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Abstract: The increasing development of industries, resulting in a large volume of mining, smelting,
and combustion wastes, and intense agricultural activities, due to demand for food and energy, have
caused environmental hazards for food quality and ecosystems. This is a review on the contamination
of the soil–groundwater–crop system and a potential reduction of the contamination by a gradual
shift towards green economy within the European Union and on a worldwide scale. Available
mineralogical and geochemical features from contaminated Neogene basins have shown a diversity
in the contamination sources for soil and groundwater, and highlighted the need to define the
contamination sources, hot spots, degree/extent of contamination, and provide ways to restrict the
transfer of heavy metals/metalloids into the food chain, without the reduction of the agricultural and
industrial production. Among harmful elements for human health and ecosystems, the contamination
of groundwater (thousands of µg/L Cr(VI)) by industrial activities in many European countries is
of particular attention. Although Cr(VI) can be reduced to Cr(III) and be completely attenuated in
nature under appropriate pH and Eh conditions, the contamination by Cr(VI) of coastal groundwater
affected by the intrusion of seawater often remains at the hundreds µg/L level. A positive trend
between B and Cr(VI) may provide insights on the role of the borate [B(OH)4]− ions, a potential
buffer, on the stability of Cr(VI) in coastal groundwater. Efforts are needed towards reducing toxic
metal(loids) from the industrial wastewaters prior to their discharge into receptors, as well as the
transformation of hazardous mining/industrial wastes to new products and applications to the
optimization of agricultural management strategies.

Keywords: soil; groundwater; mining; smelting; contamination; environmental risk

1. Introduction

During past decades, the increasing development of industries, intense use of chemi-
cals, the large volume of mining/smelting residues, industrial wastes, and traffic in many
urban areas have resulted in environmental hazards for terrestrial and aquatic ecosystems,
and food quality and socioeconomic problems [1–4]. Soils provide plants with certain trace
elements that, in small amounts, are considered to be critical for the healthy growth of hu-
mans, plants, and animals [5,6]. Potential sources of the soil/groundwater contamination,
such as natural processes (weathering/alteration of rocks and raw materials) and human
activities (mining, smelting, industrial, and agricultural activities), often result in elevated
contents of harmful elements (Cr, Cu, Hg, Pb, Zn, Sb, Co, Ni, Cd, and As) [1,7–11]. The
salinization at contaminated coastal areas, where groundwater is mixed with seawater,
such as the Mediterranean, threatens plant growth [10]. Changes in agricultural production
due to population growth, including expansion of agricultural land and irrigated areas
and greater use of agricultural inputs (mostly fertilizers and pesticides), are used more
intensively than ever before [9,12–14]. The increasing food demand, coupled with the
intensive use of cultivated lands, have resulted in vital problems for the agricultural econ-
omy, societies, and increasing healthcare cost [8,15]. Recently, there has been significant
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progress on environmental protection, in particular, waste prevention and management.
In this frame, the European community is focused on the transition to a circular economy
(green economy) in order to make it more sustainable [16–18]. The investigation of raw
materials in the frame of research projects, including the ProMine databases, provides
information on the mineral resources for mineral deposits, mines, mining wastes, potential
products, and their importance for the EU economy [19–22]. The present review study is
focused on the current status and challenges on the contamination by metal(loid)s, either
by natural processes (weathering of rocks, raw material deposits, salinization) and/or
human activities, (mining and smelting, energy production, agricultural), with emphasis
to the soil–groundwater–plants/crops system in Greece, aiming to contribute to poten-
tial ways forward to protect and better manage soil and groundwater for human health
and ecosystems.

2. Methodology of Investigation
Study Area and Sampling Procedure

The Neogene Assopos and Thiva basins, with an extension of approximately 700 km2

in the former and 150 km2 in the latter, located north of the Assopos, are composed of
alternations of alluvial, marls, marl limestones, and continental sediments consisting of
conglomerates derived from carbonates, mafic/ultramafic rocks, and Fe-Ni laterites [23,24].

Polished sections from ultramafic rocks, Fe-Ni-laterite deposits from C. Greece and
Kastoria, and bauxite processing residue or red mud were carbon coated and examined
with a scanning electron microscope (SEM) using energy-dispersive spectroscopy (EDS).
SEM images and EDS analyses were carried out at the University of Athens, National and
Kapodistrian University of Athens (NKUA) (Department of Geology and Geoenvironment)
using a JEOL JSM 5600 scanning electron microscope (JEOL, Tokyo, Japan), equipped with
the ISIS 300 OXFORD automated energy-dispersive X-ray analysis system. Analytical
conditions were 20 kV accelerating voltage and 0.5 nA beam current.

