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Abstract: Bearing in mind the metal rich composition of printed circuit boards (PCBs), this material
represents a secondary source of valuable metals and offers an entrepreneurial opportunity in
the metal sales market. Based on the ability of microorganisms to regenerate and produce the
chemical oxidants that are responsible for metal leaching, bioleaching has become an efficient
and affordable alternative to conventional metal recycling technologies, although further research
is still necessary before industrial implementation. This study focuses on the recovery of metals
contained in mobile phone PCBs through a combined process. Two different PCB pre-treatments were
evaluated: grinding the whole piece and removing the epoxy cover from the piece without grinding.
The benefit of A. ferrooxidans activity on the metal solubilization rate was analyzed. Additional
chemical leaching assays were also conducted for comparison purposes and the reagents ferric iron
(Fe3+) and sulfuric acid (H2SO4) were selected for these experiments. The copper extraction results
obtained in Fe3+ experiments with and without bacteria (A. ferrooxidans) were similar after 260 h
of operation, indicating the need for alternative strategies to ensure a controlled and continuous
metal biodissolution rate. The contribution of H2SO4 to the leaching processes for copper and
nickel was almost negligible during the first 50 h, and more significant thereafter. The recovered
metals were precipitated from a synthetic solution simulating a real ferric leaching by adding sodium
hydroxide (NaOH) and sodium sulfide (Na2S). The combination of both precipitants allowed an
effective removal of metals from the leachate.

Keywords: mobile phone PCBs; pretreatment; bioleaching; A. ferrooxidans; chemical precipitation;
recycling

1. Introduction

Electrical and electronic equipment (EEE) includes all devices that require electric
currents or electromagnetic fields in order to function properly, as well as units that
generate, transmit and measure the aforementioned currents and fields. Since 2018, all EEE
are classified within the six categories set out in Annex III of the Directive 2012/19/EU
of the European Parliament and of the Council of 4 July 2012 on Waste Electrical and
Electronic equipment (WEEE) [1]. Among them, the group whose widespread use across
the globe has led to an exponential growth in recent decades is that of small information
technology and telecommunication equipment. This group includes gadgets, such as
mobile phones (smartphones, phablets, etc.), GPS and navigation equipment, personal
computers, printers or telephones. Accordingly, the amount of e-waste generated by their
consumption has also increased dramatically. In Spain alone, 32,726 t of e-waste were
collected in 2018 (equivalent to 0.70 kg inhabitant−1), which was 8057 t more than in 2017
and represents an increase of 105% since 2009 [2].
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Waste printed circuit boards (WPCBs) are generated in the dismantling of this type of
e-waste. A functional PCB comprises the integral component of any electronic equipment,
as it electrically connects and mechanically supports the other electronic components [3]. It
is essentially an electronic circuit laminated with copper, a glass-reinforced epoxy resin
and flame-retardants, ceramic materials and a number of metallic materials, including
base, precious and heavy metals [4,5]. In the case of mobile phone PCBs, the average
composition by weight comprises metals 40–60%, polymers 13–30% and ceramics 24–
30% [6,7]. Therefore, the WPCBs act as a rich secondary source of valuable metals, either
because of their relatively high concentration (Cu, Al, Ni, Zn and Sn), or due to their
high market price, even in extremely low concentrations (Au, Ag, Pt and Pd). In addition,
hazardous metals, such as lead (Pb), mercury (Hg) and cadmium (Cd) can be also found
in these devices, especially in those manufactured before 2006, when the Restriction of
Hazardous Substances in Electrical and Electronic Equipment (RoSH) 1 Directive came into
force and restricted the use of certain hazardous substances in the EEE [8]. In conclusion,
despite their complex composition, metal recovery from WPCBs should be a priority in
order to avoid the environmental impact of this waste that could, surprisingly, become a
long-term profitable business.

Metal recycling technologies, such as pyrometallurgical and hydrometallurgical pro-
cesses, have been extensively investigated in the literature. Chemical leaching prevails
among the latter ones, employing mineral acids (hydrochloric acid, sulfuric acid or nitric
acid) together with strong oxidants (hydrogen peroxide, ferric chloride or chlorine) for
metal extraction from WPCBs [9]. However, given the environmental impact caused by the
high consumption of reagents, industries are increasingly forced to move toward greener
extraction technologies, such as bio-metallurgical processes [10].

Bearing in mind its capacity to carry out an environmentally safe regeneration of the
oxidant agents, bioleaching has become a solid alternative, both from a sustainable and
economic point of view, among biotechnologies with a potential for implementation [11,12].
Two commonly used microorganisms involved in this process include the sulfur-oxidizing
bacterium A. thiooxidans and the sulfur- and iron-oxidizing bacterium A. ferrooxidans [12,13].
Both bacteria need the energy generated by the oxidation of elemental sulfur (Equation (1))
or ferrous iron (Equation (2)), rendering the reagents responsible for metal leaching.

