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Abstract: The effective utilization of fly ash (FA) as a raw material for ceramics production is
performed on the FA-kaolin mixtures containing kaolins 10% by mass. The mixtures in comparison
with FA and three raw kaolins were annealed to mullite ceramics at temperatures of 1000, 1100, 1200
and 1300 ◦C. The main aims were to contribute to the discussion on the effect of impurity of Na,K-
feldspars in kaolins and Fe2O3 in FA on sintering procedure, porous ceramics properties and mullite
structural properties. The phases were characterized using X-ray diffraction and thermogravimetry
DTA/TGA methods. Mercury intrusion porosimetry was used for characterization of porosity of
ceramic samples. Results evidenced the influence of feldspars in kaolins and Fe2O3 in FA on the
sintering temperatures and properties of mullite ceramics. The fully FA-based ceramic sintered
at 1100 ◦C exhibited post-sintering properties of bulk density 2.1 g/cm3; compressive strength
77.5 MPa; and porosity, 2% in comparison with the FA/kaolin-based ceramics properties of bulk
density 2.2 g/cm3; compressive strength, 60–65 MPa; and porosity from 9.3 to 16.4% influenced by
Na,K-feldspars. The best structural and mechanical characteristics were found for the FAK3 sample,
supported by the high content of kaolinite and orthoclase in the kaolin K3 additive. The FAK3
annealed at 1100 ◦C exhibited good compressive strength of 87.6 MPa at a porosity of 10.6% and
density of 2.24 g/cm3 and annealed at 1300 ◦C the compressive strength of 41.3 MPa at a porosity of
19.2% and density of 1.93 g/cm3.

Keywords: fly ash; kaolins; mullite; microstructure; porosity

1. Introduction

Fly ash (FA) properties depend on the coal source, the method of combustion of
power plants, storage, etc. For example, burning in pulverized-coal combustion boiler,
the main oxide components of FA are SiO2, Al2O3, Fe2O3, CaO, MgO, Na2O, and K2O,
and the crystalline phases are mullite (3Al2O3·2SiO2) and quartz (SiO2) [1]. FA and tradi-
tional ceramic raw materials have similar chemical and mineralogical compositions and
therefore, make FA a promising ingredient in ceramics [2]. Architectural ceramics are
typically prepared using a triaxial formulation of quartz (filler, 5–30 mass%), clay (binder,
30–60 mass%), and feldspar (fluxing agent, 15–40 mass%) [3]. Quartz as a filler can be
replaced by FA because of the proper filling properties. Effect of substitution of fly ash for
quartz in triaxial kaolin–quartz–feldspar system demonstrated higher density and flexural
strength [4,5]. However, FA as a high-temperature product cannot provide plasticity like
a clay binder [6]. FA in the range of 5–40 mass% replacing clay improved the bending
strength, abrasion resistance, and hardness of porcelainized stoneware tiles but worsened
the bending strength of the green compacts [7]. FA containing abundant alkali and alkaline
earth metals can partially substitute for feldspar to promote melting, especially in the
preparation of ceramic tiles [8,9]. Building mullite-based ceramics can be produced from
the recycling of conventional coal combustion ash and clay in the initial mixture, acting as

Minerals 2021, 11, 887. https://doi.org/10.3390/min11080887 https://www.mdpi.com/journal/minerals

https://www.mdpi.com/journal/minerals
https://www.mdpi.com
https://orcid.org/0000-0001-6295-8976
https://doi.org/10.3390/min11080887
https://doi.org/10.3390/min11080887
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/min11080887
https://www.mdpi.com/journal/minerals
https://www.mdpi.com/article/10.3390/min11080887?type=check_update&version=2


Minerals 2021, 11, 887 2 of 14

a binder and plasticizer, e.g., [10–12]. Kaolin in flay ash mixtures prevented the formation
of open pores during mullite sintering [13]. Fly ash containing a large amount of reactive
SiO2 and alumina Al2O3 produces mullite [14].

Much of the synthetic mullites of the approximate chemistry composition 3Al2O3
2SiO2 were prepared by heating natural kaolin [15].

