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Abstract: Rocks and ores in nature usually appear macro-anisotropic, especially in sedimentary
areas with strong layering. This anisotropy will lead to false interpretation of electromagnetic (EM)
data when inverted under the assumption of an isotropic earth. However, the time-domain (TD)
airborne EM (AEM) inversion for an anisotropic model has not attracted much attention. To get
reasonable inversion results from TD AEM data, we present in this paper the forward modeling
and inversion methods based on a triaxial anisotropic model. We apply three-dimensional (3D)
finite-difference on the secondary scattered electric field equation to calculate the frequency-domain
(FD) EM responses, then we use the inverse Fourier transform and waveform convolution to obtain
TD responses. For the regularized inversion, we calculate directly the sensitivities with respect
to three diagonal conductivities and then use the Gauss–Newton (GN) optimization scheme to
recover model parameters. To speed up the computation and to reduce the memory requirement, we
adopt the moving footprint concept and separate the whole model into a series of small sub-models
for the inversion. Finally, we compare our anisotropic inversion scheme with the isotropic one
using both synthetic and field data. Numerical experiments show that the anisotropic inversion has
inherent advantages over the isotropic ones, we can get more reasonable results for the anisotropic
earth structures.

Keywords: airborne EM; anisotropy; finite-difference; 3D inversion; Gauss–Newton

1. Introduction

Time-domain (TD) airborne electromagnetic (AEM) is an effective and efficient geo-
physical exploration method that is being widely used in mineral exploration, groundwater,
environmental, and engineering investigations [1,2]. Due to its dense spatial sampling and
multi-time channels, the large-scale three-dimensional (3D) modeling and inversion for
TD AEM is formerly impossible due to slow computations and large memory requirement.
In the past two decades, one-dimensional (1D) inversion and imaging methods have mainly
been used in the interpretation of TD AEM data [3–9]. However, for complex 3D earth
structures, 1D inversion and imaging methods cannot deliver reasonable results.

To get more accurate inversion results, 3D inversion has become a research focus for
AEM data interpretation in recent years. Sasaki [10] achieved the 3D inversion of frequency
domain (FD) EM data based on the finite-difference method and the Gauss–Newton (GN)
optimization. However, this inversion code is only suitable for simple models with small
datasets and will fail when dealing with the large-scale AEM datasets or complex models.
The moving footprint method proposed by [11,12] is a breakthrough of 3D AEM inversion.
Based on the compactness of AEM system, this method splits a large-scale model into
a series of small sub-models, so that the computation can be applied with reasonable
computational requirements. When the AEM response and sensitivity matrix of sub-
models are calculated, they are mapped to a large-scale model for the unified inversion.
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Due to the reduced spatial scale of the computational model, the efficiency of 3D AEM
inversions can be significantly improved. Liu and Yin [13] further used this technique to
realize the 3D inversion of multi-pulse TD AEM data. To overcome the difficulties imposed
by using multi-source and multi-channel of TD AEM systems, Oldenburg et al. [14] adopted
a direct-solver to quickly solve AEM responses that greatly improves the efficiency of 3D
inversions. Based on this research of [14], Yang et al. [15] further proposed the local mesh
method that effectively reduces the model dimension and accelerates 3D inversion for
large-scale models.

Although the 3D inversions of TD AEM data have become increasingly mature, the
inversion models are still based on the assumption of isotropic media. Many studies have
shown that anisotropy of subsurface media has serious impacts on the EM data [16–20].
Therefore, anisotropy has become an important research focus for many EM methods, such
as in marine controlled-source EM (MCSEM) [21–24], well-logging [25–29], long-offset
transient EM (LOTEM) [30], etc. These anisotropic inversion methods have demonstrated
that they can provide more reliable results. However, the effect of electrical anisotropy
on AEM methods has been less studied, except for [31–33] who discussed the effect of
anisotropy on AEM responses. Their results show that using an isotropic model to interpret
anisotropic data will deliver erroneous results. Further studies show that AEM signal is
affected by earth anisotropy in a quite specific way. If the underground structure is 1D, the
source field is purely TE-mode and the underground current mainly flows in the horizontal
direction that is insensitive to the vertical conductivity, thus only the lateral resistivity will
affect the AEM response. The presence of 3D anomalies will induce vertical current around
them but it is usually much weaker than the horizontal one, so that only a small amount of
information about the underground electrical structure can be observed.