4 Fe2+ + O2 + 4 H+ → 4 Fe3+ + 2 H2O (1)

2 S + 3 O2 + 2 H2O→ 2 SO4
2− + 4 H+ (2)

Despite the promising results reported in the literature [10], bioleaching is still an
immature technology, according to the technology readiness level scale [14]. There are many
aspects to optimize before overcoming the “Valley of Death” and achieving Technology
Readiness Level (TRL) 7 (system prototype demonstration in relevant environments). Thus,
while several authors have demonstrated the efficiency of the bioprocess, only a few of
them have studied the treatment of depleted solutions containing high concentrations of
the dissolved metals that are responsible for bacterial inhibition [15–17].

Regarding metal recovery by chemical precipitation, several examples have been
reported in the literature concerning the treatment of valuable metals in hazardous effluents
of acid wastes. Tabak et al. (2003) [18] selectively recovered metals as hydroxides and
sulfides from acid mine drainage impacted water by using potassium hydroxide (KOH)
and biologically produced hydrogen sulfide (H2S), respectively. Yang et al. (2017) [19]
employed sodium sulfide (Na2S) to precipitate fractionally Cu, Zn, Cd, Pb and As from Cu
smelter dust after an acid leaching process.

Sodium sulfide (Na2S) and sodium hydroxide (NaOH) are the most widely used
precipitants when recovering metals. Although NaOH is considerably cheaper than the
sulfide (40.6 € kg−1 vs. 1016 € kg−1), its dosage is limited by the possible resolubilization
of many common metals present in WPCB leaching solutions, such as Cu, Ni or Zn,
unless the pH is maintained within a narrow range [20,21]. This phenomenon can be
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avoided with Na2S, which forms metal sulfides precipitating at lower concentrations and
generates a smaller volume of sludge [21,22]. The quantity of Na2S to be added must,
likewise, be controlled in order to prevent sulfide ion accumulation and the need for
subsequent removal.

The aim of this work was to leach metals from mobile phone PCBs using two different
solutions for comparison purposes. One of them contained ferric iron as the main oxidant
and the bacteria A. ferrooxidans for regenerating the oxidant. The other one only contained
sulfuric acid for studying the contribution of the acid medium. A previous decision about
using the PCBs after grinding (powder sample) or after the removal of the epoxy layer
without grinding (PCB pieces) was made. Once the metals were extracted, two alternatives
for metal precipitation were selected: the individual or consecutive addition of NaOH and
N2S. This step was designed with a double objective: to precipitate iron and other metal
compounds and to “clean” the solution for its ulterior discharge.

2. Materials and Methods
2.1. PCB Samples

A total amount of 29 obsolete Nokia mobile phones manufactured between 2000 and
2011 were collected from the local scrap market. A specific trademark was selected to
delimit the commercialized models and seek to ensure similar PCB composition in all
samples. Mobile phones were manually dismantled to separate PCBs (Figure 1).
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Figure 1. (a) Manual dismantling of mobile phones and (b) recovered PCBs. 
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Fe 105.7 48.5 107.9 10.5 2.8 38.3 12.6 ± 0.2 0.2 c 
Ni 26.3 25.4 17.3 8.5 3.9 11.5 11.4 ± 1.1 14.5 

Figure 1. (a) Manual dismantling of mobile phones and (b) recovered PCBs.

The average weight of the PCBs was 16.0 (± 5.7) g, which represented approximately
19% of the total average weight of the complete mobile phone (82.6 ± 10.2 g). Among the
wide variety of metals contained in the PCBs from mobile phones (Table 1), Al, Fe, Ni, Cu,
Zn, Pd, Sn and Pb were selected to be quantified in this study.

Table 1. Average metal content (mg g−1 PCB) and market price (€ kg−1) in mobile’s PCBs. (nm = not measured).

Metal [7] [23] [24] [25] [26] [27] This Study Price a,b

Cu 345 378 389 360 408 230 435 ± 54 7.7
Sn nm 25.5 24.9 nm 16.0 nm 32.9 ± 3.7 26.6
Al nm 6.1 9.6 6.6 nm 10.3 19.6 ± 0.9 2.0
Fe 105.7 48.5 107.9 10.5 2.8 38.3 12.6 ± 0.2 0.2 c

Ni 26.3 25.4 17.3 8.5 3.9 11.5 11.4 ± 1.1 14.5
Pb 18.7 nm 16.7 12.1 13.6 1.2 5.9 ± 1.4 1.8
Zn nm 18.2 3.3 7.9 4.1 3.0 4.4 ± 1.1 2.4
Pd nm 12.3 0.14 0.6 <0.1 nm 0.6 ± 0.1 69,090.7
Au <0.01 0.9 1.6 0.1 <0.1 0.32 nm 46,977.8
Ag 2.1 0.5 4.0 0.3 1.1 nm nm 698.9

a Convert currency: 1 USD = 0.84 EUR; b Cash seller and settlement metal price (except for Fe) according to the London Metal Exchange
(LME) (June 2021) [28]; c Price of iron ore (62% Fe), CFR China (TSI) (June 2021) [29].