Kaolinite transforms at temperatures below 1000 ◦C during the removal of water
and hydroxyl groups directly into mullite. Therefore, kaolinite is classified as a mullite
precursor of Type I [14]. Kaolinite undergoes dehydroxylation at a temperature of around
550 ◦ C and its structure changes to disordered metakaolinite. Further heating to 900 ◦C
resulted in the formation of primary mullite spinel, which subsequently crystallizes into
mullite and cristobalite amorphous compounds by heating to a temperature range of
1000–1100 ◦C [16,17]. Up to annealing temperatures of about 600 ◦C mullite gels lose
virtually all molecular water which is weakly bound at the gel surface and in open pores,
whereas the stronger, structurally bound hydroxyl groups are less affected. At temperatures
above 700 ◦C, the thermal energy is high enough for dehydroxylation and subsequent
recombination of hydroxyl groups to water. Some of the newly formed water is trapped in
nanopores giving rise to a relative increase in the water content. The diffusion of water
molecules through the gel network at temperatures above 800 ◦C produced at 900 ◦C
the mullite precursors almost water-free. Takei et al. [18] suggested three steps of the
formation of mullite: (1) the dominant nucleation of mullite below 1000 ◦C; (2) mullite
nucleation and growth occur between 1000 and 1200 ◦C; (3) mullite grain growth above
about 1200 ◦C. The formation of three kinds of mullite gels was classified according to
DTA exotherms [19]. The first exotherm at about 980 ◦C was assigned to the monophasic
mullite; the second exotherm at about 1250 ◦C to the diphasic gel of mullite and the Al-Si
spinel phase and the third exotherm at about 1300 ◦C to mullite. During the transformation
from metakaolinite to mullite, the process undergoes several poorly-ordered thermal
phases. The middle phases occur at around 925 ◦C and have been referred to as the
“defect spinel type phase which is believed to either be Al–Si-spinel (Al2O3·SiO2) or Al
spinel (γ-alumina, γ-Al2O3)”. There are reports of cubic mullite crystallizing poorly at
this temperature. The well-crystallized mullite was observed at around 1200 ◦C [20]. The
primary mullite dissolves at a temperature above 1300 ◦C and the secondary mullite forms
by a solution-precipitation process [21]. The crystal structure of mullite consists of chains
of edge-sharing AlO6 octahedra interconnected by tetrahedral AlO4 or SiO4 double chains
and oxygen vacancies compensated the non-stoichiometry [22]. The chemical composition
of mullite can be derived from its lattice constant a according to the linear relationship to
the molar content of Al2O3. The previous study reported that mullite lattice parameter b
increases with the Fe2O3 content due to FeIII substituting for AllII. The expansion of cell
edges b stronger than a was attributed to a volume increase in the octahedra due to iron
incorporation [23].

The presence of chemical components K2O, Na2O, CaO, and Fe2O3 are related to
minor constituents in kaolins and in FA. The components act as fusing agents on reactivity
of silica and alumina, support decrease in firing temperature, high shrinkage and low
porosity [17,24]. The alkali metal elements determined in kaolin by X-ray fluorescence
analysis are mostly bound in the structures of micas and feldspars. Several works have
provided evidence of potassium in feldspars and KNO3, K2SO4 and KF additives promoting
at 1100 ◦C crystallization of mullite at the expense of cristobalite [25–27]. Similarly, at
1050 ◦C potassium diffusion ions from muscovite supported crystallization of mullite in
kaolinite-muscovite mixtures [28].

Most of the studies about the effect of sintering aids on the sintering and the charac-
terization of mullite were carried out with the specimens produced from oxide powder
mixtures or fly ash. However, there are few reports about the effect of sintering aids in
kaolin-based mullite ceramics. Hou et al. [29] found, that the addition of MgO and MoO3
(10 mol%) in kaolin promoted the formation of the secondary mullite, MoO3 supported an
increase in porosity and flexural strength, while TiO2 retarded mullite transformation.
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This paper focuses on the use of coal ash (FA) and raw kaolins additive in the produc-
tion of mullite ceramics. FA and kaolins are classified as mullite ceramic precursors. FA
as a high-temperature product cannot provide plasticity, while clays in ceramic mixtures
act as a binder and plasticizer. The objectives of the study are focused on the character-
ization of ceramics prepared from the three mullite precursors: (1) FA, (2) raw kaolins,
and (3) FA-kaolin additive 10% by mass and annealed at temperatures of 1000, 1100 1200
and 1300 ◦C, which, according to the literature, were assigned to the formation of the
monophasic mullite, the diphasic gel of mullite and the Al-Si spinel phase and the mullite.

The solution is focused on the effect of impurities in kaolins and fly ash on the
formation of phases, porosity and strength of ceramics and crystal chemical properties of
mullite. The main aim was to document and explain the effect of impurity of Na, K and
Fe bounded in Na,K- and K-feldspars in kaolins and Fe2O3 in FA on sintering procedure,
porous ceramics properties and mullite structure crystallizing at 1000 and 1300 ◦C.

