (after [28]).

Location Daxing’an Ridge Xiaoxing’an Ridge Zhangguangcai Ridge Total

Erosion source area Space (km2) 19,000 9800 14,500

Granite as a percentage of the erosion
source area 55% 65% 80%

Granite exfoliation thickness (m) 100 100 100

Average uranium content of
granite (ppm) 7.4 7.02 5.93

Granite uranium leaching rate (%) 23.42 22.13 22.13

Total activated Uranium (104 t) 181 99 152 432



Minerals 2021, 11, 1019 20 of 27

Table 3. Average mineral and organic matter content of Sifangtai Formation sandstones and Zhang Guangcailing-
Xiaoxinganling granites.

SampleNo. Lithology Q (%) Pl (%) Kfs (%) Bi (%) Lv (%) TOC (%) S (%) C1 µL/kg

1 Black
sandstone 40–45 15–20 15–20 1–3 15–20 0.14 0.08 9183

2 Oxidized
Sandstone 35–40 10–15 15–20 1–3 20–25 0.09 0.03 216

3 Syenogranite 35–40 10–15 40–45 1–3 - - - -

4 Monzonitic
granite 25–30 25–30 30–35 3–5 - - - -

5 granodiorite 25–30 50–55 5–10 5–10 - - - -

5.6.2. Tectonic Conditions and Uranium Mineralization

The basement faults in the northern region of the Songliao Basin can be categorized
into NE- and NW-trending faults, which control the overall evolution of the basin. Uranium
mineralization was concentrated at the intersection of the two fracture sets. Overall, six
uranium enrichment zones could be identified (Figure 14). Moreover, three primary areas
of tectonic influence were determined for the study area: First, deep basement fractures are
also located in this area, the base of the Cretaceous formations are developed, and there
are also features of tectonic uranium mineralization and anomalous sedimentary layer
development [28]. Second, the northern region of the Songliao Basin contains hydrocarbon
deposits of the Shahezi and Yingcheng Formations, as well as several oil-gas fields, such
as the Jiaoqiao, Erzhan, Pingyang, and Alaxin fields. Tectonic action widening of the
ascent pathway for deep reducing (hydrocarbon) fluids. The fracture crosses the Upper
Cretaceous and becomes a channel for the upward transport of deep reducing fluids,
such as those containing oil-gas and CO2, forming oil-gas reservoirs, generating extensive
reduction alteration in the Sifangtai Formation, and increasing the reduction capacity of
the Sifangtai Formation. The sandstones of the Sifangtai Formation in the vicinity of the
oil-gas field exhibit low organic carbon and sulfur content and high acidolytic hydrocarbon
content, further indicating that oil and gas are the main reducing substances. Uranium
mineralization is predominately developed in sandstones near the oil-gas fields, and the
ore types are mainly medium- and fine-grained sandstones, with the primary uranium
minerals being bituminous uranium ore and uraninite [28]. Finally, tectonic conditions
may alter the local groundwater dynamics system for infiltration or discharge zones,
complementing and improving the replenishment-runoff-discharge system and promoting
the development of interstratified oxidation zones and uranium mineralization [28].

In conclusion, the tectonics of the Sifangtai Formation may promote an improved
stratigraphic structure of this formation, with large sand thicknesses and sufficient re-
duction conditions. Moreover, late-stage tectonic uplift denudation resulted in late-stage
modification of the target layer, allowing it to more readily form oxidation zones [77,78].
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Figure 14. Relationship between basement fractures and uranium mineralization in the northern
part of the Songliao Basin (based on [66], slightly modified).

5.6.3. Sand Body Development Conditions

The sand body of the Sifangtai Formation is also markedly developed in the study area,
with a relatively shallow burial depth, and it consists of braided river sediment (consistent
with the previous elemental geochemical characteristics determined for the sandstone
samples). Moreover, the sandstone material has the trend of gradually increasing, and the
sand body is characterized by significant thickness and wide spreading. The cumulative
thickness of the sand body is 80–100 m (Figure 3c).

The sand body is characterized by loose rocks, and the gap-filling material is mainly
clay-powdered, with an approximate content of 1%. Sandstone of the Sifangtai Formation
in the vicinity of the oil-gas field is visible as flakes and lamellar charred plant debris, with
a large amount of pyrite absorbed on the surface.