Representative surface (up to 20 cm) soil samples from cultivated and uncultivated
areas were collected during the year 2009 and spring of 2014, covering some sites of the
basin from the rhizosphere of plants. They were air-dried, crumbled mechanically, and then
passed through a sieve with a 2-mm mesh. The elements Se, Cu, Pb, Fe, Mn, Zn, K, Na, Ni,
Ca, Mg, P, and S were analyzed by inductively coupled plasma mass spectroscopy (ICP/MS)
after aqua regia digestion at ACME Laboratories Ltd., Vancouver, BC, Canada. Platinum-
group element (PGE) analyses were carried out using Ni sulfide fire-assay preconcentration
technique, with the nickel fire-assay technique from large (30 g) samples at Genalysis
Laboratory, Perth Services, Australia. This method allows for complete dissolution of
samples. Detection limits were 1 ppb for Pd, 10 ppb for Pt, and 5 ppb Au. CDN-PGMS-23
was used as standard.

Plant samples were analyzed after cleaning and drying at 70 ◦C. They were pow-
dered in an agate mortar and analyzed by inductively coupled plasma mass spectroscopy
(ICP/MS), after aqua regia digestion, at the ACME Analytical Laboratories, Vancouver,
BC, Canada.

Average values were calculated for groundwater samples collected from domestic
and irrigation wells, and municipality of the Assopos–Thiva and Evia basins (during both
wet and dry seasons), which were analyzed for many elements (Al, As, B, Ba, Cu, Zn,
Fe, K, Li, Mn, Na, Ni, P, S, Se, Si, and V), hexavalent chromium, Cr(VI), and physical
and chemical parameters of the water samples, including total dissolved solids (TDS).
Although the analytical methods applied for the determination of the groundwater com-
position, including chromium stable isotopes, are provided in previous publications, a
brief outline is given here. Over 200 coastal groundwater samples from domestic and
irrigation wells of C. Evia and Assopos-Thiva basins, collected during the period from 2007
to 2017, were analyzed for major and trace elements by inductively coupled plasma mass
spectroscopy (ICP/MS) [25–30]. Detection limits, quality control samples, and the preci-
sion of the analyses are in agreement with international standards (~10%). Physical and
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chemical parameters (pH and total dissolved solids) of the water samples were measured
in the field using a portable Consort 561 Multiparameter Analyzer. The analyses of total
chromium were performed by GFAAS (Perkin Elmer 1100B system), with an estimated
detection limit of ~1 µg/L. The chemical analyses for Cr(VI) were performed by the 1,5-
diphenylcarbohydrazide colorimetric method, using a HACH DR/4000 spectrophotometer.
The estimated detection limit of the method was determined at ~4 µg/L.

Leaching experiments for soils, rocks, and ores were carried out in order to study
the one week leaching responses of Cr under atmospheric conditions. Water and water
leachates in an appropriate amount to have approximately 1 µg of Crtotal were used for
the determination of the Cr-isotope composition following the method described by [31].
Both Cr concentrations and isotope ratios were analyzed using an IsotopX/GV IsoProbe
T thermal ionization mass spectrometer (TIMS) equipped with eight Faraday cups at the
University of Copenhagen, Denmark. Four Cr beams (50Cr+, 52Cr+, 53Cr+, and 54Cr+)
were analyzed simultaneously with 49Ti+, 51V+, and 56Fe+ beams, which were used to
monitor interfering ions. The final isotope composition of a sample was determined as the
average of the repeated analyses and reported relative to the certified SRM 979 standard as:
δ53Cr(‰) = [(53Cr/52Crsample/53Cr/52CrSRM979) − 1] × 1000.

The raw data were corrected for naturally and instrumentally induced isotope frac-
tionation using the double spike routine. To assess the precision of the analyses, a double-
spike-treated, certified standard reference material (NIST SRM 979) was used.

3. Potential Sources of Soil and Groundwater Contamination
3.1. Weathering of Rocks and Raw Materials

Arsenic (As) contamination by weathering of volcanic rocks, thermal springs, or deposits
has been well described in Greece [32–35]. Recently, elevated As contents (61–210 mg/kg
As) were found in a limestone quarry in Attica (Greece) that is exploited for a popular
multicolor building material, and in the associated soil (33 to 430 mg/kg As) [36]. Applying
a geographical information system (GIS), geostatistical techniques, and mapping software,
a digitized geological–geomorphological map and an assessment of the extent and intensity
of the As and other harmful elements in those lacustrine and fluvial sediments revealed a
significant contamination in the uppermost travertine limestone, which may give rise to a
significant risk to human health and ecosystems [36,37].