To improve the accuracy of TD AEM data interpretation, we propose in this paper a
3D inversion algorithm for AEM data inversion in TD using a triaxial anisotropic model.
We use the 3D finite-difference algorithm based on the secondary scattered electric field ap-
proach [13] and the moving footprint technique [12] to simulate large-scale AEM problems.
In the inversion process, we use the adjoint forward modeling of [13] and GN optimization
to recover the resistivity of the earth. We test our algorithm on synthetic AEM data and
field data acquired from Musgraves, South Australia.

2. Basic Theory
2.1. Governing Equations

We first set up a Cartesian coordinate system in which the vertical z-axis is positive
downward. A time harmonic dependence eiωt is assumed, where i =

√
−1, ω = 2πf, the

second order of partial differential equation for the scattered electric field in a 3-axial
anisotropic earth can be expressed as [34]

∇×∇× Es + iωµ0σEs = −iωµ0Jp (1)

where µ0 = 4π × 10−7H/m is the magnetic permeability of the free space, Es is the
scattered electric field, Jp is the effective source current densities for the scattered field that
is expressed as Jp = (σ − σp)Ep. σ is the model conductivity, while σp is the background
conductivity. For the 3-axial anisotropic case, the σ and σp are both diagonal conductivity
tensors composed of three principal conductivities, i.e.,

σ =

 σx
σy

σz

, σp =

 σ
p
x

σ
p
y

σ
p
z

 (2)
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Ep is the primary electric field induced by the current in the background structures. The
total electric field is E = Es + Ep. The magnetic field can be obtained by the Faraday’s law
B = (−iω)−1∇× E. Expansion of the curl operation in Equation (1) yields

∂2Es
x

∂y2 +
∂2Es

x
∂z2 −

∂2Es
y

∂x∂y
− ∂2Es

z
∂x∂z

− iωµ0σxEs
x = iωµ0(σx − σ

p
x )Ep

x (3)

∂2Es
y

∂x2 +
∂2Es

y

∂z2 −
∂2Es

x
∂x∂y

− ∂2Es
z

∂y∂z
− iωµ0σyEs

y = iωµ0(σy − σ
p
y )Ep

y (4)

∂2Es
z

∂x2 +
∂2Es

z
∂y2 −

∂2Es
x

∂x∂z
−

∂2Es
y

∂y∂z
− iωµ0σzEs

z = iωµ0(σz − σ
p
z )Ep

z (5)

Using the finite-difference formulation to replace the derivatives in Equations (3)–(5),
we obtain the final equations system for the secondary electrical field, i.e.,

KEs = s (6)

where K is a large sparse matrix and s is the source term. The magnetic field is calculated
by B = LE, where L is a spatial interpolation operator. The AEM modeling for a fully
anisotropic earth based on the finite-difference formulation of Equation (1) can be found
in [33].

In our presented anisotropic inversion, we only focus on 3-axial anisotropic cases, so
we use a simplified version of the code developed by [33] to solve the forward problem.
After obtaining the FD AEM responses, we adopt inverse Fourier transform to calculate
the TD AEM step responses, i.e.,

Bs(t) =
1

2π

∫ ∞

−∞

F(ω)

−iω
eiωtdω (7)

where F(ω) are the FD responses and Bs(t) is the TD step responses. Then, the TD AEM
responses for arbitrary transmitting wave can be calculated via the convolution [35].

dB(t)
dt

= −dI(t)
dt
∗ dBs

dt
= −d2 I(t)

dt2 ∗ Bs (8)

where I(t) is the transmitting current and dB(t)/dt is the magnetic induction.

