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Abstract: During the acid leaching process of black shale, with the destruction of the aluminosilicate
mineral structure, a large amount of aluminum (Al) is leached, accompanied by the release of vana-
dium (V). To separate aluminum from the vanadium-containing solution, the precipitation behavior
of aluminum ions (Al3+) was investigated under hydrothermal conditions with the formation of
alunite and natroalunite. In the solution environment, alunite and natroalunite are able to form
stably by the Al3+ hydrolysis precipitation process at a temperature of 200 ◦C, a pH value of 0.4 and
a reaction time of 5 h. When Al3+ was precipitated at a K/Al molar ratio of 1, the aluminum pre-
cipitation efficiency and the vanadium precipitation efficiency were 64.77% and 1.72%, respectively.
However, when Al3+ was precipitated at a Na/Al molar ratio of 1, the precipitation efficiency of
the aluminum decreased to 48.71% and the vanadium precipitation efficiency increased to 4.36%.
The thermodynamics and kinetics results showed that alunite forms more easily than natroalunite,
and the reaction rate increases with increasing temperature, and the precipitation is controlled by the
chemical reaction. Vanadium loss increases as the pH value increases. It can be deduced that the ion
state of tetravalent vanadium (VO2+) was transformed into the ion state of pentavalent vanadium
(VO2

+) in the hydrothermal environment. The VO2
+ can be adsorbed on the alunite or natroalunite

as a result of their negative surface charges, ultimately leading to vanadium loss.

Keywords: aluminum; black shale; alunite; natroalunite; hydrothermal precipitation

1. Introduction

Black shale is an important and abundant vanadium-bearing resource in China, and
has attracted much attention from researchers [1–3]. In vanadium-bearing black shale,
vanadium (V) mainly exists as low-valence V(III) in the crystal lattice of the muscovite, re-
placing aluminum (Al) due to their isomorphism [4,5]. The main distribution of vanadium
grade in black shale deposits is in the range 0.1–1.0%; only 2.8% of black shale possesses
a vanadium grade over 1.0%. Thus, the mica structure needs to be destroyed in order to
release vanadium from the black shale. In the alkaline leaching process, the silica present in
black shale can react with alkali to form colloidal silica, which makes it difficult to separate
vanadium-bearing alkali leachate from residue. Acid leaching is usually adopted for the
extraction of vanadium from black shale [6,7]. The aluminum is leached along with the
vanadium, inevitably increasing the aluminum concentration to 15–20 g/L, which is far
higher than the vanadium concentration. The separation of vanadium over aluminum has
become the core scientific problem in the purification and concentration of high-aluminum
vanadium-bearing leachate.
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In high-aluminum vanadium-bearing leachate, the aluminum ions spontaneously
transform into colloidal alum (KAl(SO4)2·12H2O), which can adsorb vanadium ions, caus-
ing vanadium loss [8]. Meanwhile, aluminum ions have adverse effects on the subsequent
processes of solvent extraction or the precipitation process of vanadium by acidic ammo-
nium salt. It has been reported that aluminum ions can be co-extracted with vanadium
ions, which reduces the extraction efficiency of vanadium in D2EHPA(P204) solvent ex-
traction systems [9,10]. Moreover, aluminum ions can also be adsorbed onto vanadium
precipitates (such as poly-ammonium vanadate) or be precipitated in the form of alum
in the vanadium precipitation process by acidic ammonium salt, leading to low crys-
tallinity of poly-ammonium vanadate, and ultimately reducing the purity of the vanadium
pentoxide [8,11].