2. Experimental Part
2.1. Materials

Fly ash (the sample marked FA) was obtained from the combustion of black coal
captured on an electrostatic precipitator in the powder station (Czech Republic). The three
kaolin samples from the Czech kaolin deposits were purchased from the LB Minerals,
Ltd., Horní Bříza, Czech Republic. Two samples originating from the kaolin Pilsen Basin
were marked K1 and K2 and one sample from the Karlovy Vary region was marked K3.
These kaolins generally contain kaolinite in an average amount of 75% by mass and the
original minerals, in particular quartz, muscovite/illite and feldspars from their original
rocks [30,31].

2.2. Sample Preparation

The kaolin samples K1, K2 and K3 and FA were prepared in the FA:K mass ratio of 9:1
to the mixtures designated FA/K1, FA/K2 and FA/K3. Each mixture was homogenized
for 1 h in bottle at the rotate speed of 40 r·min−1 (Heidolph Reax overhead shaker, REAX
20/4, Merck KGaA, Darmstadt, Germany) and then mixed in the agate planetary ball
mill (FRITSCH-Pulverisette 6) for 15 min at the rotate speed of 300 r·min−1. Samples
for sintering were prepared into a slurry with the addition of 20% by mass of distilled
water. The slurry was manually pressed into cubic voids (20 mm × 20 mm × 20 mm) of
metal molds. The samples in molds were left for 24 h at room temperature and then dried
at 110 ◦C for 5 h in an oven. Dry samples were taken out of the molds and sintered in
an electrical laboratory furnace LH15/13 at the heating ramp 12 ◦C/min to the desired
temperature of 1000, 1100, 1200, 1300 ◦C and maintained at this temperature for 2 h. The
sintering temperature of the ceramic sample is indicated at the end of the designation (e.g.,
FA/K1-1000).

2.3. Methods

Elemental analysis of metal oxide concentrations was performed using a SPECTRO
XEPOS energy dispersive X-ray fluorescence (ED-XRF) spectrometer (Spectro Analytical
Instruments, Kleve, Germany). Mineral phases were characterized by X-ray powder diffrac-
tion (XRD) using XRD patterns (Rigaku SmartLab diffractometer, Rigaku Corporation,
Tokyo, Japan) under CoKα radiation at 40 kV and 40 mA, at 15 r·min−1, a step size of 0.01◦.
The thermal analysis of kaolins powders and FA/K mixtures dried at 110 ◦C was performed
on the Simultaneous DTA/TGA SDT 650 system (TA Instruments, New Castle, DE, USA) in
an air dynamic atmosphere with a flow rate of 0.1 L min−1 at a heating rate of 10 ◦C min−1

over the range 25–1400 ◦C. The porosity of the ceramic samples was measured using a
mercury intrusion porosimeter AutoPore IV 9500 (Micromeritics Instrument Corporation,
Norcross, GA, USA). The compressive strength (CS) parameters of ceramic samples were
measured using the SERVO-PLUS EVOLUTION hydraulic concrete compression machine
2400 kN (MATEST S.p.A., Treviolo (BG), Italy).
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3. Results and Discussion
3.1. Fly Ash and Kaolin’s Chemistry and Phases

The FA has already undergone a high-temperature process in which organic materials
have either been burned off or were converted. XRF analysis (Table 1) indicated that FA
according to ASTM C618 is a Class F ash [32]. The XRD pattern of FA confirms the presence
of the two major crystalline phases: mullite (Al4.64 Si1.36O9.68, JCPDS card no. 00-079-1453),
quartz (SiO2, JCPDS card no. 01-089-1961) and noncrystalline phases observed as an
amorphous halo. Other phases were anorthite (Ca(Al2Si2O8), JCPDS card no. 00-076-0948)
and hematite (Fe2O3, JCPDS card no. 00-089-0596). Kaolin samples K1, K2 and K3 contain
kaolinite (JCPDS card no. 00-058-2005), muscovite (JCPDS card no. 00-084-1306), and
quartz (JCPDS card no. 00-089-1961). Feldspars were identified in all the three kaolins as
orthoclase (K0.93Na0.06) (Al0.97Si3.03O8) (JCPDS card no. 01-076-0824) in K1 and K2 (marked
as K,Na in Table 2) and (KAlSi3O8, JCPDS card no. 00-075-1592) in K3 (marked as K in
Table 2).

Table 1. XRF of metal oxides (mass%) of the fly ash (FA) and kaolin samples (K).