2.2. Regularized Inversion

The objective functional ϕ(m, d) for our anisotropic inversion is defined as

ϕ(m, d) = (d− F(m))TC−1
d (d− F(m)) + λ(m−m0)

TC−1
m (m−m0) (9)

where m is a 3 ×M matrix for model parameters containing three principal conductivities,
F is the forward modeling operator. F(m) denotes the synthetic data vector calculated from
the model m, while d denotes the AEM field data. Cd and Cm are the data covariance
matrix and model roughness operator, respectively. λ is the regularization parameter used
to balance the relative contributions of data misfit ϕd and model smoothness ϕm.

Assuming that mn is the model parameters at the nth iteration, J is the sensitivity
matrix evaluated at mn, and r = d− F(mn) is the data residual. Then, the GN equation
derived from objective functional in Equation (9) can be written as

(JTC−1
d J + λC−1

m )∆m = JTC−1
d r− λC−1

m mn (10)

which can be solved by preconditioned conjugate gradient (PCG) method for the model
update ∆m. The model parameters are updated by mn+1 = mn + α∆m, where α is
determined by a linear search [36].
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2.3. Calculation of Sensitivity Matrix for 3-Axial Anisotropic Media

Since the footprint of AEM systems is much smaller than the survey area, a small
number of meshes is required for numerical modeling. To reduce the computational cost we
introduce the footprint concept into our AEM modeling and inversions. In the following,
we first divide the entire model into Nm sub-models based on the AEM footprint and
calculate the sensitivity matrix for each sub-model. Then, we rearrange these sensitivity
matrices into the entire sensitivity matrix. In the Appendix A, we will show how to
divide the model domain into sub-models. For the nth sub-model, following [21] on their
transversely anisotropic inversion, we derivate both side of Equation (6) with respect to
parameters mx

k , my
k , mz

k of the kth cell and get

K
∂Es

∂mx,y,z
k

=
∂s

∂mx,y,z
k
− ∂K

∂mx,y,z
k

Es (11)

Considering that B = LE and ∂Ep/∂mx,y,z
k = 0, we obtain the elements for the sensitiv-

ity matrix ĴT
n as

ĵx,y,z
k,n =

∂B
∂mx,y,z

k
=

∂L(Es + Ep)

∂mx,y,z
k

= LK−1(
∂s

∂mx,y,z
k
− ∂K

∂mx,y,z
k

Es) (12)

Assuming a Nedge × 3M matrix

G =

 Gx
Gy

Gz

 (13)

where Nedge is the number of edges,

Gx,y,z = {
∂s

∂mx,y,z
1
− ∂K

∂mx,y,z
1

Es,
∂s

∂mx,y,z
2
− ∂K

∂mx,y,z
2

Es, · · · ,
∂s

∂mx,y,z
M
− ∂K

∂mx,y,z
M

Es} (14)

then the sensitivity matrix can be expressed as

ĴT
n =

[
ĵx
1,n ĵx

2,n · · · ĵx
M,n ĵy1,n ĵy2,n · · · ĵyM,n ĵz

1,n ĵz2,n · · · ĵz
M,n

]T
= GTK−1LT (15)

Let v = K−1LT, and multiply both sides by matrix K, we get the final equation for the
adjoint forward modeling, i.e.,

Kv = LT (16)

From Equation (16) we can see that no more work needs to be done for calculating
the sensitivity matrix than in an isotropic case. The difference between anisotropic and
isotropic inversions is the formation of matrix G, which can be done analytically. There
are in total Nd columns in v and LT, so we select the same column of v and LT each time to
set up an equation, and then solve the equation to obtain the corresponding column of v.
After getting the matrix v, we use Equation (15) to calculate ĴT