The major element was copper, with an average content of 435.0 (± 54.0) mg g−1 PCB;
an amount that is even higher than the pure copper amount contained in ores, such as chal-
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copyrite [30]. The second metal was tin (32.9 ± 3.7 mg g−1 PCB), which is conventionally
used in welding processes.

2.2. Microorganisms and Culture Media

A. ferrooxidans DSM 14882 was acquired from the German collection Leibniz Institute
DSMZ-German Collection of Microorganisms and Cell Cultures. Cells were cultured in the
9 K medium (9 g Fe2+ L−1) [31]. The pH of the solution was adjusted to 1.8 with sulfuric
acid (25% v/v).

2.3. PCB Sample Conditioning

Since most metals contained in PCB samples are immobilized under an epoxy cover,
pre-treatment is mandatory for facilitating the access of leaching agents to the metals. Two
different alternatives were tested: (1) mechanical grinding without any further treatment
(powder PCB); and (2) chemical removal of the epoxy cover without grinding (entire PCB).

Regarding the sample grinding, PCB pieces were sliced into squares of 1 cm × 1 cm
and were consecutively crushed with three different mesh sizes (4 mm, 1.25 mm and
0.75 mm) using a RETSCH SM 2000 mill (RETSCH, Bilbao, Spain). Figure 2a shows the
PCB particles according to their size. The particle-size distribution revealed that 60.7% of
the crushed sample was in the smallest fraction (Supplementary data—Figure S1).

As far as the second alternative is concerned, the entire PCBs were immersed in a
concentrated solution of sodium hydroxide (NaOH 10 M) under stirring for 72 h, with the
objective of separating the protective layers of epoxy resin (Figure 2b) [32].
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Figure 2. (a) Pulverized PCB sample according to particle size (>1.25 mm, 1.25–0.75 mm and
<0.75 mm) (1:30 magnification) and (b) entire PCB pieces (3.5 cm ± 0.6 cm × 2.1 cm ± 0.1 cm) after
treatment with a 10 M NaOH solution.

One-step bioleaching experiments (see Section 2.4.1) were conducted with both sam-
ples (powder PCB and entire PCB pieces) to analyze the effect of the pre-treatment method
(Supplementary data—Figure S2). The rationale of selecting the Fe2+ containing medium
was to let the microbes generate the oxidant for metal slow removal and to detect a possible
inhibitory effect by the presence of the PCB.

2.4. Leaching Experiments
2.4.1. One-step Bioleaching Experiment

Biotic leaching experiments were carried out in 1 L Erlenmeyer flasks containing
350 mL of 9 K medium, where a 2% v/v of A. ferrooxidans in an exponential growth phase
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was previously inoculated. An equivalent to the 3.5 g L−1 pulp density of the PCB powder
sample or PCB piece was introduced into each Erlenmeyer. Both reactors were incubated
at 31 ◦C and with 130 rpm orbital shaking. A pH threshold value of 1.8 was maintained by
the continuous addition of sulfuric acid (25% v/v) (GLP 21+ pH-meter equipped with a
sensION+ 5014T glass combination pH electrode, Crison, Spain). The removal efficiency
for each metal was calculated as follows:

Metal removal efficiency (%) =

(
C · V

M
Cin

)
· 100 (3)

where C is the metal concentration at the time of sampling (mg L−1), V is the volume
of the leaching solution (L), M is the amount of the solid sample (i.e., PCB powder or
piece) involved in the leaching process (g) and Cin is the metal concentration in the original
PCB sample.

2.4.2. Two-Step Bioleaching Experiment

The solubilization of the metals contained in the PCB pieces was carried out in a
two-step procedure. First, 9 K medium was inoculated with a 2% v/v of A. ferrooxidans
culture in the exponential growth phase until the complete oxidation of Fe2+ to Fe3+ was
achieved (step 1), and, once Fe2+ was oxidized to Fe3+, the bioleaching of the workpiece
was then performed (step 2) at 31 ◦C, 130 rpm orbital shaking and a pH of 1.8.

2.4.3. Leaching Experiments in Abiotic Medium

For comparison purposes, a blank experiment was conducted with biogenic Fe3+ but
without the presence of bacteria. Thus, after the iron biooxidation, the solution was filtered
with 0.45 µm polyvinylidene fluoride filter while maintaining a constant pH at 1.8.