It has been noticed by some scholars [12] that in the pH range of 3–5, aluminum
hydroxide forms. Wang [12] adopted 8-hydroxyquinoline as the selective complexing
precipitant at a pH value of 4.5, leading to the precipitation of aluminum ions in the
form of 8-hydroxyquinoline aluminum. However, the vanadium is easy to hydrolyze
and precipitate in the pH range of 2–4 [13,14]. Therefore, the above-mentioned methods
with aluminum hydroxide or 8-hydroxyquinoline aluminum precipitation are suitable for
achieving no vanadium co-existence. Guo [15] found that the cooling crystallization of
AlCl3·6H2O from the high-aluminum acid leaching solution of coal gangue was an effective
method for the removal of aluminum. However, the high consumption of hydrochloric acid
dilutes the concentrations of valuable ions, resulting in an increase in the number of extrac-
tion stages. Shi [11] also adopted the method of cooling crystallization to remove aluminum
in the form of KAl(SO4)2·12H2O from the high-aluminum vanadium-bearing leachate of
black shale. After a long period of crystallization, the aluminum precipitation efficiency
reached no more than 70%. Apparently, it is necessary to find an efficient and feasible
method for the removal of aluminum from high-aluminum vanadium-bearing leachate.

Alunite (KAl3(SO4)2(OH)6) and natroalunite (NaAl3(SO4)2(OH)6) belong to the alunite
supergroup (AB3(TO4)2(OH)6) and form stably in oxidizing, acidic, and SO4

2−/Al3+-
enriched hydrothermal environments [16,17], especially at hydrothermal temperatures of
above 100 ◦C. The increasing temperature obviously offsets the initial reaction acidity for
Al3+ hydrolysis and promotes the formation of alunite and natroalunite [18]. The K/Al
molar ratio also changes the stoichiometric number of alunite [19]. Some scholars have
successfully synthesized natroalunite at acidic pH values (1–4) and temperatures no less
than 180 ◦C in order to immobilize As, or adsorb F−, Cd2+, PO4

3− from the aqueous
solution [20–22]. It has been reported that alunite can be formed in the pressure acid
leaching process of black shale, and the hydrolyzation of Al could be initiated more easily
than that of vanadium by reducing the residual acid of the leachate [23,24]. Therefore,
both alunite and natroalunite can be considered new aluminum-containing precipitates
for the separation of vanadium over aluminum on the basis of their resistance to acidic
and high-temperature conditions. However, the generation difference between alunite and
natroalunite has not been clarified in the existing published literature, which is important
for the theoratical guidence of the purification process of high-aluminum vanadium-
bearing acid leaching solutions of black shale.

In this paper, to effectively separate aluminum and vanadium, the effect of the main
parameters on the precipitate efficiency of aluminum was studied, namely pH values,
K(or Na)/Al molar ratios and temperatures. Meanwhile, the precipitation behaviors
of alunite and natroalunite were compared on the basis of analysis of their thermody-
namics and kinetics. Finally, the phase composition, elemental distribution, and sur-
face charge of the precipitate were analyzed to clarify the mechanism of vanadium and
alunite co-precipitation.
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2. Experimental Section
2.1. The Removal Behavior of Al in Acid Solution

The main metal impurity ions in the acid leachate of black shale are Al3+, Fe3+, Fe2+,
Mg2+, K+, Na+ and Ca2+. In the alunite supergroup (AB3(TO4)2(OH)6), the A site is
usually occupied by a monovalent cation (such as K+, Na+) or a divalent cation (such
as Ca2+, Ba2+, Pb2+), the B site is principally occupied by Al3+ and Fe3+ [20]. During the
formation of alunite or natroalunite, the Fe3+ and Ca2+ can be embedded in the crystal
lattice of alunite. To avoid the influence of Fe3+, Ca2+ and the formation of K-Na alunite
on the aluminum precipitation process, the vanadium-bearing solution was obtained by
dissolving VOSO4 and Al2(SO4)3·18H2O in deionized water. The K2SO4 or Na2SO4 was
fed into the vanadium-bearing solution to a certain volume with a certain K(or Na)/Al
molar ratio, and mixed adequately. The concentration of vanadium and aluminum in the
solution were 1.79 g/L and 0.6 mol/L, respectively.