n , and resemble each ĴT
n for

each sub-model to obtain the entire sensitivity matrix in Equation (10). After finishing the
calculation in the FD, we use the inverse Fourier transform and the convolution with the
transmiting wave to get the sensitivity matrix for specific waveforms in TD. The workflow
for TD AEM inversion is given in Figure 1.
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first model for testing, we assume a tilted ore-body buried in a half-space with a distinct 
strike as shown in Figure 3a. The ore-body is 60 meter wide in the x-direction, 360 m long 
in the y-direction, the top surface is located at z = 10 m, and the bottom surface is located 
at z = 208 m. The entire model is discretized into 48 × 48 × 13 cells (refer to Appendix for 
specific grid design). Figure 3b is the distribution of the measuring points. The distance 
between measuring points is 40 m. For easy understanding, we use the resistivity instead 
of the conductivity in our following discussions. For synthetic and field survey data, the 
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plement our anisotropic and isotropic inversions (for the anisotropic cases, we assume the 
same initial resistivities along three principal axes). The data misfit is calculated by the 
root mean square (RMS), i.e., 


=

−
=

N

i obsi

calciobsi

ε
dd

N 1

21
2
,

,, )(
χ  (17)

where di, obs and di,calc are respectively the observed and predicted data, εi, obs is the estimate 
of data error, N is the number of data. We use 3% of the syntetic data as the data error 
estimate in our isotropic and anisotropic inversions. In the iterative inversion process, the 

Figure 1. Workflow for time-domain (TD) airborne electromagnetic (AEM) inversion based on the
“moving footprint”.

3. Numerical Experiments

In the synthetic data inversion, we use the transmitting wave of the VTEM (versatile
time-domain electromagnetic) system from Geotech company (Aurora, ON, Canada) (c.f.
Figure 2). The transmitter and receiver assumes a concentric geometry. The height of the
transmitting coil is 30 m and the receiver is 0.5 m above the transmitter. To establish the
first model for testing, we assume a tilted ore-body buried in a half-space with a distinct
strike as shown in Figure 3a. The ore-body is 60 m wide in the x-direction, 360 m long in
the y-direction, the top surface is located at z = 10 m, and the bottom surface is located at
z = 208 m. The entire model is discretized into 48 × 48 × 13 cells (refer to Appendix A for
specific grid design). Figure 3b is the distribution of the measuring points. The distance
between measuring points is 40 m. For easy understanding, we use the resistivity instead
of the conductivity in our following discussions. For synthetic and field survey data,
the initial and reference model are both selected as isotropic half-space of 100 ohm-m to
implement our anisotropic and isotropic inversions (for the anisotropic cases, we assume
the same initial resistivities along three principal axes). The data misfit is calculated by the
root mean square (RMS), i.e.,

χ =

√√√√ 1
N

N

∑
i=1

(di,obs − di,calc)
2

ε2
i,obs

(17)

where di, obs and di,calc are respectively the observed and predicted data, εi, obs is the estimate
of data error, N is the number of data. We use 3% of the syntetic data as the data error
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estimate in our isotropic and anisotropic inversions. In the iterative inversion process, the
initial regularization parameter is set to be 1000. When the RMS difference between the
last two iterations becomes less than 0.02, the regularization parameter is reduced to 1/10
of the previous one. When the RMS falls below 1 and the RMS difference between the last
two iterations becomes less than 0.002, or the iterations reach the maximum number, the
inversion is terminated.
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3.1. Synthetic Data Inversion for an Anisotropic Ore-Body

For the first synthetic example, we assume an isotropic background of 100 ohm-m and
an anisotropic ore-body (c.f. Figure 3a) with the resistivity tensor of

ρ =

 30 0 0
0 10 0
0 0 20

ohm−m (18)

Figure 4 shows the inversion results in slices in the xz-section for three principal
resistivities. It is seen that the resistivities in the x- and y-directions are well recovered,
but the resistivity in the z-direction is not recovered. This can be easily explained by the
characteristic EM wave induced by a TD AEM system. If the earth is 1D, the source field
is purely TE-mode and the underground current mainly flows in the horizontal direction,
thus the EM field is only sensitive to the resistivity in the x- and y-directions, while it is
insensitive to the resistivity in the z-direction for the vertical resistivity ρz has little effect on
AEM responses. This explains that although the model is 3D, the current densities in the x-
and y-direction are much larger than that in the z-direction. This results in the insensitive
EM responses and poor resolvability to the resistivity in the z-direction.

