
minerals

Article

REE and Sr–Nd Isotope Characteristics of
Cambrian–Ordovician Carbonate in Taebaek and
Jeongseon Area, Korea

Tae-Hyeon Kim 1,2,* , Seung-Gu Lee 1 and Jae-Young Yu 2

����������
�������

Citation: Kim, T.-H.; Lee, S.-G.;

Yu, J.-Y. REE and Sr–Nd

Isotope Characteristics of

Cambrian–Ordovician Carbonate in

Taebaek and Jeongseon Area, Korea.

Minerals 2021, 11, 326. https://

doi.org/10.3390/min11030326

Academic Editor: Giovanni Mongelli

Received: 15 March 2021

Accepted: 19 March 2021

Published: 21 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Geology Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Korea;
sgl@kigam.re.kr

2 Division of Geology and Geophysics, Kangwon National University, Chuncheon 24341, Korea;
jyu@kangwon.ac.kr

* Correspondence: chocochip222@naver.com; Tel.: +82-042-868-3969

Abstract: Carbonate formations of the Cambro-Ordovician Period occur in the Taebaek and Jeongseon
areas, located in the central–eastern part of the Korean Peninsula. This study analyzed the rare earth
element (REE) contents and Sr–Nd isotope ratios in these carbonates to elucidate their depositional
environment and diagenetic history. The CI chondrite-normalized REE patterns of the carbonates
showed negative Eu anomalies (EuN/(SmN × GdN)1/2 = 0.50 to 0.81), but no Ce anomaly (Ce/Ce* =
CeN/(LaN

2 × NdN)1/3 = 1.01 ± 0.06). The plot of log (Ce/Ce*) against sea water depth indicates
that the carbonates were deposited in a shallow-marine environment such as a platform margin. The
87Sr/86Sr ratios in both Taebaek and Jeongseon carbonates were higher than those in the seawater at
the corresponding geological time. The 87Sr/86Sr ratios and the values of (La/Yb)N and (La/Sm)N

suggest that the carbonates in the areas experienced diagenetic processes several times. Their
143Nd/144Nd ratios varied from 0.511841 to 0.511980. The low εNd values and high 87Sr/86Sr ratios
in the carbonates may have resulted from the interaction with the hydrothermal fluid derived from
the intrusive granite during the Cretaceous Period.

Keywords: carbonate; REE; Ce anomaly; Sr isotope; Nd isotope; carbonate depositional environment

1. Introduction

The rare earth element (REE) patterns of carbonates can help understand their deposi-
tional environment and diagenetic processes [1–3]. Tanaka et al. [1] inferred the seawater
depth of carbonate deposition according to the variation of Ce anomalies with the sea water
depth. Madhavaraju et al. [2] deduced the paleo-redox condition changes from the Ce
anomalies of the REE patterns of carbonates. In particular, the values of (La/Yb)N and Ce
anomalies can be good indicators of the carbonate depositional environment [2,3]. Recently,
Zhang et al. [3] reported that the REE pattern of a carbonate varies according to its tectonic
setting. In addition, the 87Sr/86Sr ratios of carbonates are known to be insignificantly
affected by the pore water during early diagenesis, but they can be raised by the interaction
with hydrothermal fluid during a later diagenetic process [4–6]. The residence time of
Nd in sea water is between 200 and 1000 years, while inter-ocean mixing requires about
1500 years [7]. For this reason, 143Nd/144Nd ratios in the Pacific, North Atlantic, and Indian
oceans were all different despite the same geological time [8]. The 143Nd/144Nd ratio of
carbonate has not yet been studied extensively, but recent studies showed a decrease in
the 143Nd/144Nd ratio in carbonate during diagenesis. This is due to the diagentic reaction
with a fluid having lower 143Nd/144Nd than the carbonate [9,10].