The exploitation of primary raw materials worldwide, as well as their metallurgical
residues, is a potential source of soil and groundwater contamination by metal(loid)s [1,10].
Substantial volumes of groundwater, used for mining operations, may result in the oxida-
tion and acid mine drainage in the case of sulfide ores [38,39]. The weathering of rocks and
raw material deposits is a source of the transfer of potentially harmful elements into soil
and shallow aquifer groundwater (chemical degradation), related to the type of the ore
deposit, for example, mixed polymetallic sulfide deposits, which are related to calc-alkaline
intrusions and are enriched in Pb, Zn, Fe, Cu, As, Sb, Ag, Bi, and Au, like the mines at
the famous ancient Lavrion and Chalkididi Peninsula (Greece) [40,41] and the Olympias-
Stratoni mines at Chalkidiki [42,43]. That type of sulfide, with a long exploitation history
(mining of Ag-bearing galena at Lavrion began before 3000 BC), is characterized by the
production of large volumes of metallurgical wastes transferred into alluvial soil, which has
caused contamination by Pb, Cd, and As of cultivated areas and groundwater [32,44,45]. In
particular, at Lavrion, contaminants like Pb are still verified in blood and deciduous teeth,
and As in urine of children [46].

The major type of sulfide mineralization associated with ophiolite complexes is a
massive Cyprus-type, composed mainly by pyrite and Cu-pyrite, and lesser amounts of
sphalerite, characterized by an increasing content of Au, Ag, As, Se, Sb, Mo, and Hg [47–49].
The Cyprus-type massive sulfide ores are associated with a volcanic/subvolcanic sequence
composed mainly of basalts and basaltic andesite pillow lavas, such as the Othrys, Ermioni
(Peloponnesos) to Pindos, and Mirdita (Albania) ophiolites [49,50]. In general, ophiolite
complexes are a type of mafic–ultramafic complex covering more than 1% of orogenetic
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zones, including several European countries which are strongly enriched in heavy metals,
such as Cr, Fe, Mn, Co, and Mg [51,52]. Besides the sulfide mineralization, the major
types of raw minerals are chromites and Fe-Ni laterites derived by weathering/alteration
processes of ultramafic/mafic rocks [53–55]. Recently, an Ultramafic Index of Alteration
(UMIA) was used, applying the equation UMIA = (Al2O3 + Fe2O3)/(Al2O3 + Fe2O3 + MgO
+ SiO2) × 100, based on major components in ultramafic rocks and their behavior during
the weathering process; the Mg and Si are mobile and they are depleted, while Fe and Al
are less mobile and enriched during the weathering process [56–58]. Using analytical data
provided in previous publications [50,59], the calculated values (Table 1) showed a wide
variation, ranging between 1.4 and 20 in saprolite and highly weathered peridotites, 18 to
24 in soils, and from 40 to 98 in laterites of Greece, throughout the contaminated C. Evia
and Assopos–Thiva basins (Greece).

Table 1. Calculated Ultramafic Index of Alteration (UMIA) for representative samples of weathered peridotites Fe–Ni-
laterites, bauxite laterites, and contaminated soils from Greece. Data from [50,59].

Index wt% mg/kg Index wt% mg/kg

Location UMIA MnO Cr Ni Co Location UMIA MnO Cr Ni Co

Kastoria C. Greece, Lokris 52 0.18 3350 13,300 280
Weathered peridotites Laterites of karst type 69.4 0.12 26,960 4790 220

Ka-2 1.4 0.05 120 17,000 50 77.4 0.27 40,570 5400 280
Ka-3 6.9 0.08 1500 23,000 180 70.2 0.13 20,190 58,900 280

Fe-Ni-Laterites 83.6 0.33 20,190 2360 280
Ka-4 54.7 0.95 16,000 8500 1600 85.1 1.57 20,340 6120 283

Ka-4b 69.3 0.88 23,000 10,500 1200 87.8 0.58 26,960 5180 219
Ka-5 98.4 0.25 20,000 8000 330 95.1 0.17 38,800 4320 280
Ka-6 93.4 1.7 15,000 9100 820 77.4 0.5 32,300 13,500 281
Ka-7 93.0 0.79 23,000 7100 420 67.8 0.24 19,840 8280 286
Ka-8 94.6 0.3 17,000 4400 330 77.1 0.31 14,650 3690 280