The treated PCB piece and detached electronic circuitry scraps were removed from
both the biotic and abiotic two-step procedures once the experiments were finished, rinsed
with deionized water and ethanol (96%), dried and characterized by X-ray fluorescence
(XRF, Malvern Panalytical, Leioa, Spain). The precipitates formed during the leaching
processes were also recovered and separated by filtration (Filter-Lab No. 1240 filter paper
with a 7–9 µm pore diameter), then washed and dried. Elemental analysis and phase
identification of the obtained powdery product was carried out by combining XRF and
X-ray diffraction (XRD, Malvern Panalytical, Leioa, Spain) techniques.

Bearing in mind that sulfuric acid (H2SO4) is the other main reagent of biological origin
responsible for metal leaching, another experiment was performed with the objective of
assessing the contribution of this acid in the process performance. Thus, an abiotic leaching
medium containing H2SO4 (2% v/v) was prepared and subsequently, the PCB workpiece
was immersed into 350 mL of this acid solution. The same conditions (31 ◦C and 130 rpm
orbital shaking) were applied for the PCB pieces tested in the latter two experiments. In
both cases, samples were collected from the medium on a regular basis to analyze their
metal content (Cu, Fe, Ni, Zn and Pb) after filtration.

2.5. Chemical Precipitation Experiments for Metal Extraction

A leaching liquor residue containing Fe, Cu, Ni and Zn was synthesized in the
laboratory, simulating the real solution obtained from the abiotic experiment with biogenic
Fe3+ (see Section 2.4.3). Taking into account that Fe3+ selective precipitation over other
metals, such as Cu and Zn, is more efficient in comparison with Fe2+, all iron was present
in its oxidized form [33]. In previous studies by the authors, the Cu solubilization rate
was significantly reduced when the iron speciation (Fe3+/Fe2+ mass ratio) dropped below
2:1 in real bioleaches. In that case, sample pre-oxidation by means of H2O2 has been
recommended for iron oxidation prior to chemical precipitation experiments [33,34]. Other
minor metallic elements of the medium were not considered in this study. The pH was
adjusted to 1.7 by adding H2SO4 (25% v/v).
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Chemical precipitation experiments were performed with both sodium hydroxide
(NaOH) and sodium sulfide (Na2S) (individually or combined). Each experiment was
conducted with a sample volume of 50 mL at room temperature under stirring conditions.

2.6. Analytical Methods

The metal content in the leaching solutions and the original PCB samples was deter-
mined by inductively coupled plasma optical emission spectroscopy (ICP-OES, Perkin
Elmer, Bilbao, Spain) with a Perkin Elmer Optima 2000 OV equipment provided with
a Scott spray chamber/nebulizer. In the latter case of the PCB samples, the finest frac-
tion (<0.75 mm) was digested in aqua regia (HNO3:HCl, 1:3 v:v) at 150 ◦C for 3 h (Ethos
Advanced microwave).

The solids generated in the biotic (i.e., two-step bioleaching experiment) and abiotic
(i.e., biogenic Fe3+ without bacteria) leaching solutions were identified by the XRD patterns
that were obtained using a PANalytical Xpert PRO diffractometer (Malvern Panalytical,
Leioa, Spain) with theta-theta configuration. This instrument was equipped with a sec-
ondary graphite monochromator adjusted to copper radiation and a PixCel solid-state
fast detector, set to an active length of 2θ of 3.347◦. Semi-quantitative chemical analysis
of solid residues comprising remnants of PCB pieces, detached electronic circuitry scraps
(e.g., integrated circuit components and submillimetrical components) and precipitates was
determined with a sequential fluorescence sequence X-ray Wavelength (XRF) spectrometer
(PANalytical Axios mAX-Advanced), equipped with an automatic sample changer, vacuum
measurement system, Rh tube and three detectors (gas flow, scintillation and sealing of Xe).

The redox potential was recorded with a Thermo-Orion 920+ instrument equipped
with an Orion 9778BNWPO Sur-Flow® electrode with epoxy body (combination of a
platinum redox and a silver/silver chloride reference electrode in one body (Ag/AgCl,
4 M KCl)). All potentials in this paper are given with respect to the reference electrode
(+220 mV vs. Ag/AgCl).

3. Results and Discussion
3.1. Effect of the Pre-Treatment

PCB sample pulverization has been traditionally proposed as a prerequisite for im-
proving the efficiency of metal bioleaching [27,35,36], and, only recently, several authors
have incorporated the use of entire PCB pieces for this process [37,38].