Cambrian and Ordovician carbonate formations occur in the Taebaek and Jeongseon
areas located in the central–eastern part of the Korean peninsula (Figure 1). These for-
mations have been steadily investigated in various fields such as carbonate depostional
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sedimentology [11–22], but their REE and Sr–Nd isotope geochemistry has not been in-
vestigated. Examining and interpreting the geochemical data from the carbonate rocks
in the East Asian region may be the key to understanding the regional sedimentary envi-
ronment and its evolution in the past. Fortunately, a considerable amount of geochemical
work on the carbonate formations of the same geological time has been done in Japan
and China; thus, it is necessary to examine the characteristics of the REE patterns and
Sr–Nd isotope ratios of carbonate in the Korean peninsula. The aim of this study was to
carry out a geochemical analysis of the carbonates in the study area and interpret their
REE patterns and Sr–Nd isotope ratios to elucidate the depositional environments and
diagenetic processes. The REE patterns and the isotopic ratios of the carbonates were also
compared and discussed with those in Japan and China.
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2. Geological Background
2.1. Taebaek Area

The Cambrian carbonates in Taebaek area include the Myobong, Daegi, and Hwajeol
Formations of the Taebaek group (Figure 1). Among these, the Daegi Formation mostly
consists of carbonates, and it is widely distributed throughout the central–eastern part of
the Korean Peninsula, including the Jeongseon, Samcheok, and Taebaek areas (Figure 1).
The Daegi Formation is known to have been deposited in a shallow marine environment
such as a platform margin [13,16,17]. Kim and Park [13] suggested that the Daegi For-
mation was deposited at a depth shallower than 10 m below sea level. Sim and Lee [16]
studied the sequence stratigraphy of the Daegi Formation and concluded that the Daegi
Formation experienced several sea-level fluctuations within the shallow depth range. A
biostratigraphy and fossil study [17] also suggested that the Daegi Formation was formed
in a shallow marine environment.

2.2. Jeongseon Area

The Jeongseon area, located northwest of Taebaek, consists of the Ordovician Yongtan
and Cambrian Taebaek groups (Figure 1). The stratigraphy differs little from that of the
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Taebaek area, except for the presence of the “Hoedongri” Formation. The “Hoedongri”
Formation was named after the place where the conodont fossil thought to be of Silurian
was first discovered [11]. Since then, many investigations have focused on the conodont
fossil in the area to find out the geological age of these fossils and their stratigraphic
significance [12,14,15]. Recently, Lee [18,19] insisted that the conodont fossils are not
Silurian but Ordovician. Kwon et al. [20] discussed the evolution history of the Taebaek
basin regarding the Hoedongri Formation as an Ordovician stratum. This study also
regards the Hoedongri Formation as Ordovician. Won et al. [21] and Woo et al. [22]
suggested that the carbonates in the area were deposited in a shallow marine environment.
Most of the carbonates in the Jeongseon area have suffered recrystallization due to later
metamorphism [12,14,15].

2.3. Petrography

The carbonates in the study areas consist of dark-gray to black fine-grained limestone
and white crystalline limestone (Figure 2). They can be petrographically classified as
well-sorted micrite to fine-grained calcite. The carbonates also include minor amounts
of dolomite and illite. Figure 3 shows their microscope images. The carbonates in the
study areas are mostly micrites that have been recrystallized (Figure 3A); however, some
calcite crystals can be observed (Figure 3B). Therefore, identification of their origin using
petrography is difficult. Although a little quartz was observed, this was negligible because
there was almost no residue after acid digestion.
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3. Methods

Thirteen carbonate samples were collected from five outcrops (samples JS-1 to JS-5)
and eight drilling cores (samples TB-1 to TB-8). All the samples used were fresh and
not very weathered. The samples were crushed using a jaw crusher and then pulverized
in an agate mortar until their grain sizes were less than 150 µm. Ultra-pure HCl and
HNO3 reagents (Merck, Darmstadt, Germany) were used throughout sample preparation
to minimize possible contamination from the reagents.

3.1. REE Analyses

For REE analyses, 0.5 to 1.0 g of the powdered samples were digested using 20 mL
of 2 M HCl according to the method of Kim et al. [23], and then the digested sample
solutions were filtered to remove the possible residue through the filter membrane having
a 0.4 µm pore size. The silicate residues are known to have little effect on the solution
chemistry [1,22]. Subsequently, the solutions were filtered using a 0.4 µm membrane
filter and loaded into the cation-exchange resin (Bio-Rad, AG 50W-X8) column. The Ca
matrix and Ba were removed by passing 2 M HCl and 2.4 M HNO3 through the column,
respectively. The REE fractions were recovered using 50 mL of 6 M HCl. The separated
solutions were dried on a hot plate and diluted with 2% HNO3 solution containing internal
standards of In, Bi, and Re. The diluted REE solutions were analyzed using ICP-MS (Perkin
Elmer, NexION350) at the Korea Institute of Geoscience and Mineral Resources (KIGAM).
The sensitivity fluctuation of ICP-MS during the measurement was corrected from the
internal standardization using In, Bi, and Re [24]. The levels of REE in the blank solutions
were less than 10 ppt (10 µg/l). The accuracy and the precision of the analytical results
were assessed with JDo-1 and JLs-1 carbonate reference materials curated by the Geological
Survey of Japan (GSJ). The analysis results are reported with 95% confidence interval
from the mean. The isobaric interferences were corrected by subtracting the signals of
the corresponding oxides from each measurement. The oxides included 151Eu–135Ba16O,
159Tb–143Nd16O, 160Gd–144Nd16O, 165Ho–149Sm16O, and others.