Figure 4d presents the isotropic inversions for the same dataset. Since the synthetic
data in this example is calculated from an anisotropic model, it is difficult to fit the data by
an isotropic model. Thus, artifacts are introduced into the inversion results. This means
that when the data are collected in an area with anisotropy, an anisotropic inversion is
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necessary. To better locate the ore-body and eliminate the false resistivity distribution in
surrounding rocks, we calculate an equivalent resistivity in the horizontal direction using
the inversion results of ρx and ρy via the following formula [37]

ρh =
√

ρxρy (19)

From Figure 4h, we can see that the equivalent resistivity effectively suppresses the
fake anomalies brought by the “over anisotropy” phenomenon.
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anisotropic inversions are both very well, the RMSs are at the same level. Thus, for aniso-
tropic data, using isotropic model can also achieve a good data fitting, but the under-
ground model is not in line with the actual situation. Thus, it is necessary to implement 
anisotropic inversion when the earth is anisotropic. From Figure 6a, we can see that both 
isotropic and anisotropic inversions achieve the same level of RMS with stable conver-
gence. The regularization parameter decreases from the initial 1000 to 0.00001 (Figure 6b). 

Figure 4. Anisotropic and isotropic inversions for a model with a triaxial anisotropic ore-body
embedded in an isotropic half-space. (a–c) show the model in x, y, and z-directions; (d) shows
the isotropic inversion result; (e–g) show the anisotropic inversions for resistivities in x, y, and
z-directions; (h) shows the equivalient resistivity ρh calculated via Equation (17) from the anisotropic
inversion results (all slices are displayed at y = 40 m).

Figure 5 shows the data fitting and RMS curves for the anisotropic and isotropic
inversions at profile y = 50 m (the red line in Figure 3b). The data fittings for isotropic
and anisotropic inversions are both very well, the RMSs are at the same level. Thus, for
anisotropic data, using isotropic model can also achieve a good data fitting, but the under-
ground model is not in line with the actual situation. Thus, it is necessary to implement
anisotropic inversion when the earth is anisotropic. From Figure 6a, we can see that both
isotropic and anisotropic inversions achieve the same level of RMS with stable convergence.
The regularization parameter decreases from the initial 1000 to 0.00001 (Figure 6b).
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3.2. Synthetic Data Inversion for Anisotropic Host Rock

In the second synthetic data inversion, we assume that the first layer has a thickness
of 100 m and a resistivity of

ρp =

 80 0 0
0 40 0
0 0 60

ohm−m (20)

the second layer is an isotropic half-space with a resistivity of 100 ohm-m. The isotropic
anomalous body has a resistivity of 10 ohm-m. Figure 7 shows the inversion results
obtained from the synthetic VTEM data. It is seen from the figures that the anisotropic
inversion well recovers the structure and resistivity values of the anomalous body in the
x- and y-directions. However, like the previous example, the resistivity in the z-direction
is not recovered accurately. From Figure 7, we can also see that the anisotropic character
of the first layer is not well recovered. The main reason is that we assume a concentric
TD AEM system for our synthetic data inversion. If the ore-body is absent, the model can
be viewed as a horizontally uniform anisotropic medium and the same response can still
be obtained by swapping the resistivity in the x- and y-directions. The presence of a 3D
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ore-body results in the generation of a vertical current, but the resolution of resistivity in
the x- and y-directions in the inversion does not increase much (see Figure 7e–f). From
the inversion results in x- and y-direction in Figure 7, we find that in the first layer, the
x-direction resistivity has a fake conductive anomaly on the left side, while the y-direction
resistivity at the same location is resistive, which means that we find a “over anisotropy”
phenomenon in the inversion. Figure 8 shows the horizontal slices of the anisotropic
inversion results of ρx and ρy and the equivalent resistivity.
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Figure 7. Anisotropic and isotropic inversions for a model with a triaxial anisotropic host rock and
isotropic ore-body. (a)–(c) show the true model in x, y, and z-directions; (d) shows the isotropic
inversion result; (e)–(g) show the anisotropic inversion results in x, y, and z-directions; (h) shows the
equivalient resistivity ρh calculated from the anisotropic inversion results (all slices are displayed at
y = 40m).