Then, the mixed solution was put into the pressurized reactor (MCT250, Beijing
Century SenLong experimental apparatus Co., Ltd., Beijing, China), and kept at a certain
temperature for a specified time. After the reaction, the solution and precipitate were
separated by filtration. All reagents used in the tests were analytically pure. Deionized
water was used throughout. The precipitation efficiency (η) of aluminum and vanadium
were calculated using the following equation (see Equation (1)):

η =
C0 × V0

C × V
× 100% (1)

where η is the precipitation efficiency of aluminum or vanadium (%), C0 is initial concentra-
tion of aluminum or vanadium in solution before reaction (g/L), V0 is the solution volume
before reaction (L), C is the concentration of aluminum or vanadium ions in solution after
reaction (g/L), V is the solution volume after reaction (L).

The kinetic experiment was carried out in a pressurized reactor. An amount of
200 mL solution was added into the reactor, and the initial pH value of the solution
was 0.6. During the 4 h reaction, 2 mL of the solution was taken out from the sampling
tube of the reactor at intervals, and the concentration of K+ or Na+ was measured by the
Ion chromatograph.

2.2. Detection Methods

The concentration of vanadium in the solution was analyzed by titration with ferrous
ammonium sulfate. The phase compositions of the samples were tested by means of
X-ray diffraction (XRD, D/MAX 2500PC, Rigaku, Tokyo, Japan) using Cu Kα radiation.
Microscopic observation and elemental analysis were conducted with a scanning electron
microscope (SEM, JSM-IT300, JEOL, Tokyo, Japan) equipped with an energy dispersive
spectrometer (EDS, X-Act, Oxford, London, UK). The pH value of the solution was mea-
sured using a pH meter (PHS-3C, INESA Scientific Instrument Co., Ltd. Shanghai, China).
The aluminum concentration of the solution was obtained using ICP-AES (Optima-4300DV,
PerkinElmer, Boston, MA, USA). The Na+ or K+ concentration in solution was obtained
by Ion chromatography (Metrohm 883, Heriau, Switzerland). X-ray photoelectron spec-
troscopy (XPS) analysis was conducted using a Multilab 2000 instrument (ThermoFisher
Electron, Waltham, MA, USA). The zeta potential was measured using a Zetasizernano
potentiometric titrator (Malvenpanako, Almelo, The Netherlands).

3. Results and Discussion
3.1. Effect of Initial pH Value on the Precipitation Efficiency of Al

To determine whether the addition of sodium sulfate or potassium sulfate can ef-
fectively remove aluminum from the vanadium-bearing solution under different pH val-
ues, experiments were conducted at different pH values under the following conditions:
a temperature of 200 ◦C, K(or Na)/Al molar ratio of 1, and reaction time of 5 h. The pH
values after the reaction are shown in Table 1, and the precipitation efficiency of aluminum
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and vanadium are shown in Figure 1. The phase composition of the precipitates obtained
at a pH value of 0.6 were analyzed by XRD, and the results are shown in Figure 2.

Table 1. The pH value of the solution before and after reaction.

pH Value Na2SO4 K2SO4

Before reaction 0 0.3 0.4 0.6 0.8 0 0.3 0.4 0.6 0.8
After reaction 0 0.29 0.21 0.41 0.39 −0.10 0.27 0.25 0.51 0.54
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As shown in Table 1, the pH value decreased after the reaction, indicating that H+ was
produced in the reaction process.

It can be seen from Figure 1 that the pH value significantly influenced the precipitation
behavior of aluminum. With increasing pH value, the precipitation efficiency of aluminum
also increased. However, at the same pH value, the precipitation efficiency of aluminum
with the addition of sodium sulfate was lower than that with the addition of potassium
sulfate. When the pH value was 0.4, the precipitation efficiency of aluminum with the
addition of potassium sulfate was 64.77%, while the precipitation efficiency of aluminum
with the addition of sodium sulfate was only 48.71%. However, the precipitation efficiency
of vanadium was 1.72% and 4.36%, respectively. When the pH value exceeded 0.6, the
precipitation efficiency of vanadium increased rapidly, indicating an increase in the loss
of vanadium. Thus, under the same conditions, potassium sulfate is more suitable for the
removal of aluminum than sodium sulfate. To avoid vanadium loss, the initial pH value of
solution should not be more than 0.4.