3.2. Sr and Nd Isotope Ratios

The sample digestion process for 87Sr/86Sr analysis was the same as that for REE
analysis. The digested solutions were completely evaporated and then the residual cakes
were dissolved again with 8 M HNO3. The dissolved solutions were then loaded into the
Sr-specific resin (SR-R50-S 50-100 mesh, Eichrom) and eluted with 8 M HNO3 to collect
elements other than Sr such as Rb, REE, and others. Lastly, Sr was separated from the resin
with 0.05 M HNO3 solution.

The other element fractions were dried up and loaded onto the cation-exchange resin
(Bio-Rad, AG 50W-X8) column for REE separation. Nd was eluted from the separated REEs
with 0.2 M 2-hydroxyisobutric acid (HIBA) washed through a quartz column filled with
the cation-exchange resin (Bio-Rad, AG 50W-X8, 200-400mesh).

The isotope composition of Sr and Nd was measured using a Neptune Plus MC-ICP-
MS (Thermo Fisher Scientific Ltd.) with nine Faraday cups Neptune Plus, at KIGAM. The
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analytical method of this study gave the 87Sr/86Sr of the NBS987 Sr standard as 0.710276
± 0.000022 (N = 20, 2σm) and the 143Nd/144Nd of the JNdi-1 Nd standard as 0.512090 ±
0.000060 (N = 20, 2σm).

4. Results
4.1. REE Patterns

All the samples except JS-3 in the Taebaek and Jeongseon areas had relatively low REE
concentrations ranging from 2.47 to 15.64 µg/g (Table 1). The CI chondrite-normalized [25]
REE patterns indicated that the carbonates were LREE enriched (Figure 4). The (La/Yb)N
values of the Taebaek and Jeongseon carbonates varied from 6.33 to 9.73 and 8.74 to 15.94,
respectively. All REE patterns except that of JS-5, dolomite, showed negative Eu anomalies,
but no Ce anomalies. The values of EuN/(SmN × GdN)1/2 in the carbonates ranged from
0.50 to 0.81. The average value of CeN/(LaN

2 × NdN)1/3 was 1.01 ± 0.06. The REE pattern
of JS-5 showed neither Ce nor Eu anomalies.

Table 1. Rare earth element (REE) contents of Taebaek and Jeongseon carbonates.

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu (La/Yb)N
b Ce/Ce* Eu/Eu*

TB-1 984 a 1835 226 884 191 46 191 29 185 40 118 17 106 16 6.33 0.96 0.74
TB-2 1821 3712 430 1694 353 70 336 57 339 68 184 25 159 24 7.78 1.00 0.62
TB-3 2417 4076 472 1771 378 72 360 57 342 69 195 27 174 27 9.43 0.90 0.60
TB-4 2708 5507 589 2294 463 107 420 64 389 76 214 30 194 27 9.47 1.03 0.74
TB-5 2744 5717 665 2567 542 108 508 79 488 102 274 42 256 36 7.27 1.03 0.63
TB-6 2732 5571 628 2442 478 80 422 71 441 87 240 35 208 31 8.91 1.02 0.54
TB-7 3003 6329 782 3204 668 178 666 96 547 99 263 38 230 34 8.88 0.99 0.81
TB-8 2607 4993 569 2210 424 93 399 59 333 67 191 29 182 28 9.73 0.97 0.69
JS-1 524 1053 122 441 78 16 71 11 62 12 32 5 28 4 12.30 1.02 0.65
JS-2 2801 6637 844 2927 553 90 550 83 499 91 251 36 222 32 8.74 1.12 0.51
JS-3 4434 9066 1117 4003 718 147 674 100 614 114 336 48 306 45 10.41 1.02 0.65
JS-4 1042 2138 244 1009 156 38 156 20 105 19 53 7 46 6 15.94 0.97 0.75
JS-5 1904 4544 593 2334 427 136 409 56 315 49 135 17 102 11 13.11 1.12 0.97

a All units in ppb (µg/kg); b “N” denotes the CI chondrite-normalized value. Ce/Ce* values are given according to CeN/(LaN
2 × NdN)1/3;