Sample SiO2 TiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O SO3 P2O5 L.O.I. 1

FA 44.83 1.26 23.93 7.16 2.83 1.81 3.03 0.68 0.72 0.69 2.36
K1 49.52 1.01 30.57 0.76 0.23 0.23 1.48 3.76 0.07 0.07 11.48
K2 49.63 0.75 29.70 0.71 0.26 0.28 2.36 3.96 0.08 0.07 11.11
K3 48.51 0.87 34.03 0.80 0.30 0.35 2.74 0.00 0.09 0.07 10.93

1 L.O.I. (Loss On Ignition) at 1000 ◦C.

Table 2. Crystalline phases identified (+) and absent (−) in natural and annealed kaolin samples.

Sample Kaolinite Quartz Muscovite Feldspar 1 Mullite 2

K1
K2
K3

+ + + K,Na −
+ + + K,Na −
+ + + K −

K1-1000
K1-1100
K1-1200
K1-1300

− + + Na,K Mu1

− + − Na,K Mu1

− + − Na,K Mu2

− + − Na,K Mu2

K2-1000
K2-1100
K2-1200
K2-1300

− + + Na,K Mu1

− + − Na,K Mu1

− + − Na,K Mu2

− + − Na,K Mu2

K3-1000
K3-1100
K3-1200
K3-1300

− + − K Mu3

− + − K Mu3

− + − K Mu3

− + − K Mu3

1 K = orthoclase KAlSi3O8; K,Na = orthoclase (K0.93Na0.06)(Al0.97Si3.03O8); Na,K = anorthoclase
(Na0.75K0.25)AlSi3O8. 2 Mu1 = mullite Al4.64Si1.36 O9.68; Mu2 = mullite Al6Si2 O13; Mu3 = mullite Al4.52Si.1.48O9.74.

Kaolin samples K1 and K2 showed very similar elemental oxide composition and dif-
ferent from kaolin K3, especially in the quantity of Na2O (Table 1). XRD semi-quantitative
analysis of crystalline phases in kaolin samples was performed using the normalized RIR
(Reference Intensity Ratio) method [33]. Kaolin sample K3 contained the highest amount
(85.5% by mass) of kaolinite and low amount (2.8%) of quartz, in comparison with kaolin
samples K1 and K2, composed of kaolinite 77% and 81%, respectively, and quartz 13.2%
and 5.3%, respectively. All three kaolin samples contained muscovite from 6.0% in K2 to
8.5% in K1 and feldspar (orthoclase) 1.3% in K1, 7.7% in K2 and 5.0% in K3 (Figure 1).
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3.2. Annealing Samples at 1000, 1100, 1200 and 1300 ◦C

In 1958, Brindley and Nakahira [15] suggested a new concept of the transformation
sequence of kaolinite to mullite at temperatures 500 ◦C (Equation (1)), 925 ◦C (Equation (2)),
1100 ◦C (Equation (3)) and above 1500 ◦C (Equation (4)) as follows:

Al2O3 2SiO2 2H2O→ Al2O3 2SiO2 + 2H2O (metakaolinite) (1)

2(Al2O3 2SiO2)→ 2Al2O3 3SiO2 + SiO2 (silicon spinel) (2)

2Al2O3 3SiO2 → 2(Al2O3 SiO2) + SiO2 (1:1 mullite-type phase) (3)

3(Al2O3 SiO2)→ 3Al2O3 2SiO2 + SiO2 (3:2 mullite) (4)

Kaolinites in kaolins K1 and K2 annealed at temperature 1000 and 1100 ◦C were
transformed to mullite Al4.64Si1.36O9.68 (JCPDS card no. 00-079-1453), (marked as Mu1

in Table 2), and at temperature of 1200 and 1300 ◦C to mullite Al6Si2O13 (JCPDS card
no. 00-015-0776), (marked as Mu2 in Table 2). Kaolinite in kaolin K3 was transformed
at temperatures 1000, 1100, 1200 and 1300 ◦C to mullite Al4.52 Si1.48O9.74 (JCPDS card no.
00-079-1457), (marked as Mu3 in Table 2).

Orthoclase (K0.93Na0.06) (Al0.97Si3.03O8) in K1 and K2 changed at 1000 ◦C to anortho-
clase (Na0.75K0.25)AlSi3O8 (JCPDS card no. 00-075-1632), (marked as Na,K in Table 2).
Orthoclase KAlSi3O8 in K3 at annealing temperatures used did not change.