When the initial pH value is less than 0.8, the precipitate is white. Figure 2 clearly
shows that only the natroalunite (NaAl3(SO4)2(OH)6) or alunite (KAl3(SO4)2(OH)6) is
detected, without the appearance of any other diffraction peaks. Hence, it is feasible to
remove aluminum from the vanadium-bearing acid solution with the formation of alunite
and natroalunite.

3.2. Effect of K(Na)/Al Molar Ratio on the Precipitation Efficiency of Al

Experiments were performed using different K(or Na)/Al molar ratios under the
following conditions: pH value of 0.4, temperature of 200 ◦C, and reaction time of 5 h.
The results obtained after the reaction were as shown in Figure 3.
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As shown in Figure 3, the precipitation efficiency of aluminum increased with increas-
ing amounts of sodium sulfate or potassium sulfate. However, when the K(Na)/Al molar
ratio was more than 1:1, increasing the K(Na)/Al molar ratio had no obvious effect on the
precipitation efficiency of aluminum, which may be due to the decreasing pH value with
the progress of the reaction inhibiting the reaction.
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3.3. Effect of Temperature on the Precipitation Efficiency of Al

Experiments were carried out at different temperatures under the following conditions:
K(or Na)/Al molar ratio of 1, pH value of 0.4, and reaction time of 5 h. The results are
shown in Figure 4.
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As shown in Figure 4, the temperature significantly influenced the precipitation be-
havior of aluminum. With increasing temperature, the precipitation efficiency of aluminum
increased. However, at the same temperature, the precipitation efficiency of aluminum
with the addition of sodium sulfate was lower than that with the addition of potassium sul-
fate. When the temperature was 220 ◦C, the precipitation efficiency of aluminum with the
addition of potassium sulfate was 81.75%, while the precipitation efficiency of aluminum
with the addition of sodium sulfate was 60.83%. The concentration of aluminum decreased
from 0.6 mol/L (16.2 g/L) to 2.95 g/L or 6.34 g/ L, respectively.

3.4. The Precipitation Thermodynamics and Kinetics of Alunite and Natroalunite

Within the temperature range of 100–350 ◦C, water can act as a catalytically active
species in chemical reactions and possesses a strong tendency to ionize [25,26]. Alunite can
be formed by the reaction of K+ (Na+), Al3+, SO4

2− and OH− [20,22,27]. After the reaction,
the pH value decreased, and the formation of natroalunite (or alunite) caused by the
reaction of Na2SO4 (or K2SO4) and Al2(SO4)3 can be expressed by Equations (2) and (3).
The Gibbs free energy of the reactions was calculated using HSC software. The results are
shown in Figure 5.

Na+ + 3Al3+ + 2SO4
2− + 6H2O = NaAl3(SO4)2(OH)6 + 6H+ (2)

K+ + 3Al3+ + 2SO4
2− + 6H2O = KAl3(SO4)2(OH)6 + 6H+ (3)
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Figure 5. The ∆Gθ values of Equations (2) and (3) at different temperatures.

As illustrated in Figure 5, the ∆Gθ values were negative at temperatures higher than
100 ◦C, and decreased with increasing temperature. Equations (2) and (3) were spontaneous
when the temperature was higher than 100 ◦C. In contrast, the ∆Gθ values of Equation (3)
were lower than those obtained using Equation (2), which indicates that alunite was formed
more easily than natroalunite.

The equilibrium compositions of alunite and natroalunite were also analyzed us-
ing HSC software under the same thermodynamic conditions. The amount of Al3+, K+,
Na+, SO4

2− and OH− were set at 1 mol, 1 mol, 1 mol, 1 mol, and 3 mol, respectively.
The equilibrium composition diagrams are shown in Figure 6.
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2−-H2O system.