Eu/Eu* values are given according to EuN/(SmN × GdN)1/2.
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Figure 4. CI chondrite-normalized REE patterns of carbonates in Taebaek and Jeongseon. (A) CI chondrite-normalized REE
patterns of Taebaek carbonates (core samples TB-1 to TB-8 collected at 173 m, 215 m, 226 m, 257 m, 287 m, 302 m, 331 m, and
353 m, respectively), (B). CI chondrite-normalized REE patterns of Jeongseon carbonates (outcrop samples JS-1 to JS-5).
Cam. denotes Cambrian. Ls and Do denote limestone and dolomite, respectively. To improve visibility, the REE patterns of
TB-3, 4, 5, 6, 7, and 8 were multiplied by 1.5, 2, 2.5, 3.5, 3.5, and 7, respectively.
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4.2. 87Sr/86Sr and 143Nd/144Nd Ratios

The 87Sr/86Sr ratios of the Taebaek and Jeongseon carbonates varied from 0.70968
to 0.71116 and 0.70884 to 0.71114, respectively (Table 2, Figure 5). The average 87Sr/86Sr
ratio of the Taebaek carbonates was 0.71013, which is a little higher than the average
value 0.70975, of the Jeongseon carbonates. Sr concentrations of these samples ranged
from 232 to 652 ppm, and there was no significant difference between the two areas. The
143Nd/144Nd ratios of the carbonates ranged from 0.511448 to 0.511980. Dolomite, TB-4,
had the minimum value. Excluding dolomite, the range of 143Nd/144Nd ratio started from
0.511841. The εNd values of the samples ranged from −23.2 to 12.8. The εNd value was
calculated using the following equation:

(143Nd/144Nd)sample − (143Nd/144Nd)CHUR
(143Nd/144Nd)CHUR

× 10, 000,

where the (143Nd/144Nd)CHUR is given by 0.512638 [7].

Table 2. Sr and Nd isotope ratios of Taebaek and Jeongseon carbonates.

Sample Name Sr (ppm) 87Sr/86Sr 143Nd/144Nd εNd(0) a

TB-1 278 0.709892 0.511970 −13.0
TB-2 258 0.709791 0.511870 −15.0
TB-3 234 0.709681 0.511886 −14.7
TB-4 270 0.710028 0.511448 −23.2
TB-5 304 0.710442 0.511900 −14.4
TB-6 246 0.711157 0.511960 −13.2
TB-7 299 0.709789 0.511851 −15.3
TB-8 321 0.710263 0.511841 −15.6
JS-1 306 0.708841 0.511895 −14.5
JS-2 266 0.709559 0.511980 −12.8
JS-3 652 0.710083 0.511856 −15.3
JS-4 358 0.709116 0.511881 −14.8
JS-5 232 0.711142 0.511940 −13.6

a εNd values are given according to εNd = {((143Nd/144Nd)sample − (143Nd/144Nd)CHUR)/(143Nd/144Nd)CHUR} ×
104; (143Nd/144Nd)CHUR = 0.512638.
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5. Discussion
5.1. Carbonate Depositional Environment

Carbonate is mostly deposited in shallow marine environments and, thus, its REE
pattern reflects the characteristics of sea water at the time of its deposition [1–3]. Sea
water usually shows REE patterns having negative Eu and Ce anomalies [26–30]. REEs
generally have trivalent oxidation states in natural environments, but Ce can have a
tetravalent state in oxidizing environments while Eu can have a divalent state in reducing
environments [1–3]. Shallow marine environments can have fairly oxidizing conditions
and precipitate CeO2, resulting in Ce deficiency and, consequently, negative Ce anomalies
in the patterns in sea water [1–3]. Due to this redox behavior of Ce, the Ce anomalies in
carbonate rocks are often used as an indicator of paleo-redox condition and the influence
of terrigenous sediments [1–3]. Tanaka et al. [1] plotted the log (Ce/Ce*) values of sea
water against depth and showed that projecting the log (Ce/Ce*) value of Japanese Per-
mian carbonate using this plot can help understand the depositional environment of the
carbonate.