The XRD patterns of kaolin samples K1, K2, K3 and FA (Figure 2) demonstrate
the formation of primary mullites annealed at temperatures of 1000 ◦C (Figure 2a) and
secondary mullites annealed at temperature 1300 ◦C (Figure 2b).
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The main crystalline phases in all annealed FA/K samples (Table 3) were mullite
(JCPDS card no. 00-079-1453), quartz (JCPDS card no. 01-083-0539), anorthite Ca(Al2Si2O8)
(JCPDS card no. 01-076-0948) and hematite, Fe2O3 (JCPDS card no. 00-089-0596). Spinel
Mg(Al,Fe)2O4 (JCPDS card no. 00-021-0540) was identified at temperatures 1100 and
1200 ◦C, and hematite transformed at 1300 ◦C to magnetite (JCPDS card no. 00-086-
1347),when the temperature exceeds 1250 ◦C [34]. The phases identified are in Table 3 and
on XRD patterns (Figure 3) of FA FA/K1 (Figure 3a) and FA/K3 (Figure 3b) samples.

Table 3. Crystalline phases identified (+) and absent (−) in annealed FA and FA/K samples.

Sample Mullite Quartz Anorthite Hematite Spinel Magnetite

FA-1000 + + + + − −
FA-1100 + + + + − −
FA-1200 + + + + − −
FA-1300 + + + + − +

FA/K1-1000
FA/K1-1100
FA/K1-1200
FA/K1-1300

+ + + + − −
+ + + + + −
+ + + + + −
+ − + − − +

FA/K2-1000
FA/K2-1100
FA/K2-1200
FA/K2-1300

+ + + + − −
+ + + + + −
+ + + + + −
+ − + − − +

FA/K3-1000
FA/K3-1100
FA/K3-1200
FA/K3-1300

+ + + + − −
+ + + + + −
+ + + + + −
+ − + − − +
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Figure 3. XRD patterns of: (a) FA/K1 and (b) FA/K3 at annealing temperatures from 1000 to 1300 ◦C. Mu—mullite,
Q—quartz, A—anorthite, H—hematite, S—spinel and M—magnetite.

3.3. Shrinkage, Porosity and Compressive Strength

The base shrinkage (BS) ratio of the cubes from the size of the length of 2.0 cm ×
2.0 cm × 2.0 cm after annealing at 1000, 1100, 1200 and 1300 ◦C was calculated according
to Equation (5) [35]:

BS = (Los − Ld)/Los × 100% (5)

BS is the shrinkage after annealing, Los is the original length, and Ld is the length after
firing. BS values in Table 4 are an averaged length changes of the five cubes of each sample.
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Table 4. Shrinkage, Porous Values and Compressive Strength of Annealed Samples.

Samples BS
%

P
(%)

MDP
(µm)

TPA
(m2/g)

AD
g/m3

CS
(MPa)

FA-1000
FA-1100
FA-1200
FA-1300

16.7 ± 0.1 24.4 0.86 3.28 2.33 108.4 ± 2.1
29.6 ± 0.6 1.9 1.83 1.21 2.11 100.1 ± 2.2
−2.5 ± 2.0 26.0 9.97 9.32 2.06 77.5 ± 1.3
−74.5 ± 5.5 29.2 0.02 53.90 1.82 9.3 ± 0.6

FA/K1-1000
FA/K1-1100
FAK1-1200

FA/K1-1300

13.4 ± 2.3 32.2 1.15 3.23 2.39 37.1 ± 0.3
31.8 ± 1.1 9.3 0.89 1.94 2.08 65.2 ± 1.9
9.0 ± 1.2 20.4 8.57 5.40 2.18 74.4 ± 2.8
−21.6 ± 1.8 28.1 24.14 18.63 1.97 26.6 ± 1.9

FA/K2-1000
FA/K2-1100
FAK2-1200

FA/K2-1300

10.7 ± 2.8 33.5 1.35 3.05 2.32 41.4 ± 0.8
29.7 ± 0.7 16.4 1.38 1.66 2.21 60.1 ± 3.7
8.8 ± 1.5 17.5 8.20 4.50 2.05 61.2 ± 1.7
−21.9 ± 3.2 25.7 0.13 34.20 1.88 31.1 ± 0.3

FA/K3-1000
FA/K3-1100
FAK3-1200

FA/K3-1300

11.1 ± 2.8 29.4 0.85 4.00 2.24 66.7 ± 1.4
29.2 ± 0.2 10.6 0.72 1.94 2.24 87.6 ± 1.7
14.7 ± 1.1 11.0 0.15 4.28 1.96 65.8 ± 0.7
−4.4 ± 0.3 19.2 24.5 10.23 1.93 41.3 ± 1.4

BS—Base Shrinkage Ratio; P—Porosity; MPD—Median Pore Diameter (volume); TPA—Total Pores Area; AD—Apparent Density at
226.7 MPa; CS—Compressive Strength.