The copper removal efficiency when using the PCB powder and the PCB piece in
the bioleaching experiments is shown in Figure 3. The pulverized sample rendered a
slightly higher removal efficiency in comparison with the non-pulverized one after 350 h
of treatment (78.3% vs. 67.9%). This result revealed that the presence of the epoxy layer
did not inhibit microbial activity by the end of the experiments. As expected, a smaller
particle size allowed for a greater surface area and, consequently, closer contact between
the powder and the leaching solution.
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In any case, previous studies attributed such removal efficiency differences to the
operative variability of biological processes [39,40]. In addition, the crushing step to ensure
the complete liberation (>99%) of copper and ferromagnetic metals contained in PCB
samples [41] contributed to an important loss of material (about 15%). Taking into account
that the pulverization pre-treatment entailed a high energy consumption and the additional
complexity of separating the non-metallic materials from the precipitate formed during
the bioleaching process, the use of epoxy-free PCB pieces was recommended for further
bioleaching experiments.

In addition to copper, other minor metals were simultaneously bioleached, such
as nickel, zinc or lead, among others. Comparative values obtained by the end of the
experiment for Zn, Ni and Pb are shown in Table 2.

Table 2. Metal removal efficiency values obtained for Cu, Zn, Ni and Pb.

Metal
Removal Efficiency (%)

PCB Piece Powder PCB

Cu 67.9 78.2
Ni 36.7 54.1
Zn 52.8 33.8
Pb 2.9 13.9

The bioleaching efficiencies obtained in this study were lower than those achieved by
Shah et al. (2014) [25], who reported a Cu, Zn and Ni removal of 87.5%, 85.7% and 81.9%,
respectively, by one-step bioleaching after 360 h (9 g Fe L−1, 10 g powder L−1, pH 1.8).
This difference could be attributed to the use of an iron oxidizing and multi-metal resistant
microbial culture adapted to PCB in their experiments.

3.2. Effect of the Presence of A. Ferrooxidans Activity and the Leaching Agent

One of the main drawbacks for continuous long-operation in bioleaching processes,
even under optimum operating conditions, is the decrease in the amount of mobilized metal
as a consequence of the relatively low bioregeneration rate of the oxidant in comparison
with the fast chemical metal leaching option, which results in an inability to keep iron
ions in the higher oxidized state and a significant reduction in the bacterial contribution
to the corrosion process. Wu et al. (2018) [42] demonstrated that biooxidation of Fe2+ to
Fe3+ was the rate-limited step in Cu bioleaching from PCBs. This technical pitfall is clearly
observed in the evolution of the redox potential (Figure 4), which has been previously used
as an indicator of the status of the Cu leaching progress by linking the redox potential (vs.
Ag/AgCl) and the logarithm of Fe3+/Fe2+ ratio [34].
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Figure 4. Evolution of the redox potential during the two-step leaching experiment in the biotic (blue
square) and abiotic (green circle) media when using biogenic Fe3+ as the leaching agent.
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In the biotic case, it took 96 h for the redox potential to reach the original value
indicative of the complete conversion of Fe2+ into Fe3+ (550 ± 20 mV). It can be concluded
that during this 96 h period the oxidant concentration was variable and metals such as
Cu (74.6%) and Ni (90.1%) were extracted (Figure 5a,b), resulting in the microbial activity
for regenerating the oxidant becoming irrelevant. Once the metal source progressively
decreased and the oxidant consumption slowed down, the biooxidation of the Fe2+ into Fe3+

had an effect on the redox potential, rendering higher values. Similarly, the redox potential
of the biogenic ferric iron control experiment decreased to its lowest value (422.8 mV vs.
Ag/AgCl) in the same time period. The subsequent increase up to 460.4 mV (260 h) could
be attributed to the spontaneous oxidation of Fe2+ to Fe3+ in the presence of the oxygen
that was dissolved in the acid medium.
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Figure 5. Extracted amount of (a) copper, (b) nickel and (c) zinc, and (d) total iron concentration
during the two-step bioleaching experiment (blue square) and leaching experiments in abiotic
medium employing biogenic Fe3+ (yellow triangle) or H2SO4 (green circle) as leaching agents.

In the case of copper dissolution in the presence of bacteria, the metal removal rate peaked
during the first 4 h (309 mg Cu L−1 h−1) and decreased significantly (<6 mg Cu L−1 h−1) in
the following 12 h (Figure 5a). After 218 h, the extracted amount of copper differed by less
than 2% in Fe3+ biotic and abiotic medium, revealing the poor contribution of the suspended
biomass to the copper solubilization rate [43].

Conversely, the nickel biolixiviation rate remained constant throughout the whole
experiment (in the range of 0.46–0.49 mg Ni L−1 h−1) (Figure 5b). A higher amount of
Ni was obtained (61.4 mg·L−1 vs. 26.2 mg L−1) in the chemical leaching in comparison
with the bioleaching solution, which was attributed to the inherent heterogeneity of the
PCB pieces. In the same vein, no zinc was found in the sample introduced in the two-step
bioleaching medium, while up to 5.3 mg were leached from the PCB piece attacked with
biogenic Fe3+ without bacteria (Figure 5c).