Figure 6 shows the log(Ce/Ce*) values of Taebaek and Jeongseon carbonates, ranging
from −0.045 to −0.049, displayed on a plot of log(Ce/Ce*) of sea water vs. sea water depth.
The plot suggests that the carbonates were deposited in shallow marine environments,
which is consistent with the interpretation by previous sedimentary studies [13,16,17].
Limestone in the study areas shows a shallow marine environment facies including olitic
and bioclastic limestone [13,16], with a sedimentary structure indicating a shallow marine
environment including a shallow upward structure [21,22]. It also contains many fossils
indicating a shallow marine environment, such as trilobite and feeding traces [17,21].
Figure 6 matches well with the results of these sedimentary and biological studies. The
REE patterns of marine carbonates generally have negative Ce anomalies; however, they
may have little to no Ce anomalies because of carbonates mixing with the terrigenous
clasts [2,3]. Carbonates in the study area showed no Ce anomalies, suggesting that they
were deposited in a carbonate depositional environment, such as a platform margin, which
can be easily affected by the terrigenous clasts.
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and Elderfield [28], Sholkovitz et al. [29], and German et al. [30].
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5.2. Geochemical Significance of Sr and Nd Isotope Ratios in the Taebaek and Jeongseon Carbonates

Figure 5 shows the 87Sr/86Sr ratios of the Taebaek and Jeongseon carbonates plotted on
the 87Sr/86Sr variation diagram of lower Paleozoic sea water, indicating that the carbonates
from the study area had higher 87Sr/86Sr than those of Paleozoic seawater of the same age.

The higher 87Sr/86Sr ratios might be due to diagenesis [4–6,31–33]. The carbon-
ate formations in the Korean peninsula experienced many diagenetic processes in the
past [4,31–33], and the carbonates in the study area were recrystallized by hydrothermal
water during the diagenesis [4,31–34]. Son and Kim [4] applied Banner’s later diagenesis
model (bulk recrystallization model) [5] to explain the higher 87Sr/86Sr ratio. They sug-
gested that the higher 87Sr/86Sr ratio was caused by the Sr exchange between carbonate
minerals and the hydrothermal fluid during the diagenetic recrystallization or refusion
precipitation of the minerals [4,5]. The hydrothermal fluid which interacted with the host
rock causing later diagenetic recrystallization generally had a high 87Sr/86Sr ratio [4–6].
Figure 7 shows the Sr concentration and 87Sr/86Sr change paths according to the two
models of carbonate rock diagenetic processes by Banner [5]. The corresponding data of
Taebaek and Jeongseon carbonates plotted on Figure 7 support the bulk recrystallization
model.
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Figure 8 shows the (La/Sm)N and (La/Yb)N values of the carbonates in the study
area, normalized with Post Archean Australian Shale (PAAS [35]), on a scatter diagram
with possible diagenetic pathways. Castorina et al. [10] reported that the (La/Yb)N PAAS
and (La/Sm)N PAAS ratios can help distinguish various diagenetic processes on carbonates
(Figure 8). The (La/Sm)N PAAS values of the carbonate rocks fell within the specified range,
but (La/Yb)N PAAS values were relatively higher than the range of modern seawater. This
indicates that the carbonates experienced early diagenesis. However, the 87Sr/86Sr ratio
does not increase during the early diagenesis process, because the 87Sr/86Sr isotope ratio
of the source that causes early diagenesis has a similar value to the 87Sr/86Sr isotope ratio
of carbonate [5,6]. Thus, the carbonate rocks might have experienced a combination of
early diagenesis processes to increase the (La/Sm)N value and a later diagenesis process to
increase the 87Sr/86Sr ratio.
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Figure 9 shows the covariation of εNd(0) values and 87Sr/86Sr ratios of Taebaek and
Jeongseon carbonates. The εNd values used with 87Sr/86Sr can be very helpful to char-
acterize the diagenetic processes. In Figure 9, the carbonates from the study area show
relatively low εNd(0) values compared to those of the common carbonates, ranging from
23.21 to −12.89 with an average value of −15.03. Jakubowicz et al. [9] observed that the
εNd(0) and 87Sr/86Sr values in diagenetic seep carbonates tend to decrease and increase,
respectively, as diagenesis progresses. As previously described, the 87Sr/86Sr ratio may
be increased by interaction with the diagenetic source that causes the diagenetic process,
such as hydrothermal fluid interacting with the host rock [4–6,31–33]. Although not much
research has been done on the εNd(0) with diagenesis of carbonate, this is also expected to
result in lower εNd(0) values of carbonate due to its interaction with a diagenetic source
with lower εNd(0) values than carbonate [9].