W. Vermion 83.2 0.27 27,800 3700 280
Weathered peridotites 59.6 0.07 19,000 4630 278

PR-1 20 0.24 5800 5500 300 76.2 0.13 23,100 13,400 280
PR-2 12 0.11 2500 2200 200 C. Evia (Psachna)
PR-3 18 0.23 3500 4100 200 Soils 19.7 0.11 1080 650 41
PR-4 18 0.18 3300 4700 200 18.7 0.09 1180 670 40
P-p 14 0.1 3800 3100 240 18.8 0.11 2090 1120 62

Laterites 20.2 0.12 1500 810 52
PR-5 87 0.97 21,900 15,000 1300 13.6 0.1 1850 1300 66
PR-6 79 0.61 12,900 6900 700 23.9 0.15 2200 1280 76
WV4 51 0.41 11,500 10,200 500 24.1 0.16 1760 1630 88
WV5 36 0.33 11,400 9500 400 20.9 0.12 1530 700 45
WV6 78 0.62 11,000 7800 820 22.2 0.13 1230 820 52

Bauxite laterites 18.1 0.1 1640 730 45
P-1 47 0.37 5500 5200 400 21.1 0.13 1650 780 52
P-2 80 0.41 4400 5200 320 17.9 0.11 1650 650 41
P-3 81 0.24 3800 6400 400 21.6 0.12 1460 730 48
P-4 81 0.36 4100 4200 400 18.4 0.11 1640 860 50
P-5 82 0.26 3600 4200 400 23.7 0.13 1330 720 52
P-6 17 0.31 1900 2000 200 16.7 0.09 1720 600 38

The best pronounced relationship between the UIMA index and Fe, Cr, Mn, and Co,
which are characteristic components of ophiolites, is that with Cr (Figure 1a) and MnO
(Figure 1b), especially for weathered peridotites and saprolite zones.

The positive correlation between UIMA and Cr is of particular importance for human
health and ecosystems because, during weathering of ultramafic rocks, the availability of
Cr increases and may be transported in soil, groundwater (drinking and irrigation), and
plants/crops (food chain).
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Figure 1. Plots of the UMIA (calculated ultramafic index of alteration) versus Cr contents in weathered peridotites and
saprolite zone, laterites from Kastoria and W. Vermion lying on peridotites, laterites of karst type from Lokris, and
contaminated soils from Evia. Data from Table 1 and [50].

Plots of Cr, Fe, Co, and Mn versus Ni contents in contaminated soils affected by the
transfer of weathered ophiolite rocks, in addition to a good positive correlation, showed
an increasing trend from the Assopos basin (southern part) towards north Thiva basin to
C. Evia, where ultramafic rocks are dominant, while the highest contents of these heavy
metals were found in laterites (Figure 2).
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In addition, elevated contents of these elements have been determined in plants/crops
grown in such soils (Table 2).

Table 2. Chromium, Ni, Mn, Co, Zn, and Fe range and mean in plants/crops from the C. Evia and
Assopos–Thiva basins.

mg/kg

Metals Range Mean Normal Deficient Excesive

Cr 0.3–200 27 0.1–0.5 _ 5–210
Ni 4–210 50 0.1–5 _ 10–100
Mn 8–190 65 30–300 0–30 400–1000
Co 0.5–15 7 10 _ 50–69
Zn 28–380 50 27–150 0–20 100–400
Fe 28–3000 780 _ _ 2000

The groundwater from Neogene shallow aquifers (10–100 m) throughout central
Evia (Messapia), characterized by the extensive presence of ultramafic rocks and Fe-Ni-
laterite deposits, contains more than 10 µg/L (up to 360 µg/L) Cr(VI) into irrigation
water from Evia. Moreover, at the Assopos basin, deposits as high as 950 µg/L Cr(VI)
exceed the acceptable limit for Crtotal in drinking water (50 µg/L), while up to 8000 µg/L
Cr(VI) have been recorded at the area of Oinofyta, with intense industrial activity in that
basin [29,60,64,65]. Although there is a wide variation in Cr concentrations throughout
Evia and Assopos–Thiva basins, the Cr(VI) variations in groundwater wells during the dry
and wet seasons have been recorded as relatively small [30,60]. Thus, in contrast to the
lowest Cr content in the soil samples from the Assopos basin, the highest Cr concentrations
in groundwater were recorded at the area of Oinofyta, Assopos basin, with an intense
industrial activity [64]. Such a spatial diversity between the Cr distribution in soil and
groundwater throughout the C. Evia and Assopos–Thiva basins (Figure 3) is a salient
feature, suggesting their major sources of contamination.
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Figure 3. Maps showing spatial distribution of Cr in soils due to natural processes and mining of Fe-Ni laterites (a), and in
groundwater from the Evia and Assopos–Thiva basins due to natural processes, mining, and industrial activity (b) [30].
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3.2. Influence of the Groundwater Salinity