3.4. Effect of Feldspars in Kaolins on Thermal Decomposition

Thermal changes during the progress of sintering were monitored from 25 to 1400 ◦C
(Figure 4). DTA curve of FA revealed the two endotherms maxima at about 1288 and
1310 ◦C. These maxima of FA/K1, FA/K2 and FA/K3 were at about 1165 and 1250 ◦C.
The exothermic peaks maxima at all samples was at 1335 ◦C (Figure 4a). The endotherm
was assigned to the melting and maximum to the crystallization of mullite [27]. The mass
loss at 1100 ◦C in FA and kaolin K3 was similar (3.0%) in comparison with K1 and K2
(5.2 and 6.5%), (Figure 4b). The effect of individual basic oxides, CaO, Fe2O3, Na2O and
K2O and the ratio of Base/Acid, SiO2/AlO3 and CaO/Fe2O3 on ash fusibility has been
widely discussed [36]. Generally, the melting temperature in FA was increased by SiO2
and Al2O3. The basic oxides K2O or Na2O and feldspar minerals containing K or Na form
lower melting point and improve fusibility. Intensity of the feldspar peaks on XRD pattern
decreased slightly due to decrease in crystallinity when the temperature was higher than
1000 ◦C and finally disappeared at 1300 ◦C, similarly, as it has been observed in [37]. The
mixtures of kaolins K1 and K2 and FA produced on the TG curves in comparison with FA
about twice the mass loss of FA/K1 and more than three times greater mass loss of FA/K2.

The reaction of CaO with the silica led to the formation of aluminosilicates and limited
formation of a liquid phase during sintering [38]. At a temperature of 1100 ◦C, intensity
of peaks of anorthite increased (Figure 2a) due to the reaction of CaO from FA with a
decomposition product of kaolinite, according to the reaction shown in Equation (6):

Al2O3·2SiO2 (Metakaolinite) + CaO→ CaO·Al2O3·2SiO2 (Anorthite) (6)

The fact that all the natural feldspars can be expressed in terms of the three end
members, orthoclase (K), albite (Na) and anorthite (Ca) was declared long ago, e.g., [37].
Moreover, as there is very little solid solution between orthoclase and anorthite it is
convenient to consider the chemical relationships of the feldspar group in terms of two
major series, the alkali feldspars and the plagioclases. Structural change of feldspar in
kaolin samples K1 and K2 at 1000 ◦C (Table 2) observed on the intensive endotherms on
the TG curves and mass loss probably supported reactions with CaO in FA/K1 and FA/K2
(Figure 2).
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Figure 4. Decomposition of samples on the thermal curves: (a) DTA and (b) TG.

3.5. Effect of Fe2O3 on Mullite Structure

The ash fusion system in the pseudo-ternary system Al2O3–SiO2–Base (FeO + CaO
+ K2O) [39] allowed to determine about 5 mass% solid solution limit of Fe2O3 in mullite
structure sintered at 1300 ◦C [24]. Considering the presence of Fe2O3 in FA and kaolins
(Table 1) as well as hematite (Table 3), substitution of Fe3+ for Al3+ in the mullite structure
can be assumed. Lattice parameters of mullites were obtained from the Rietveld analysis of
the XRD patterns. The expansion of lattice parameters in primary mullites at 1000 ◦C and
secondary mullites at 1300 ◦C was taken as an indicator for the iron dissolution within the
structure (Figure 5). Relations between the lattice parameters a and b of mullites sintered
from kaolin samples and from FA and FA/K mixtures at 1000 and 1300 ◦C (Figure 5a) are
performed with the parameters a and b in mullites without/with substitution Fe reported in
the literature [40] (Figure 5b). FA (containing Fe2O3 about 7 mass%, Table 1) was sintered to
mullites with the probable Fe substitution in the mullite presented on the samples FA-1000
and FA-1300 (Figure 5a). Kaolins K1, K2 and K3 (containing Fe2O3 about 1 mass%, (Table 1)
transform at 1000 ◦C to the crystalline mullites in K1-1000, K2-1000 and K3-1000 (Figure 2a,
Table 2). Their lattice parameters b are large and outside the ranges of mullites (Figure 5b).
Intensity of mullite peaks in FA/K1-1000 and FA/K3-1000 is slightly reduced (Figure 3a)
and lattice parameters are shorter in comparison with mullite in FA-1000 (Figure 5a).
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Secondary mullites of K1-1300, K2-1300 and K3-1300 samples produced XRD patterns
very similar with mullite of FA-1300 (Figure 2b), while parameters a and b are about
0.03 Å smaller, probably due to the low Fe substitution (Figure 5). Parameter b of mullites
FA/K1-1300, FA/K2-1300 and FA/K3-1300 is larger by about 0.03 Å, in comparison with
those parameters in mullites FA/K1-1000, FA/K2-1000 and FA/K3-1000 ◦C, and is similar
with parameters reported for the mullites with the substitution of Fe in the structure
reported by [40] (Figure 5b). Moreover, b parameter in mullite structures of FA/K1-1300
and FA/K2-1300 is about 0.01 Å larger in comparison with b parameter in mullite structures
of FA/K3-1300 and FA-1300.