Figure 9 shows that the carbonates from the study area had higher 87Sr/86Sr and
lower εNd(0) values than those of Jakubowicz et al. [9]. εNd(0) generally ranges from −3 to
+2 in the Pacific Ocean [8], but these values were much lower in the carbonates from the
study area. This decrease in εNd(0) value is assumed to be due to the change during the
diagenetic processes.

The sources of the hydrothermal fluid mediating the diagenesis of the carbonates
in the study area have been disputed among the researchers [4,31–34]. Noh and Oh [31]
determined K–Ar age and examined the chemistries of the carbonates in their study areas,
and they concluded that the hydrothermal water originated from Mesozoic intrusive
activities. Large Mesozoic granite bodies occur around the outskirts of the study area
(Figure 1). Cheng and Chang [37] found that the εNd and Sr isotopic compositions of the
Mesozoic “Daebo” granite on the Korean Peninsula have the characteristics of a lower
continental crust. Figure 8 shows that the εNd(0) and 87Sr/86Sr values in the carbonates
from the study area plotted fairly close to the range of Daebo granite. All these findings
possibly support that the 143Nd/144Nd and 87Sr/86Sr ratios of the carbonates from the
study area were modified by diagenetic processes mediated by the interactions with the
hydrothermal fluids derived from Mesozoic intrusive bodies.



Minerals 2021, 11, 326 10 of 15Minerals 2021, 11, x FOR PEER REVIEW 10 of 15 
 

 
Figure 9. Covariation in εNd(0) and 87Sr/86Sr of Taebaek (red rectangle) and Jeongseon (green dia-
mond) carbonate. Mesozoic granite pluton of Korea (yellow star and black triangle) and diagenesis 
seep carbonate (orange circle) data quoted from Cheng and Chang [37], Jwa [38], and Jakubowicz 
et al. [9], respectively. 

The sources of the hydrothermal fluid mediating the diagenesis of the carbonates in 
the study area have been disputed among the researchers [4,31–34]. Noh and Oh [31] de-
termined K–Ar age and examined the chemistries of the carbonates in their study areas, 
and they concluded that the hydrothermal water originated from Mesozoic intrusive ac-
tivities. Large Mesozoic granite bodies occur around the outskirts of the study area (Figure 
1). Cheng and Chang [37] found that the εNd and Sr isotopic compositions of the Mesozoic 
“Daebo” granite on the Korean Peninsula have the characteristics of a lower continental 
crust. Figure 8 shows that the εNd(0) and 87Sr/86Sr values in the carbonates from the study 
area plotted fairly close to the range of Daebo granite. All these findings possibly support 
that the 143Nd/144Nd and 87Sr/86Sr ratios of the carbonates from the study area were modi-
fied by diagenetic processes mediated by the interactions with the hydrothermal fluids 
derived from Mesozoic intrusive bodies. 

  

Figure 9. Covariation in εNd(0) and 87Sr/86Sr of Taebaek (red rectangle) and Jeongseon (green
diamond) carbonate. Mesozoic granite pluton of Korea (yellow star and black triangle) and diagenesis
seep carbonate (orange circle) data quoted from Cheng and Chang [37], Jwa [38], and Jakubowicz
et al. [9], respectively.

5.3. Comparison with the Carbonates in Japan and China

REE data of the carbonates in Japan and China have been extensively accumulated
by many investigators [39–52]. Figures 10 and 11 show the CI chondrite-normalized
REE patterns and Ce/Ce* against (La/Yb)N plots of the carbonates in Japan and China,
respectively.