5.6.4. Oxidation Zone Development Conditions

An oxidation zone exists in the Sifangtai Formation, and it is developed in the sand
body formed by braided river deposition. The oxidation zone can be divided vertically
into fully, medium, and weak oxidation zones. The fully oxidized zone in the sand body
is yellow in color and does not contain evident carbon residue. Moreover, the sand body
in this oxidation zone is loose, and the GR curve reflects a low uranium content. In the
medium oxidized zone, the sand body is mainly grayish yellow and light yellow in color,
with a thin layer of lenticular sand body and a small amount of charcoal debris. The GR
curve for this zone indicates a slight increase in uranium content. The weakly oxidized
zone is characterized by a gray and yellow interlayered sand body with visible organic
matter (Figure 15). The thickness of the oxidized sand body exceeds 50 m and extends over
50 km, with high oxidation intensity.
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Songliao Basin.

5.6.5. Paleoclimatic Conditions

The geochemical characteristics of the major elements indicate that the sandstones
of the Sifangtai Formation were formed under semi-arid climatic conditions, and the
Late Cretaceous Sifangtai Formation typically comprises gray medium-fine sandstones
interspersed with purple-red mudstones, with visible calcareous nodules.

The arid paleoclimatic environment provided the optimal conditions for the formation
of uranium-oxygenated water and the pre-enrichment and transport of uranium elements.

5.6.6. Uranium Mineralization Development

Recent exploration in the study area has indicated that uranium mineralization is
more developed in the Sifangtai Formation in the northern region of the Songliao Basin.

The uranium mineralization extends steadily over 3 km (Figure 16), and the min-
eralized lithologies are mainly gray medium sandstone and fine sandstone, which are
produced in the sandstone at the bottom of Sifangtai Formation.

In terms of composition, organic carbon and sulfur content is low, while the acidolytic
hydrocarbon content is high, indicating that oil and gas are the main reducing substances.
The oxidized sandstone is mainly light yellow in color and remains in the gray sandstone
in the form of dipping, agglomerates, and stripes (Table 3).
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The uranium mineralization sequence of events is as follows; (1) firstly, sandstones
begin with the fluvial deposition of the arkose, then burial and lithification, (2) secondly, the
uranium-bearing oxygenated water into some of the sandstone, nevertheless, the fracture
development in the basin, a low temperature hydrocarbon transport of uranium through
the faults into enriched portions of the formation that acted as reducing agents for the
concentration of the uranium, and (3) finally, the sandstone is enriched in mineralization at
the transition site (Figure 17).
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Figure 17. Uranium mineral model of the Sifangtai Formation in the northern part of the Songliao Basin.

In summary, the Sifangtai Formation in the northern region of the Songliao Basin is rich
in uranium sources, tectonic conditions, ore-bearing favorable sand bodies, post-generation
alteration, and paleoclimatic conditions, and it has considerable potential.
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6. Conclusions

Based on the geochemistry of the sandstones in the northern Songliao Basin, in
combination with the results of previous studies conducted in the area, we reached the
following conclusions:

1. The ICV value ranged from 0.60 to 1.03, with an average of 0.69. The revised average
CIA value was 54.35. It indicated that the rocks of the Sifangtai Formation might
have undergone weak chemical weathering and the compositional homogeneity and
minimal influence of sedimentary sorting.

2. The combination of element Sr/Ba, 100MgO/Al2O3 and the combination of v/v +
Ni, V/Cr, Ni/Co, Sr/Cu indicated that the paleo-water medium was deposited in an
oxygen-rich freshwater environment when the Sifangtai Formation was deposited.

3. On the structure discriminate diagrams, it showed that almost all the sandstones of the
Sifangtai Formation fell in the range of active continental margin, indicating that the
source area of the sandstones of Sifangtai Formations is an active continental margin
tectonic environment, and the source is a felsic rock developed in the Xiaoxing’an
Ridge and Zhangguangcailing area.

4. Diagrams of major (trace) elements reveal the paleoclimate of the source area and the
warm arid climate prevails during the deposition period.

5. Based on the above comprehensive analyses, it was concluded that the paleo-climate,
oxygen-rich paleo-water body, favorable sedimentary facies and thick sand bodies had
important geological significance for the large-scaled mineralization of the sandstone-
type uranium in the northern margin of the Songliao basin.
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