Regarding the metal leaching efficiency by means of H2SO4, the contribution of this
acid to the solubilization process was almost negligible during the first 50 h in the case of
Cu and Ni. The amount of Zn (61.6 mg) extracted in the abiotic ferric solution and in the
acid solution only equaled after 130 h. These results are similar to those obtained by Jadhav
and Hocheng (2015) [44], who studied the capacity of H2SO4 to remove metals from PCB
pieces (4 cm × 4 cm) previously treated with 10 M NaOH. These authors reported a Cu
removal efficiency of 8.8% after 96 h. Likewise, Van Yken et al. (2020) [45] reported a low
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leaching yield after 48 h for Cu (23.2%) and Ni (29.6%), using diluted H2SO4 at pH 1.4
(milled PCBs, 1% pulp density, 25 ◦C and 200 rpm).

As far as iron is concerned, the formation and precipitation of jarosite was observed in
samples containing 9 K medium (with and without bacteria) at the end of both experiments,
despite the continuous pH readjustment when its value was above the 1.8 threshold limit
(Figure 6a,b) [43]. The pH increase during the first 88 h and its subsequent decline in the
following hours was associated with the alkaline nature of the WPCBs and the hydrolysis
of ferric ions, respectively [46,47]. In fact, Priya and Hait [46] described ferric hydroxide
(Fe(OH)3) as precursor in the formation of jarosite.
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Figure 6. (a) pH evolution during the two-step leaching experiment in biotic (blue square) and abiotic (green circle)
9 K medium and (b) appearance of the leaching solutions when using Fe3+ as oxidant after 260 h. (c) XRD patterns for
(d) solid precipitated at the end of the experiments (black line) and rhombohedral KFe3+

3(SO4)2(OH)6 jarosite (PDF: 36–427)
(red line).

The mustard-colored solid precipitated in the Erlenmeyer flasks (Figure 6b) was iden-
tified by XRD as a compound related to the jarosite-group minerals with the chemical
formula KFe3+

3(SO4)2(OH)6 (Figure 6c,d). The formation of Fe(III)-hydroxysulfate min-
eral precipitates is a common undesired phenomenon in numerous industrial processes
involving bacterial cultures in acidic and sulfate-rich environments (e.g., biological gas
desulfurization), irrespective of the absence of sulfur or reduced sulfur compounds in the
bioleached sample [43,48].

The appearance of this solid reduced the content of dissolved iron in the biological
9 K medium below 7.9 g L−1, which entailed a decrease in the oxidant availability of
17.2% in comparison with the abiotic experiment (Figure 5d). As Bao et al. (2018) [49]
concluded, extracellular polymeric substances (EPS) secreted by microorganisms play a
pivotal role in jarosite formation, shortening the induction phase of the mineral synthesis
and consequently reducing the ferric iron amount in the leaching medium. The chemical
composition of the jarosite-like residues determined by XRF spectroscopy in this study
mainly contained Fe, S, K, Sn and Cu along with a negligible presence of other lixiviated
metals (Ni, Zn and Pb) (Table 3).
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Table 3. Elemental composition (wt%) of jarosite samples recovered from the two-step leaching experiments.

Fe S K Sn Cu Ba Ni Ag Ti Ta Au Si Zn Nb

Biologically promoted jarosite 39.8 10.1 4.23 0.63 0.61 0.34 0.10 0.09 bdl bdl 0.04 0.05 0.02 bdl

Non-biologically promoted jarosite 39.0 10.8 4.06 0.67 0.53 bdl bdl 0.08 0.05 0.07 bdl 0.03 bdl 0.02

bdl = below detection limit

As far as lead is concerned (Supplementary data—Figure S3), the content of soluble
Pb was lower 2 mg L−1 in the experiments with Fe3+ as the leaching agent. The presence
of this metal in the sulfuric acid leachate was not observed due to the formation of water
insoluble species (i.e., PbSO4, Kps 1.8 × 10−8) [50]. This whitish solid was not visually
observed in the biogenic ferric leachate because it appeared together with the jarosite.

The complete detachment of the components integrated in the PCB pieces occurred
after leaching (Figure 7a,b). Thus, electronic components, such as resistors and microchips
were detached by a combination of the orbital shaking and the solubilization of the welding
metals [36]. Considering the total mass of the eroded circuit board and the separated
components, a weight loss of 0.73 g (37.1%) and 0.93 g (42.4%) was registered in biotic and
abiotic 9 K medium, respectively, after 260 h.
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Figure 7. Eroded circuit board and detached pieces (e.g., attachment clips, microchips, capaci-
tors and submillimetrical components, such as resistors) after leaching with Fe3+ in (a) biotic and
(b) abiotic medium.