A major difference between freshwater and seawater is their salinity, expressed by
the total dissolved solids (TDS), being a characteristic feature of sea and geothermal water
that can be deduced from measurements of the electrical conductivity of groundwater [66].
Groundwater flowing along the land–sea margin shows that subsurface salinity distri-
bution can extend tens to hundreds of kilometers offshore beneath continental shelves,
and is often accompanied by relatively high Cr(VI) concentrations, reaching hundreds
µg/L in many countries of Europe [28–30,59,66–70]. An overview of literature data on the
composition of coastal groundwater and seawater has shown a positive trend between
Cr(VI) concentrations with TDS (Figure 4a) and B (Figure 4b), suggesting that seawater
components significantly inhibit Cr(VI) reduction into Cr(III). In addition, in faulted re-
gions, circulated meteoric water underground can be heated by magma or hot rocks, and
geothermal water ascends back to the surface, as it is known in Greece along the Hellenic
Volcanic Arc, in the Chalkidiki Peninsula, in Serres, Thrace, C. Greece, other countries in
Europe (Czech Republic, Hungary, and France), and worldwide [71–77]. Contaminated
groundwater in geothermal systems is commonly characterized by relatively high TDS (up
to 10,000 mg/L TDS), pH ranging from 8.5 to 5.5, and As (up to 2000 µg/L As) [78–81].
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Figure 4. Plots of the Cr(VI) and total dissolved solids (TDS) versus B concentrations (a,b) for coastal groundwater from C.
Evia, Assopos, and Thiva basins, seawater, and geothermal water. Data from [25,64,65,82–84].

Coastal groundwater and geothermal water are similar in terms of the high salinity,
while they differ in the wide pH range (5 to 7.5), much higher As concentrations, and
much lower Cr concentrations in saline deep geothermal water compared to coastal and
sea water [83–85].

3.3. Smelting/Combustion of Raw Materials
3.3.1. Bauxites and Fe-Ni-Laterites

Currently, applying the Bayer process, aluminum is extracted from bauxite ore by the
production of high-grade metallurgical alumina and, subsequently, the electrolytic reduc-
tion of alumina to aluminum [86]. Residues of the metallurgical process of bauxite or red
mud are relatively toxic due to its high alkalinity (pH 10–12.5) and the presence of heavy
and radioactive metals (V, Cr, Cd, Ni, Zn, Pb, Ba, Sr, Hf, Nd, U, Th) [2,65,86]. The bauxite
deposit at the Parnassos–Ghiona mountains of Greece is the 11th largest bauxite producer
in the world [87]. Alumina (Al2O3) has been produced for more than 100 years, and up to
120 million tons of bauxite processing residue or red mud are produced annually during
Al extraction via the Bayer process, causing critical environmental problems [88,89]. Unex-
pectedly high (2100 µg/L) Cr(VI) concentrations have been measured in water leachates
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from a representative red mud sample from the Aspra spitia plant, Greece (May 2008,
mining company S & B Industrial Minerals) [65].

The Fe-Ni laterite deposits are a major source of Ni in Greece (Lokris, C. Evia, and
Kastoria), mined by Larco, and produce some 2–3% of the world’s total, in Serbia, Turkey,
Albania (Bitinca), and elsewhere [90]. Although elevated levels of Cr have been identified in
Ni laterites, Cr(VI) derived from that source, and its availability and contribution to natural
waters remain poorly understood. Specifically, it is well known that the Fe-Ni-laterite ores
from Kastoria are characterized by higher Cr, Co, and Mn, and lower Al2O3 and TiO2
contents compared to those from the Lokris and Evia [50,91]. Water leaching (one week),
using Cr-free natural water, has shown that leachates for the Kastoria laterite samples from
the lower goethite zone, containing considerable amounts of Mn from Kastoria (Figure 1b),
reached levels up to 1300 µg/L Cr(VI), in contrast to those from the Lokris and Evia Fe-Ni
laterites with less than 10 µg/L [65].