From Figures 7h and 8c, we can see that the equivalent resistivity effectively suppresses
the fake anomalies brought by the “over anisotropy”. Although the definition of equivalent
resistivity has little exact physical meaning, we can get from its distribution a more reliable
model structure. Similarly, from the isotropic inversion results given in Figure 7d, we can
draw the same conclusions as in the previous example. The resistivity distribution in the
isotropic inversion is relatively messy, and the resistivity varies seriously. The reason for
these is that to fit the data, many false anomalies are created to fit the anisotropic structure.

From Figure 9, we can see that both isotropic and anisotropic inversions have good
data fitting. From the RMS curves given in Figure 10a, we can see that both isotropic and
anisotropic inversions achieve stable convergence. From Figure 10b, the regularization
parameter for the isotropic inversion decreases from the initial value of 1000 to 0.00001,
while the regularization parameter for the anisotropic inversion decreases from 1000 to 1.
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in x and y-directions; (c) shows the equivalent resistivity ρh (all horizontal slices are displayed at z = 44 m).
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Figure 9. Data fitting and RMS for profile in Figure 3b for the synthetic example 2. (a) Anisotropic
inversion; (b) isotropic inversion. The black lines are for the inversion data, while the red and green
lines are for predicted data.
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4. Field Data Example

To further demonstrate the effectiveness of our anisotropic inversions, we invert
a survey dataset acquired by the VTEM system in Musgrave province, South Australia
(Figure 11). This dataset was acquired for mineral prospecting and regional hydro-geological
assessment. We select this dataset because this area presents abrupt lateral variations, prod-
uct of an outcropping mafic intrusive and more subtle lateral continuous sedimentary
sequences [38]. The subsurface structure in this area have obvious anisotropy.
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Figure 11. Flight lines in Musgraves of South Australia. The TD AEM data are acquired by the VTEM
system (modified from [38]).

For our inversion, we select 210 surveying points along 7 flight lines, marked as white
lines in Figure 11. The inverse model is discretized into 178 × 48 × 19 cells. In the central
area, the grid sizes in the x- and y-directions are 20 m and 40 m, respectively, while the
dimensions of the 4 external grid sizes increase by a factor of 2, symmetrically to both
sides of the x- and y-directions. In the z-direction, the thickness of first layer is 10 m, and
the thickness of the underlying layers increase by a factor of 1.2 until the 13th layer, the
14th–19th layers are extended layers with thicknesses of 100, 100, 100, 200, 300, and 400 m,
respectively. We add 8 external grids in the air layer. The moving footprint is used to
divide the entire model into sub-models. The division of sub-model is the same as that
of synthetic examples. In the inversion process, we reduce the regularization parameter
to 1/10 of the previous value in each iteration and keep it unchanged when it reaches
the threshold of 0.001, which can ensure the stable convergence in the inversion. The
inversion is terminated when the RMS difference between the last two iterations is less than
a threshold of 0.03. We use 3% of the field data as the data error estimate in our isotropic
and anisotropic inversions.