As shown in Figure 6, the amount of alunite is much greater than the amount of
natroalunite. However, with increasing temperature, the amount of alunite increased,
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while the amount of natroalunite first increased and then decreased. In combination with
Figure 5, it can be concluded that increasing temperature promotes the formation of alunite
and natroalunite. It is speculated that it is possible to replace Na with K, with the reaction
being expressed as in Equation (4), and the relationship between Gibbs free energy and
temperature being as shown in Figure 7.

NaAl3(SO4)2(OH)6 + K+ = KAl3(SO4)2(OH)6 + Na+ (4)

KAl3(SO4)2(OH)6 + Na+ = NaAl3(SO4)2(OH)6 + K+ (5)
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As shown in Figure 7, the ∆Gθ values are negative for the reaction in Equation (4),
but the ∆Gθ values are positive for the reaction in Equation (5). The ∆Gθ values of
Equation (4) decrease with increasing temperature, which means that the Na+ at the A-site
of natroalunite can theoretically be replaced with K+ and transformed into alunite, but the
alunite cannot be transformed into natroalunite.

According to the thermodynamic calculation of HSC, under the same conditions,
alunite forms more easily than natroalunite. Therefore, the effect of temperature on the
kinetics of natroalunite and alunite were preliminarily investigated, and the apparent
activation energy was calculated.

The curve of K+ or Na+ concentration with reaction time was drawn, as shown in
Figure 8. The tangent of the curve was obtained for a specified time, and the rate equation
for the reaction can be written as shown in Equation (6).

ri = −d[C]
dti

(6)

where ri is the reaction rate constant at ti, ti is the time of the reaction (min), and [C] is the
concentration of K+ or Na+ at ti (g/L).
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The reaction rate and the concentration of K+ or Na+ conform to the following rela-
tionship, see Equation (7), as shown in Figure 9.

ln ri = ln k + m ln [C] (7)

where k is the reaction rate constant, and m is the reaction order.
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Finally, according to the relationship between the reaction rate constant (k) and tem-
perature (T), the apparent activation energy Ea of natroalunite and alunite were calculated
using the Arrhenius formula (see Equation (8)) [28–30], as shown in Figure 10.

ln k = − Ea

RT
+ A (8)

where k is the reaction rate constant, Ea is the apparent activation energy (kJ/mol), R is the
molar gas constant (J·mol−1·K−1), T is the reaction temperature (K), and A is the constant.
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It can be concluded from Figure 8 that the reaction rate increased with increasing
temperature, and the precipitation efficiency of aluminum increased too. The rate of ion
concentration slowed down with increasing reaction time. However, the reaction rate of
sodium sulfate and potassium sulfate were different. When the temperature was 130 ◦C,
natroalunite was barely formed, whereas alunite was formed. The precipitation efficiency
of natroalunite was lower than that of alunite at the same temperature.

Since the reaction is greatly affected by the temperature, natroalunite was barely
formed at a temperature of 130 ◦C, so only the data obtained at temperatures of 150 ◦C,
180 ◦C, 200 ◦C, and 220 ◦C were used for the calculation of the apparent activation energy
Ea. With increasing reaction time, the instantaneous reaction rate decreased and tended
towards flat. Therefore, the apparent activation energy was calculated on the basis of the
reaction data for the first hour. As shown in Figure 10, according to the Arrhenius formula,
the apparent activation energy of natroalunite was 96.52 kJ/mol, while that of alunite was
58.86 kJ/mol, meaning that alunite was more easily formed than natroalunite, and these
reactions were controlled by the chemical reaction.

On the basis of the calculation of the thermodynamic and kinetic properties, it can be
seen that both the ∆Gθ values and the activation energy of alunite were lower than those
of natroalunite. It can be concluded that alunite is more readily formed than natroalunite
under the same conditions.

3.5. Mechanism for the Co-Precipitation of Vanadium and Alunite (Natroalunite)

To analyze the composition of the precipitate, XRD analyses were performed on
precipitates obtained at different pH values, as shown in Figure 11.
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Figure 11. XRD patterns of precipitate obtained by aluminum precipitation experiment: (a) Na2SO4;
(b) K2SO4.