3.3.2. Chromite Deposits and Ferrochromium (FeCr)

Ferrochromium (FeCr), which is a critical alloy in the production of stainless steel, is
produced in several European countries (mainly in Finland, France, Italy, Norway, Sweden
and former Yugoslavia, Germany, Italy, Switzerland, and the U.K.) and is a potential
source of soil and groundwater aquifer contamination by Cr(VI). Specifically, chromite
ore processing residue (COPR), a waste byproduct during the chromate production that is
generated in the U.S. and European countries, is highly alkaline (pH > 12) and contains
high levels of Cr(VI) under the form of water-soluble sodium chromate (Na2CrO4) [92–94].

3.3.3. Coal Mining/Combustion (Fly Ash)

Two main lignite-mining districts, at the Ptolemais–Amynteon (N. Greece) and Mega-
lopolis in the Peloponnese (S. Greece), are in production, currently [95,96]. Mineralogical
and geochemical data on fly and bottom ash from the lignite combustion have shown that
many trace elements, including Cr, Cu, Pb, Zn, Cd, Mo, Ag, As, Au, Se, Te, U, and W,
are associated with minerals in the peat and the organic matter [97–99]. In the Sarigkiol
basin, a sub-basin of the Ptolemais basin, in addition to the influence from the open pit
of the nearby lignite mines and fly ash produced by a power station, there is a contribu-
tion of heavy metals due to the presence of weathered ultramafic rocks and agricultural
activities [100,101].

4. Discussion

Global climate changes (air quality, sea level), the increasing population, and demand
for food and energy have resulted in intense agricultural activities and exploitation of
raw material deposits to supply and use metals in high-tech applications and have caused
environmental problems [12,102]. In general, the contamination of soil and groundwater
by metal/metalloids related to either natural processes (weathering of rocks and ore de-
posits, salinization) and/or human activities (industrial, mining, smelting, extensive use of
fertilizers and pesticides in the agricultural activities, urban pollution) are critical problems
for the water quality and food chain [12,14,103]. The consequence of plant/crop irrigation
with contaminated water and bioaccumulation of toxic elements by plants (transfer into
food chain) are potential threats for human health and ecosystems [1,6,9,15,104].

4.1. Implications of the Green Economy

Recently, there has been significant progress on industrial waste prevention and
management at a worldwide scale, including the European community, on the transition
to a circular economy (green economy) in order to make it more sustainable [16–18]. The
investigation of raw materials in the frame of research projects, including the ProMine
databases, provides valuable information in a geographic information system (GIS) for the
distribution of the major raw material deposits, mining wastes, potential products, and their
importance for the economy in all European countries, as well as the creation of national
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and European cultivation strategies for the optimization of agricultural management
strategies [19,21,22,105].

4.1.1. Smelting Residues (Red Mud and Slag)

With respect to the hundreds of million tons of bauxite processing toxic red mud,
produced during Al extraction via the Bayer process, several applications have been
proposed, such as a source for the recovery of critical metals and ceramics [106–108]. A
new application proposed the use of the red mud as a component in cements, in building
materials, or synthesis of inorganic polymers with excellent properties [17]. Thus, the Bayer
process, causing critical environmental problems, can be effectively transformed into a zero-
waste process [17]. On the basis of Cr Kedge XANES and TEM analysis of the speciation of
chromium in red mud samples, it has been suggested that Cr in red mud is mostly present
as Cr(III), substituted into hematite and goethite [2,109]. However, unexpectedly high
Cr(VI) concentrations (2100 µg/L) have been measured in water leachates of red mud [65],
suggesting that the reduction of the oxidation stage of the Cr(VI) is required before the
applications of red mud. Similarly, the reduction of Cr(VI) in the Cr(V)-bearing wastes
during the production of FeCr from chromite [92–94] is necessary.

The reductive smelting plant for the production of ferronickel (FeNi) from Fe-Ni-
laterites of Central Greece (Lokris and Evia) and Kastoria at Larymna (Greece) allows the
formation of one metallic phase containing all of the nickel and part of the iron and one
slag residue [110]. The residue of the metallurgical process (slag) contains a glassy phase
with inclusions of spherical Fe-Ni alloy of varying size [65]. Water leaching experiments
on Fe-Ni laterite ores from Lokris and Kastoria deposits and metallurgical residues (slag)
have shown that the Cr(VI) concentrations in leachates for the slag and the Lokris Fe-Ni
laterites are very low (2 to <1 µg/L), but those from the Kastoria laterites reach as high as
1200 µg/L Cr(VI) concentrations [65]. Therefore, the release of Cr(VI) from the use of that
type of slag is not facilitated under ambient conditions, but examination of potential Cr(VI)
leaching during mining is required.