Figure 12 presents the comparison of 3D anisotropic and isotropic inversion results.
It can be seen from the figures that the resistivity distributions of the anisotropic and
isotropic inversions are similar. They show a layered structure, which is consistent with
the sedimentary lithology in this area. However, a detailed analysis shows that there exist
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significant differences in details. First, the anisotropic inversions show a smoother and more
continuous layered structure than the isotropic ones. In opposite, the isotropic inversions
deliver random results among these lines. The continuity is poor and there is a thick low-
resistivity layer in the central region of Line 5, which is quite different from the surrounding
lines. Second, in the near surface between x = 1500−2500 m, the anisotropic inversion shows
a clear high-resistivity layer in the y-direction, but from the isotropic inversion we cannot
see this layer clearly. By comparing Figure 12a,b, we can further see that there exists a big
difference between the resistivities ρx and ρy from x = 1000 to 2500 m. However, this cannot
be seen from the isotropic inversion results. The artifacts appearing in the anisotropic and
isotropic inversions at the beginning of the profile may result from the poor data fitting.
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We take as example the horizontal slices of isotropic and anisotropic inversions at the 
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x=2500m, showing the anisotropic characteristics in this area. The equivalent resistivity in 
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Figure 12. Comparison of anisotropic and isotropic inversions for the survey data acquired in Musgraves, South Australia.
(a,b) show the inverted ρx and ρy of an anisotropic model; (c) shows the inverted resistivity of an isotropic model, while
(d) shows the equivalent ρh calculated from the anisotropic inversion results.

We take as example the horizontal slices of isotropic and anisotropic inversions at the
depth of 44m and show them in Figure 13. It is seen that the inverted anisotropic models
of ρx in Figure 13a and ρy in 13b are quite different from each other between x = 1500 and
x = 2500m, showing the anisotropic characteristics in this area. The equivalent resistivity
in Figure 13d is similar to the isotropic inversion results in Figure 13c. This is due to the
horizontal current in the earth excited by an AEM system in TD, the EM signal is mainly
created by the averaged resistivities in the x- and y-directions, the equivalent resistivity
takes most effect, so we can see a coincidence between Figure 13c,d.



Minerals 2021, 11, 218 13 of 17

Minerals 2021, 11, 218 13 of 17 
 

 

created by the averaged resistivities in the x- and y-directions, the equivalent resistivity 
takes most effect, so we can see a coincidence between Figure 13c,d. 

To check the data fitting of anisotropic and isotropic inversions, we take Line 5 as an 
example. Figure 14 shows that these two inversions have the same level of data fitting and 
overall RMS. However, the data fitting around 1000 m is not good, which is coincidence 
with the strong resistivity contrast in the inversion results (c.f. Figures 12 and 13). Figure 
15 shows the RMSs and regularization parameters for the isotropic and anisotropic inver-
sions. Both inversions have stable convergence and good data fitting. The anisotropic in-
version converges faster than the isotropic one. From Figure 15b, the regularization pa-
rameter of each iteration decreases by 1/10 and remains unchanged when it reaches 0.001. 

 
Figure 13. Comparison of anisotropic and isotropic inversions for the field data. (a) and (b) show the inverted ρx and ρy 
for an anisotropic model; (c) shows the inverted resistivity for an isotropic model, while (d) shows the equivalent resistiv-
ity ρh calculated from the ρx and ρy for the anisotropic model (all the slices are the horizontal slices at z = 44 m). 

 
Figure 14. Data fitting and RMS for Line 5 in Figure 11. (a) Anisotropic inversion; (b) isotropic inversion. The black lines 
are for the inversion data, while the red and green lines are for predicted data. 

Figure 13. Comparison of anisotropic and isotropic inversions for the field data. (a,b) show the
inverted ρx and ρy for an anisotropic model; (c) shows the inverted resistivity for an isotropic model,
while (d) shows the equivalent resistivity ρh calculated from the ρx and ρy for the anisotropic model
(all the slices are the horizontal slices at z = 44 m).