3.6. Effect of Kaolins on Porosity, Shrinkage, and Compressive Strength

Porosity of samples was formed by pores in the unimodal, bimodal and multimodal
pores size distribution at annealed temperatures 1000, 1100, 1200 and 1300 ◦C (Figure 6)
as follows:
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Figure 6. Pore size distribution at 1000, 1100, 1200 and 1300 ◦C in: (a) FA, (b) FA/K3, (c) FA/K1 and (d) FA/K2.

The samples annealed at 1000 ◦C show: (I) unimodal pore size distribution with the
pores size region at about 0.83 µm in FA-1000 and FA/K3-1000; 1.24 µm in FA/K1-1000
and 1.38 µm in FA/K2-1000.

The samples annealed at 1100 ◦C show: (I) unimodal pore size distribution in the
region with zero pores in FA-1100; 0.70 µm in FA/K3-1100; 0.94 µm in FA/K1-1100 and
1.32 µm in FA/K2-1100.
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The samples annealed at 1200 ◦C show: (II) bimodal pore size distribution with the
pores size in the two regions: 0.06 and 14.76 µm in FA-1200; 0.07 and 13.8 µm in FA/K3-
1200; and (III) multimodal pore size distribution region from 0.05 to 0.15 µm and the region
of 10.2 µm in FA/K1-1200; from 0.006 to 0.13 µm and the region of 10.2 µm in FA/K2-1200.

The samples annealed at 1300 ◦C show: (II) bimodal pore size distribution with the
pores size in the two regions: 0.008 and 60.6 µm in FA-1300; 0.01 and 24.8 µm in FA/K3-
1300; and (III) multimodal pore size distribution region pores smaller than 0.05 and the
pores size of 33.8 µm in FA/K1-1300; a more pronounced multimodal pore size distribution
in FA/K2-1300 from the region 0.006 to 0.13 µm to the region of 40.0 µm.

The sintering FA and kaolin aids shifted the pore sizes toward smaller values. This
phenomenon may be ascribed to the generation of more liquid phase during the sintering
processes when kaolins were added.

The shrinkage at the temperatures of 1000, 1100, and 1200 ◦C (Figure 7) can also be ac-
companied by the formation of crystalline phases during sintering. The thermal shrinkage
at 1100 ◦ (Figure 7a) and porosity (Figure 7b), and bulk density at 1200–1300 ◦C (Figure 7c)
were attributed to a mullitization-crystal-growth induced volume expansion [41].
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According to the literature, the process of vitrification started at sintering temperatures
between 1050 and 1100 ◦C and the alkali metal oxides and alkaline earth metal oxides
supported the emergence of secondary mullite at the lower temperature [42].
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Average value of shrinkage BS = 30.0 ± 1.0% calculated for post-sintered cubes at
1100 ◦C (Figure 7a, Table 4) corresponds to the porosity 1.9% in FA-1100, 9.3 and 10.6% in
FA/K1-1100 and FA/K3-1100, respectively, and 16.4% in FA/K2-1100 (Figure 7b, Table 4).

At 1200 ◦C expansion in FA-1200 while shrinkage in FA/K1-1200 (9.0 ± 1.2%), FA/K2-
1200 (8.8 ± 1.5%), and FA/K3-1200 (14.7 ± 1.1%) (Figure 7a) correspond disproportionately
to values of porosity (Figure 7b, Table 4) and proportionately to the compressive strength
(Figure 7d, Table 4). At 1300 ◦C, samples expanded, apparent porosity increased and
compressive strength decreases to a minimum in FA-1300 and up to 50% less in FA/K1-
1300, FA/K2-1300, and FA/K3-1300 than the value measured at annealed 1200 ◦C samples.