4.1.2. Bioaccumulation of Harmful Metal(loids)

Special attention has been paid to the soil–groundwater–plant/crop system, espe-
cially to the accumulation or transfer factor, which is the ratio of the element content
in plants relative to the total element content in the relative soil, showing a wide varia-
tion as a function of the oxidation state of metals/metalloids in soil and irrigation wa-
ter, the content of organic matter, and the pH and Eh parameters [111,112]. Review of
the available database/literature highlights the importance of water quality on human
health/ecosystems and the need to differentiate between Cr(III) and Cr(VI) discharge limits
to soil and/or drinking/irrigation water for all European countries [113]. Mineralogical
and geochemical data on fly and bottom ash from the lignite combustion in northern
Greece, coupled with leaching experiments, suggested that applying these materials on
agricultural land via the addition of a small proportion of 5 wt% fly ash in acid soil can
increase the pH to 7.3–7.8, and the Ca, Mg, K, and Na content of the soil [98,99]. Although
these elements can be classified as essential nutrients, the coexisting trace elements, such
as As, Cr, Cu, Ni, Zn, and Hg, are considered to have some environmental or public health
impacts, including potential groundwater contamination, and should be used with caution
for agricultural applications [114]. In addition, organic carbon may play a key role in the
mobility of added Cr(VI) to soil via irrigation water [115]. The use of leonardite, which
is an oxidized form of lignite, due to its high content of humic acid, is considered to be
a useful organic fertilizer that provides possibilities for combining food production with
soil [116,117]. Since Europe (Germany, Greece, Poland, and the Czech Republic) accounts
for roughly 40% of global lignite reserves [118], the application of the natural organic
material, leonardite, as a land management technique seems to be a cost-effective method
consistent to related protocols for the protection of the soil quality. In addition, several
land uses in the exploited lignite quarries have been proposed in the frame of the circu-
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lar economy, such as agriculture activities, greenhouses, livestock farming, forests, and
photovoltaic parks, which can contribute to the energy economy cycle [96].

It is well known that selenium (Se) is an essential micronutrient for humans and
animals, but both Se excess and deficiency can cause various health risks. The potential
presence of selenates (SeO4

2−), due to industrial activities, mines, or smelting plants,
and the Se level in coastal groundwater affected by the intrusion of seawater in costal
groundwater, occasionally exceeding the guidelines [103] for Se (10µg/L) in drinking
water [27,28], may cause contamination problems in cultivated plants/crops [119,120].
However, soils commonly exhibit Se deficiency, and people have insufficient levels of
Se-serum [121,122]. More research on the Se distribution in crops/plants and relative
soil coming from their rhizosphere is required to define potential Se source(s), factors
controlling Se bioaccumulation, and ways for its enrichment in food.

4.2. Application of the Stable Chromium Isotopes to the Groundwater Contamination by (Cr(VI)

Oxidative weathering and the presence of Mn oxides as a catalyst on the surface of
Cr-bearing ultramafic rocks facilitate the oxidation of Cr(III) into water-soluble Cr(VI) [123],
eventually being deposited in the seabed sediments [124–128]. Subsequently, during the
reduction of the Cr(VI) to Cr(III), the lighter chromium isotopes (52Cr) are preferentially
reduced, resulting in an enrichment of 53Cr relative to 52Cr values (δ53Cr values in units
per mil (‰) relative to a standard) [31] and redox processes produce significant Cr isotope
fractionation [129]. Moreover, Cr(III) forms in igneous rocks with an average δ53Cr value of
−0.124 ± 0.101‰ [130] can be oxidized to Cr(VI) in the presence of Mn oxides (in oxidation
stage +4) [51,131]. Contaminated groundwater (4500 µg/L) by industrial activities (1997) at
the area of Friuli Venezia Giulia (northern Italy) was completely attenuated, subsequently
(2003), under pH conditions of 7.5–8.2 and Eh 0.36–0.41V [132]. However, the contami-
nation by Cr(VI) of coastal groundwater in the Assopos basin remains at the hundreds
µg/L level [65,82]. Given the lack of seawater effect in groundwater in the case of Friuli
Venezia Giulia Region, northern Italy, as is exemplified by the relatively low TDS and Na
concentrations in those aquifers [133], it seems likely that the reduction of Cr(VI) to Cr(III) is
not inhibited in that case. In contrast, in the coastal groundwater from C. Evia and Assopos
basins, the presence of borate [B(OH)4]− ions (Figure 4a,b) [134,135], a potential buffer,
may indicate that the reduction of Cr(VI) to Cr(III) is inhibited [136]. In addition, there is a
difference between the Kastoria Fe-Ni laterites leaching 1300 µg/L Cr(VI) and showing
δ53Cr values ranging between +0.03 ±0.06‰ and −0.21± 0.08‰, and the laterite from
Lokris leaching <2 µm/L Cr(VI) and showing δ53Cr values of +1.01 ± 0.05‰ (Figure 5).
The Cr stable isotope data of soil profiles developed on serpentinized, chromite-bearing
ultramafic rocks at La Cabana have shown negative δ53Cr values (−0.089 to −0.320 ‰,
average of −0.178‰) [137]. According to these authors, the degree of weathering of the La
Cabana soils corresponds to an early to intermediate stage of weathering compared to the
traditional tropical laterite deposits.
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Figure 5. Plot of the δ53Cr values versus Cr(VI) in contaminated by Cr(VI) groundwater by industrial
activities in the Friuli Venezia Giulia (Italy), the Czech Republic (Central Europe), the Assopos, Thiva
basin affected by both industrial activities and natural processes, and Central Evia of geogenic origin.
Data from [82,132,138–140].