To check the data fitting of anisotropic and isotropic inversions, we take Line 5 as an
example. Figure 14 shows that these two inversions have the same level of data fitting and
overall RMS. However, the data fitting around 1000 m is not good, which is coincidence
with the strong resistivity contrast in the inversion results (c.f. Figures 12 and 13). Figure 15
shows the RMSs and regularization parameters for the isotropic and anisotropic inversions.
Both inversions have stable convergence and good data fitting. The anisotropic inversion
converges faster than the isotropic one. From Figure 15b, the regularization parameter of
each iteration decreases by 1/10 and remains unchanged when it reaches 0.001.
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5. Conclusions 
In this paper, we have successfully applied the anisotropic model to TD AEM data 

inversion. The numerical examples for both synthetic and field data proved its effective-
ness. From the inversions to the synthetic models we find that it is difficult to invert the 
resistivity in the vertical z-direction from TD AEM data because for an AEM system the 
induced current in z-direction is much smaller than those in the horizontal x- and y-direc-
tions. Another finding from our synthetic examples is that the inversions based on an an-
siotropic model may create “over anisotropy”, which, however, can be supressed by the 
equivalent resistivity calculated from the anisotropic inversion results. Thus, by combin-
ing all those inversion results together, we can obtain a reasonable resistivity distribution 
inside the earth. Further numerical experiment with field survey data demonstrated that 
compared to the isotropic inversion, the inversion based on an anisotropic model can pro-
vide more genuine results than the isotropic one for the TD AEM data collected in an 
anisotropic area.  
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5. Conclusions

In this paper, we have successfully applied the anisotropic model to TD AEM data
inversion. The numerical examples for both synthetic and field data proved its effectiveness.
From the inversions to the synthetic models we find that it is difficult to invert the resistivity
in the vertical z-direction from TD AEM data because for an AEM system the induced
current in z-direction is much smaller than those in the horizontal x- and y-directions.
Another finding from our synthetic examples is that the inversions based on an ansiotropic
model may create “over anisotropy”, which, however, can be supressed by the equivalent
resistivity calculated from the anisotropic inversion results. Thus, by combining all those
inversion results together, we can obtain a reasonable resistivity distribution inside the
earth. Further numerical experiment with field survey data demonstrated that compared
to the isotropic inversion, the inversion based on an anisotropic model can provide more
genuine results than the isotropic one for the TD AEM data collected in an anisotropic area.
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Appendix A

Appendix A.1 Sub-Model Based on the Moving Footprint

For our forward modeling and calculation of the sensitivity matrix based on the
“moving footprint”, we extract an area (200 m × 200 m) under each survey site to construct
the central area of the sub-model (Figure A1), and then add 4 external grids in the x- and
y-directions with the sizes of 40, 80, 160, and 320 m, symmetrically to both sides. We use the
volume-averaging technique to calculate the resistivity in the external region. The sub-model
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area for calculating the sensitivity at each survey site is as large as the footprint, so that there
are only few non-zero elements in a row of the overall matrix. The global sensitivity matrix
is formed by putting all the sensitivity matrices together. Different from the conventional
sensitivity matrix, the sensitivity matrix calculated based on the footprint is sparse and easy
to store. The reduction of the model scale greatly improves the model efficiency.
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Appendix A.2 Grid Design for Our Synthetic Models

For synthetic modelings, we design the grids as follows. The entire model is dis-
cretized into 48 × 48 × 13 cells. The grid sizes in the central area in the x- and y-directions
are assumed to be 20 m, and the dimensions of the 4 external grids in the x- and y-directions
are 40, 80, 160, and 320 m, symmetrically to both sides. The total extensions in the x- and
y-direction are 2000 m. In the z-direction, the thickness of the first layer is 10 m, and the
thickness of the underlying layers increases sequentially by a factor of 1.2 until the 9th
layer, the 10th–13th layers are extended layers with thicknesses of 100, 200, 300, and 400 m,
respectively. The total extension in the z-direction is 1208 m. We add 8 external grids in
the air layer. The first two grids in the air have a size of 10 m, and the rest are increased
by a factor of 3. The total extension of the air layer in the z-direction is 32,800 m. The final
model grids are shown in Figure A2.
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Figure A2. Model grids for synthetic examples. (The air layer is not included). 
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