Zhang et al. [3] recently reported the REE characteristics of the carbonates from various
places around the world. The authors observed that the Ce anomalies and (La/Yb)N values
of the carbonates varied depending on their depositional environments. The carbonates
deposited under open sea environments have relatively low Ce/Ce* and (La/Yb)N values,
but those deposited under shallow marine environments have relatively high Ce/Ce* and
(La/Yb)N values [3]. This is because shallow marine environments have more terrigenous
material input [3,53]. According to the observation of Zhang et al. [3], the Chinese car-
bonates were deposited in various environments (Figures 9 and 10). Their REE patterns,
Ce anomalies, and (La/Yb)N values vary widely depending on the environments at the
time of deposition [41,43–48,50–52]. The local redox condition should specifically affect Ce
anomalies. Ling et al. [48] explained that the oxidizing condition due to oxygen supply to
the shallow sea produced negative Ce anomalies in Chinese Ediacaran carbonate.

Extensive REE studies have been conducted on the Permian carbonates in
Japan [2,39,40,42,49]. The Permian carbonates were mostly deposited in open sea environ-
ments such as an atoll. Figure 10 shows that the Permian carbonates have REE patterns
with negative Ce anomalies and relatively low (La/Yb)N values. The average Ce anomalies
and (La/Yb)N values of these carbonates are 0.38 and 7.21, respectively.
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Figure 10. CI chondrite-normalized REE patterns of the carbonates in Japan and China. (a) Permian Japan carbonates, (b)
Ediacaran (Type of disappear Ce anomaly), (c) Ediacaran China Carbonates (with Ce anomaly), (d) Lower Ordovician
China Carbonates, (e) Middle Ordovician, (f) Permian China Carbonates (with Ce anomaly), (g) Permian China Carbonates
(with no Ce anomaly), (h) Cretaceous China Carbonates, and (i) Paleogene China Carbonates. REE values are quoted from
Kawabe et al. [39], Kunimaru et al. [40], Tanaka et al. [2], Bao et al. [41], Tanaka et al. [42], Zhang et al. [43], Zhao et al. [44],
Jin et al. [45], Fu et al. [46], Qiu et al. [47], Ling et al. [48], Hori et al. [49], Zhang et al. [50], Yang et al. [51], and Su et al. [52].

The Cambrian–Ordovician carbonates of this study showed REE patterns with no Ce
anomalies and high (La/Yb)N values. The average Ce anomalies and (La/Yb)N values in
the Cambrian–Ordovician carbonates were 1.01 and 9.87, respectively. Figure 11 shows
that the Korean carbonates plotted in the shallow marine area, while Japanese carbonates
plotted in the open sea setting. This suggests that the Korean carbonates were deposited
at places such as platform margins or inland, which are relatively more influenced by the
influx of terrigenous material. At present, it may be difficult to understand the details of
the past tectonic setting using carbonate geochemistry, but our results show the differences
in the carbonate depositional environment among Korea, China, and Japan. Furthermore, a
detailed study on platform margin carbonates, open sea carbonates, and various carbonate
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depositional environments in Korea, Japan, and China is expected to clarify the depositional
environment of the carbonates in East Asia.
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6. Conclusions

Cambrian and Ordovician carbonate formations occur in the Taebaek and Jeongseon
areas located in the central–eastern part of the Korean peninsula. The REE patterns of
the carbonates in the study area show negative Eu anomalies, but no Ce anomalies. This
suggests that the carbonates in the Taebaek and Jeongseon areas were deposited in a shallow
marine environment such as a platform margin, which can be significantly influenced by
the terrigenous material input. 87Sr/86Sr ratios of the carbonates in the study area are higher
than that of seawater, suggesting an interaction between the carbonates and hydrothermal
fluid during the late diagenetic process. Subsequently, the (La/Sm)N and (La/Yb)N ratios
of carbonates in study area suggest that the carbonates had experienced an early diagenetic
process (possibly mediated by pore water). Therefore, carbonates in the study area are
estimated to have experienced a combination of early and late diagenesis. High 87Sr/86Sr
and low 143Nd/144Nd values suggest that the main source of the fluid resulting in the late
diagenesis of Taebaek and Jeongseon carbonates was hydrothermal fluid from the “Daebo”
intrusive granite around the outskirts of the study area. Carbonates in the study area show
high (La/Yb)N values and no Ce anomalies. This indicates that the carbonates in the study
area were deposited in an environment different from those of Japan and China, nearby
East Asian countries. These geochemical characteristics are expected to help identify the
carbonate depositional environments in East Asian countries and provide an in-depth
understanding of their depositional processes.
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