As shown in Figure 11, the intensity of the diffraction peaks in the sample is strong
and sharp, and there are no other impurity peaks. Figure 11a (with the addition of sodium
sulfate) clearly shows that only natroalunite was formed, and the diffraction peaks at
different pH values are almost the same. Figure 11b (with the addition of potassium sulfate)
clearly shows that only alunite was formed, and the diffraction peaks at different pH values
are almost the same. Thus, in the suitable pH range, alunite and natroalunite can be formed
stably. However, the vanadium compounds were not detected, indicating that vanadium
may be precipitated in the form of amorphous or adsorbed on the natroalunite or alunite
particles during the reaction process.

When the pH value was above 0.4, part of vanadium was co-precipitated during the
formation processes of natroalunite and alunite. To directly visualize the behaviors of Al
and vanadium during the experimental process, SEM-EDS analyses were conducted, and
the results are shown in Figure 12.
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Figure 12. SEM-EDS patterns of samples obtained at pH value of 0.6: (a) Na:Al = 1:1; (b) Na:Al = 1:1; (c) K:Al = 1:1;
(d) K:Al = 1:1.

For the detection of SEM-EDS, Na and K have good relevance for the Al, S and
O elements, while only a small amount of V was detected in a small number of parti-
cles. The particles shown in Figure 12a,b are natroalunite, while the particles shown in
Figure 12c,d are alunite. In Figure 12a,c, the particles possess a good crystal form without
the detection of vanadium. However, in Figure 12b,d, the crystal morphology is not as
complete as that shown in Figure 12a,c, and a small amount of vanadium was detected.
Thus, vanadium may be adsorbed due to incomplete crystal growth.

To further analyze the precipitation behavior of vanadium, the samples were analyzed
by XPS. The XPS analysis was carried out as illustrated in Figure 13.
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As shown in Figure 13, a V 2 p peak with a binding energy of 517.47 eV and 524.01 eV
was detected in natroalunite, while a V 2 p peak with a binding energy of 517.25 eV was
detected in alunite. The V 2 p peaks with binding energies of 517.47 eV, 517.28 eV and
524.01 eV belong to the V(V)-O bond [31–33]. In the acid leachate of black shale, vanadium
mainly exists in a tetravalent form, and the valence state of the vanadium used in the
experiment was tetravalent too. This indicates a change in the chemical environment of V
during the precipitation process of alunite. A few V(IV) ions were oxidized to V(V) ions,
which were precipitated with aluminum.

Under hydrothermal conditions, the dissolution efficiency of oxygen is increased [26],
vanadium can be oxidized by oxygen, and transformed into a pentavalent form. According
to the potential–pH diagram for vanadium–water systems at 298 K [34], the form of
vanadium present is different at different concentrations and valence states of vanadium,
V(IV) exists in the form of VO2+, and V(V) exists in the form of VO2

+ or HV10O28
−5 at low

pH values. The V(IV) oxidation reaction can be expressed by Equations (9) and (10), and
the ∆Gθ values are shown in Figure 14.

4VO2+ + O2 + 2H2O = 4VO2
+ + 4H+ (9)

20VO2+ + 5O2 + 26H2O = 2HV10O28
5− + 50H+ (10)

Minerals 2021, 11, x FOR PEER REVIEW 14 of 17 
 

 

524.01 eV belong to the V(V)-O bond [31–33]. In the acid leachate of black shale, vanadium 
mainly exists in a tetravalent form, and the valence state of the vanadium used in the 
experiment was tetravalent too. This indicates a change in the chemical environment of V 
during the precipitation process of alunite. A few V(IV) ions were oxidized to V(V) ions, 
which were precipitated with aluminum. 