Microstructure of ceramic samples at sintering temperatures can be characterized by
the porosity and apparent density in the relation with the compressive strength (Figure 8).
Ceramic samples at sintering temperatures 1100 ◦C showed minimum porosity (Figure 7b)
at high density (Figure 7c) and exhibited compressive strength higher than 50 MPa
(Figure 8). FA-1100 achieved a highest compressive strength of 100.1 MPa at a poros-
ity of 1.9% and density of 2.11 g/cm3 (Table 4). However, FA-1300 reached only the
smallest values of 9.3 MPa at a porosity 29.2% and density of 1.82 g/cm3 (Figure 8a,
Table 4). The FAK3-1100 exhibited good compressive strength of 87.6 MPa at a porosity of
10.6% (Figure 8a) and density of 2.24 g/cm3 (Figure 8b) (Table 4). FAK3-1300 developed
resistance to the twice compressive strength of 41.3 MPa at a porosity of 19.2% (Figure 8a)
and density of 1.93 g/cm3 (Figure 8b, Table 4). The other two samples FAK1-1100 and
FAK2-1100 exhibited lower compressive strength of 65.2 MPa and 60.1 MPa, respectively,
which was further lowered on the FAK1-1300 and FAK2-1300 samples to 26.6 MPa and
31.1 MPa, respectively.
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The glassy phase at 1100 ◦C, resulting from the transformation of kaolinite and impu-
rities such as K2O can influence the reactions and growth of mullite grains [43].

Samples sintered at 1300 ◦C in comparison to their samples sintered at 1100 and
1200 ◦C showed volume expansion, higher porosity and reduced bulk density (Table 4).
In the literature, this phenomenon was explained on the basis of a detailed study of the
sintering process [44]. The liquid phase generates at sintering temperature a certain value
of capillary pressure at the contact points of the particles and binds the fine granules
together, causing an increase in shrinkage. The gas in the closed pores exerts pressure
on the pore walls, which is unfavorable for the densification of the sample. These closed
pores expand as the pressure increases with the sintering temperature. When the sintering
temperature exceeded a certain temperature (1300 ◦C) the increased content of liquid phase
and released gases from decomposition reactions increase the apparent porosity at the
expense of the bulk density decreased.
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4. Conclusions

The ceramics were prepared from the FA, three raw kaolins, and FA-kaolin additive
10% by mass by annealing at temperatures of 1000, 1100 1200 and 1300 ◦C.

Kaolin samples contained kaolinite from 85.5% to 77% by mass, quartz, muscovite
and K- and K,Na-orthoclase. Kaolins containing small amount of Fe2O3 (about 1 mass%)
and Na,K feldspars were sintered at 1300 ◦C to the mullite with the negligible substitution
of Fe3+ for Al3+ in the structure. This phenomenon in mullite structures crystallizing
in ceramics annealed from mixtures of these kaolins with fly ash was verified on the
literary data.

Ceramics annealed at temperatures 1000 and 1100 ◦C showed unimodal pores size dis-
tribution and porosity slightly higher, supported by the kaolins containing Na,K-feldspars.
Annealing at temperatures 1200 ◦C and 1300 ◦C produced in ceramics bimodal pore size
distribution in FA and FA/K3 (containing K-feldspar) in comparison with multimodal pore
size distribution in FA/K1 and FA/K2 (containing Na,K-feldspar).

Ceramic samples produced from kaolins additive containing Na,K feldspars in com-
parison with kaolins additive containing K-feldspar showed lower shrinkage values corre-
sponding to the compressive strength.

Microstructure of ceramic samples at sintering temperatures was characterized by
the porosity and apparent density in the relation with the compressive strength. Ceramic
samples at sintering temperature 1100 ◦C showed minimum porosity, high density and
exhibited compressive strength higher than 50 MPa. At sintering temperature 1300 ◦C
porosity increases at the expense of density and resistance to the compressive strength.
The best structural and mechanical characteristics were found for FAK3 sample, supported
by the high content of kaolinite and orthoclase in kaolin K3 additive. The FAK3 annealed
at-1100 ◦C exhibited good compressive strength of 87.6 MPa at a porosity of 10.6% and
density of 2.24 g/cm3 and the best properties of FAK3-1300: the compressive strength of
41.3 MPa at a porosity of 19.2% and density of 1.93 g/cm3.
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