The characterization of the circuit boards (Figure 8a,b) after the ferric leaching process
showed that plastic was the main component, which suggested an effective lixiviation
of the most abundant metals contained in the original samples (Table 1). Similarly, the
relevant concentration of Ba and S (especially in detached pieces, such as microchips and
submillimetrical components (Supplementary data—Tables S1 and S2)) might indicate
that the remaining quantities of metals (e.g., Cu and Sn) could still be embedded in the
solder mask of the PCB, which is typically filled with barium sulfate (BaSO4) as a fire
retardant [51].

Regarding aluminum extraction, the absence of this metal in the treated PCB pieces
(<0.1%, excluding plastic), despite being one of the most abundant metals in the original
sample, was indicative of its priority oxidation in comparison with more electropositive
metals, such as Cu [52]. These results are consistent with those reported by Van Yken
et al. (2020) [45] who obtained relatively high leaching yields at 10 g L−1 of biogenic Fe3+

concentration (pH of 1.2) for Al (75.3%), Zn (78.1%) and Ni (60.5%).



Minerals 2021, 11, 1004 11 of 15

Minerals 2021, 11, x FOR PEER REVIEW 11 of 15 
 

 

mask of the PCB, which is typically filled with barium sulfate (BaSO4) as a fire retardant 

[51]. 

 

Figure 8. Elemental composition (wt%) of the treated circuit board after leaching with Fe3+ in (a) 

biotic and (b) abiotic medium. 

Regarding aluminum extraction, the absence of this metal in the treated PCB pieces 

(<0.1%, excluding plastic), despite being one of the most abundant metals in the original 

sample, was indicative of its priority oxidation in comparison with more electropositive 

metals, such as Cu [52]. These results are consistent with those reported by Van Yken et 

al. (2020) [45] who obtained relatively high leaching yields at 10 g L−1 of biogenic Fe3+ con-

centration (pH of 1.2) for Al (75.3%), Zn (78.1%) and Ni (60.5%). 

3.3. Effect of the Precipitating Agent 

Chemical precipitation in the form of poorly soluble metal hydroxides or sulfides is 

one of the most effective methods for treating heavy metal in wastewaters [33]. Lime 

(Ca(OH)2) and caustic soda (NaOH) are the most widely used hydroxide precipitants, 

while sodium sulfide (Na2S), sodium hydrosulfide (NaHS) and sodium thiosulphate 

(Na2S2O3) are typically applied in sulfide precipitation processes [53]. 

The removal efficiency of metals (Cu, Fe, Ni and Zn) by sulfide and hydroxide pre-

cipitation according to the precipitant concentration (Na2S or NaOH) is presented in Fig-

ure 9a,b. Regardless of the low concentration of Ni and Zn concentrations in the ferric 

leaching system (Figure 5b,c), the precipitation of both elements remained relatively poor 

at Na2S or NaOH concentrations below 10 g L−1. Metal precipitation efficiency exceeded 

90% in all cases at a concentration of 15 g NaOH L−1, but only 59% of Fe precipitated with 

the same concentration of Na2S. Nevertheless, when a higher amount of NaOH was added 

to the leachate (30 g L−1), 19.2% of Zn was solubilized again in the medium. 

According to the results of the sulfide precipitation experiment, a high amount of Cu 

(92.6%) and Zn (78.3%) was recovered when the pH was above 5.0 (5.05). Ye et al. (2017) 

[54] investigated the selective recovery of Fe (9.16 g L−1), Zn (0.55 g L−1), Cu (13.10 mg L−1) 

Figure 8. Elemental composition (wt%) of the treated circuit board after leaching with Fe3+ in
(a) biotic and (b) abiotic medium.

3.3. Effect of the Precipitating Agent

Chemical precipitation in the form of poorly soluble metal hydroxides or sulfides
is one of the most effective methods for treating heavy metal in wastewaters [33]. Lime
(Ca(OH)2) and caustic soda (NaOH) are the most widely used hydroxide precipitants, while
sodium sulfide (Na2S), sodium hydrosulfide (NaHS) and sodium thiosulphate (Na2S2O3)
are typically applied in sulfide precipitation processes [53].

The removal efficiency of metals (Cu, Fe, Ni and Zn) by sulfide and hydroxide pre-
cipitation according to the precipitant concentration (Na2S or NaOH) is presented in
Figure 9a,b. Regardless of the low concentration of Ni and Zn concentrations in the ferric
leaching system (Figure 5b,c), the precipitation of both elements remained relatively poor
at Na2S or NaOH concentrations below 10 g L−1. Metal precipitation efficiency exceeded
90% in all cases at a concentration of 15 g NaOH L−1, but only 59% of Fe precipitated with
the same concentration of Na2S. Nevertheless, when a higher amount of NaOH was added
to the leachate (30 g L−1), 19.2% of Zn was solubilized again in the medium.