Under hydrothermal conditions, the dissolution efficiency of oxygen is increased 
[26], vanadium can be oxidized by oxygen, and transformed into a pentavalent form. Ac-
cording to the potential–pH diagram for vanadium–water systems at 298 K [34], the form 
of vanadium present is different at different concentrations and valence states of vana-
dium, V(IV) exists in the form of VO2+, and V(V) exists in the form of VO2+ or HV10O28−5 at 
low pH values. The V(IV) oxidation reaction can be expressed by Equations (9) and (10), 
and the ΔGθ values are shown in Figure 14. 4VO + O + 2H O = 4VO + 4H  (9)20VO + 5O + 26H O = 2HV O + 50H  (10)

 
Figure 14. The ΔGθ values of Equations (9) and (10) at different temperatures. 

As shown in Figure 13, the ΔGθ values were negative for Equations (9) and (10), with 
ΔGθ values decreasing with an increase in temperature. Therefore, the oxidation of V(IV) 
by oxygen can occur spontaneously under hydrothermal conditions. 

Zeta potential analysis of alunite with and without vanadium was carried out, and 
the results are shown in Figure 15. 

Figure 14. The ∆Gθ values of Equations (9) and (10) at different temperatures.

As shown in Figure 13, the ∆Gθ values were negative for Equations (9) and (10), with
∆Gθ values decreasing with an increase in temperature. Therefore, the oxidation of V(IV)
by oxygen can occur spontaneously under hydrothermal conditions.

Zeta potential analysis of alunite with and without vanadium was carried out, and
the results are shown in Figure 15.
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As shown in Figure 15, the zeta potentials of alunite and natroalunite without co-
precipitated vanadium are negative. In the lattice structures of natroalunite and alunite,
the octahedral structure of AlO2(OH)4 is connected with the tetrahedral structure of SO4

2−,
and the Na(K) ions are coordinated with the O atoms and OH groups as AO6(OH)6, located
in an icosahedra site. In addition, the hydroxyl anion, OH−, is located at the junction of
octahedral and icosahedra [34]. The hydrogen bonds between the apical oxygen of the S-O
bond and the hydroxyl group from the octahedra cause deformations of the tetrahedra
and octahedra [16]. According to zeta potential analysis, the zeta potentials of alunite
and natroalunite with co-precipitated vanadium were increased and positive. It can be
concluded that the V(V) is present, and was adsorbed in the form of cation VO2

+, with
vanadium loss being caused by electrostatic adsorption.

4. Conclusions

It is feasible to separate aluminum over vanadium through the formation of alu-
nite and natroalunite. In hydrothermal environments, alunite and natroalunite are able
to stably form during the process of Al3+ hydrolysis precipitation at a temperature of
220 ◦C, a pH value of 0.4, and a reaction time of 5 h. When Al3+ was precipitated at a
K/Al molar ratio of 1, the precipitation efficiency of aluminum was 81.75% via the forma-
tion of alunite, and the concentration of aluminum decreased from 16.2 g/L to 2.95 g/L.
When Al3+ was precipitated with an Na/Al molar ratio of 1, the precipitation efficiency
of aluminum was 60.83% via the formation of natroalunite, and the concentration of alu-
minum decreased from 16.2 g/L to 6.34 g/L. The ∆Gθ values of the formation of alunite
and natroalunite are negative at temperatures higher than 100 ◦C and decrease with in-
creasing temperature. At the same temperature, the ∆Gθ value of alunite is lower than
that of natroalunite; therefore, alunite forms more easily than natroalunite. The apparent
activation energy of natroalunite is 96.52 kJ/mol, whereas the apparent activation energy
of alunite is 58.86 kJ/mol. The reaction rate increases with increasing temperature, and
precipitation is controlled by the chemical reaction. The zeta potentials of the alunite and
natroalunite surfaces are negative, whereas the zeta potentials of alunite and natroalunite
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with co-precipitated vanadium are increased and are positive. Vanadium loss increases
with increasing pH value. It can be deduced that the ion state of tetravalent vanadium
(VO2+) transformed into a pentavalent vanadium (VO2

+) ion state in the hydrothermal
environment. The VO2

+ can be adsorbed onto the alunite or natroalunite due to their
negative surface charges, ultimately leading to vanadium loss. To avoid vanadium loss,
the pH value should not be over 0.4.
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