Thus, available analytical data on groundwater contamination by Cr(VI) (either by natu-
ral processes and/or industrial activities) show a well-pronounced negative trend between
chromium isotopes (δ53Cr values) versus Cr(VI) concentrations, suggesting that the dominant
cause of Cr isotope fractionation is post-mobilization reduction of Cr(VI) [82,132,138,141,142].
However, the abundance of Cr(VI) in coastal groundwater may be related to the presence
of [B](OH)4]− ions, which significantly inhibit Cr(VI) reduction to Cr(III).

4.3. Knowledge Gaps

The consequences of the cultivation of plants/crops in contaminated soil and their irri-
gation with contaminated water, resulting in the bioaccumulation of toxic elements (transfer
into food chain), are important threats for human health and ecosystems [1,6,9,15,104]. A
review of the available database/literature highlights the need for the protection of soil
and water quality. Although many cities in Europe have been geochemically mapped [143],
application of GIS (geographical information system) and risk analysis (mapping) for
groundwater and soil geochemistry for every city in Europe is required in order to define
contamination/pollution sources, the presence of hotspots, and the degree and extent of
groundwater contamination. Efforts need to assess heavy metal and/or metalloid contami-
nation, and the creation of national and European cultivation strategies are needed in the
cultivated land. Free or low-cost access for everybody to the information obtained could
facilitate optimization of agricultural management strategies.

According to recent legislation [113], Cr discharge to the aquatic environment is
regulated by EU member states at maximum discharge limits of 1 mg/L Cr(VI) and 5 mg/L
Crtotal for EU member states [144]. Efforts need to differentiate between Cr(III) and Cr(VI)
discharge limits to soil and/or aquatic environments, as well as in the drinking water for
all European countries.

Recently, there has been significant progress on industrial waste prevention and
management on a worldwide scale, including the European community on the transition
to a circular economy (green economy), making it more sustainable [16–18]. However,
further research on the transformation of mining, smelting, and combustion wastes to
new products and the creation of cultivation strategies for the optimization of agricultural
management strategies [19,21,22] are required.
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5. Conclusions

Natural processes (weathering of rocks and ore), the intense exploitation of raw
material deposits to supply metals in high-tech applications, and agricultural activities
have caused soil and groundwater contamination by heavy metals and metalloids, which,
in turn, are transferred into the food chain. The present review of literature data suggests
that, despite the environmental risk, potential opportunities can contribute towards the
development of new products and new ways for groundwater management and land use:

Efforts need to provide ways to restrict the transfer of heavy metals/metalloids from
soil to plants/crops and groundwater, without the reduction of agricultural and industrial
production.

Mining wastes from the mining of coal/lignite (leonardite), and combustion byprod-
ucts (fly ash) may be used to optimize agricultural production.

Efforts are needed towards reducing Cr(VI) from industrial wastewaters, prior to their
discharge into receptors.

Soil and groundwater contamination, due to mining, smelting, or combustion, can be
reduced by applying transformations of harmful wastes into new products with potential
applications towards a circular economy.

At the abandoned mines, quarries, and surroundings, changes in land use may allow
the development of a new land management and the production of green energy.
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