According to the results of the sulfide precipitation experiment, a high amount of Cu
(92.6%) and Zn (78.3%) was recovered when the pH was above 5.0 (5.05). Ye et al. (2017) [54]
investigated the selective recovery of Fe (9.16 g L−1), Zn (0.55 g L−1), Cu (13.10 mg L−1)
and Pb (5.18 mg L−1) in a bioleachate by the addition of Na2S. The metals Zn, Cu and Pb
quantitatively precipitated at an approximate pH of 4.50 and 12.5 g Na2S L−1. On the other
hand, Wang and Cheng (2019) [33] reported that Zn started to precipitate only after the pH
was raised above 6.0 in a 4.63 g Zn L−1 solution (338 times higher than Zn concentration in
this study).
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On the basis of these results, an additional experiment was performed combining both
precipitants. Thus, the experimental process involved, first, the addition of NaOH until a
constant pH value of 4.0 was reached with the objective of precipitating all the iron and
avoiding the simultaneous precipitation of other metals [55]. As a result, 85.7% of the Fe
contained in the solution was precipitated (Figure 10). However, as demonstrated by Wang
and Chen [33], the higher the initial concentration of the metal ion, the lower the pH when
it starts to precipitate. Thus, Cu (20.7%) and Ni (9.2%) partially coprecipitated during this
first step.
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and Zn (green circle)) when combining NaOH and Na2S as precipitant agents.

Subsequently, Na2S was added to the solution with the objective of precipitating the
other metals at pH 6.0. The precipitation efficiency recorded for Cu, Zn and Ni sulfides
was 99.9%, 99.4 % and 99.0%, respectively. An additional advantage of increasing the pH
with NaOH before the sulfide precipitation was avoiding the generation of gaseous H2S,
widely known as a flammable, corrosive and highly toxic compound [56].

4. Conclusions

Metal recovery from obsolete printed circuit boards (PCBs) can significantly contribute
to avoiding the depletion of natural sources and the hazardous disposal of this electronic
waste. The bioleaching (or biohydrometallurgical) strategy for the PCB recycling is gaining
relevance for its benefits in the environmental, human health protection and economic
spheres. Nevertheless, the heterogeneity of the waste to be treated, in terms of size, shape
and composition, together with the limitation of treating low quantities hinder the further
scale-up.

In this study, several PCBs from disused mobile phones were grinded for homoge-
nization. After acid digestion of the powder sample, the major element was found to be Cu
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with an average content of 435 (± 54) mg g−1, which was within the range published in
the literature.

In addition to the powder sample, PCB pieces without the epoxy layer were also
tested for the bioleaching experiments. The grinded sample rendered a higher Cu removal
efficiency than the PCB pieces (78.3% vs. 67.9%), being that the difference was more
noticeable during the first 150 h. Despite these results, the removal of the epoxy layer and
the use of the pieces without grinding were selected for the ulterior extraction processes
because it facilitated the management and separation of the pieces from the leaching
medium and it also provided a “cleaner” medium for the microbial activity.

The bacteria A. ferrooxidans boosted the solubilization of Cu during the first hours
in the two-step bioleaching experiments. Nevertheless, the total amount of Cu dissolved
after 260 h differed by less than 2% in the biotic and abiotic ferric medium. The concen-
tration of iron in the biotic medium (containing A. ferrooxidans and Fe3+) decreased below
7.9 g L−1 due to the jarosite precipitation which was favored by the microbial presence.
This phenomenon entailed a reduction in the Fe availability of 17.2% in comparison with
the abiotic experiment.

Once the metals were leached, the partial separation of metal compounds was per-
formed by adding NaOH and Na2S as precipitating reagents in two pH dependent steps.
About 85.7% Fe was precipitated after the NaOH addition at pH 4.0. When Na2S was
added subsequently, the precipitation efficiency for Cu, Zn and Ni sulfides was 99.9%,
99.4% and 99.0%, respectively. The main drawback of this process is the unavoidable
coprecipitation, although it contributed to “cleaning” the solution for its proper discharge.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/min11091004/s1, Figure S1: Particle-size distribution of pulverized PCB. Figure S2: A
schematic flowchart illustrating the experimental design. Figure S3: (a) Lead concentration during
the two-step bioleaching experiment (blue square) and leaching experiments in abiotic medium,
employing biogenic Fe3+ (yellow triangle) or H2SO4 (green circle) as leaching agents. (b) PbSO4
precipitate formed in the leaching medium containing H2SO4. Table S1: Elemental composition (wt%)
of microchip pieces detached from PCBs after leaching with Fe3+, Table S2: Elemental composition
(wt%) of submillimetrical components detached from PCBs after leaching with Fe3+.
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