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Abstract: Machine learning spatial modeling is used for mapping the distribution of deep-sea
polymetallic nodules (PMN). However, the presence and influence of spatial autocorrelation (SAC)
have not been extensively studied. SAC can provide information regarding the variable selection
before modeling, and it results in erroneous validation performance when ignored. ML models are
also problematic when applied in areas far away from the initial training locations, especially if the
(new) area to be predicted covers another feature space. Here, we study the spatial distribution
of PMN in a geomorphologically heterogeneous area of the Peru Basin, where SAC of PMN exists.
The local Moran’s I analysis showed that there are areas with a significantly higher or lower number of
PMN, associated with different backscatter values, aspect orientation, and seafloor geomorphological
characteristics. A quantile regression forests (QRF) model is used using three cross-validation
(CV) techniques (random-, spatial-, and cluster-blocking). We used the recently proposed “Area of
Applicability” method to quantify the geographical areas where feature space extrapolation occurs.
The results show that QRF predicts well in morphologically similar areas, with spatial block cross-
validation being the least unbiased method. Conversely, random-CV overestimates the prediction
performance. Under new conditions, the model transferability is reduced even on local scales,
highlighting the need for spatial model-based dissimilarity analysis and transferability assessment in
new areas.

Keywords: polymetallic nodules; spatial autocorrelation; cross-validation; model transferability

1. Introduction

The spatial distribution of deep-sea polymetallic nodules (PMN) is currently of high
interest due to their high metal content of Mn, Fe, Ni, Co, Cu, or Li. These metals are needed
for green and decarbonized technologies, such as electric cars and wind turbines [1,2].
The European Union alone will need 60 times more lithium and 15 times more cobalt by
2050 than today [3] for this transition. Deep-sea resources such as PMN could support this
transition, with predictive spatial mapping having a key role in mining-block prioritization.

PMN spatial mapping advanced by using autonomous underwater vehicles (AUVs) to
acquire large volumes of hydroacoustic and image data allows for high-resolution seafloor
reconstruction at meter and even down to centimeter scales. The quantitative analysis of
images enlightens the PMN distribution, narrowing the spatial gap that arises from the
sparse ground-truth box-corer samples (usually > 1.8 km) with very limited sampling area
(0.25 m2) [4–9].

Multibeam echosounder (MBES) data (bathymetry and backscatter), seafloor lithology,
environmental information (e.g., organic carbon content), and ground-truth information
(photos, information from box-corer sampling) have been analyzed with machine learning
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(ML) methods, providing the spatial distribution of PMN [7,10–15]. However, the influence
of spatial autocorrelation (SAC) on ML modeling has not been considered.

Spatial autocorrelation describes the phenomenon where local similarity (neighbor-
ing observations) is matched by value similarity (correlation between observations) [16].
When the examined variable is spatially autocorrelated, the assumption of independence
among the observations in the cross-validation (CV) data is violated (i.e., the fitted model
uses almost identical data for training and testing).

Recent studies in terrestrial and marine spatial ML modeling showed that if the
commonly used, non-spatial, random k-fold CV is used, the prediction performance is
over-optimistic when SAC exists in the data. The magnitude of the spatial overfitting
varies based on the degree of SAC among the training points, the environmental similarity
among the regions, and the ML method used [17–25]. In order to address the influence of
SAC, different CV schemes have been proposed; the most common are buffer distances
among training locations [18,26,27], successive distances [28], leaving one training location
out [19,29], and spatial block training. Spatial blocks can be based on geographical coordi-
nates clustering [30], latitudinal-blocking [23], systematic assignment, and environmental
similarity clustering [17,23,31]. SAC also influences the ML feature selection methods
and hyperparameter optimization, resulting in suboptimal variable selection and model
parameters [19,25,29,32].

Applying ML models can also result in poor and unreliable predictions when they
extrapolate in a new geographical area where the feature space varies [17,33–35]. Thus,
there is a need for dissimilarity analysis between the training data and the new area the
prediction should be performed for. Traditional non-spatial approaches, such as density
plots and boxplots, can show the overall degree of differentiation but cannot identify where
it occurs. Moreover, examining and interpreting such plots in multidimensional space is
difficult and could lead to erroneous conclusions [36]. Spatial sample-based methods have
been developed, relying on the univariate distribution range of each predictor and the
new correlations among the predictors within their univariate distribution range [37–40].
Model-based methods have also been introduced, using the model weights and prediction
error in the dissimilarity calculation [17,35,41].

This paper addresses the presence of SAC in the PMN distribution of a specific site
and how this could influence the results in the various modelling steps of the ML workflow
by studying:

(a) The use of SAC as source information for the feature selection before modeling.
The proposed workflow uses the spatial clusters resulting from the local indicators of spa-
tial association (LISA) and specifically from the local Moran’s I [16] and investigates their
relations with the seafloor predictors using boxplots and the non-parametric Wilcoxon–
Mann–Whitney test [42–44]. The Boruta algorithm [45] is used as an alternative automated
ML method. Boruta is an all-relevant feature selection approach that has shown good
performance in high and low-dimensional datasets [46–48]. It has been widely used in
ML seafloor mapping studies, providing increased interpretability and prediction per-
formance [48–53]. However, its performance under the presence of SAC has not been
extensively investigated.

(b) The influence of SAC on the cross-validation workflow steps. Three techniques
are studied: random k-fold CV, systematic spatial block, and feature space clustering.
The latter two techniques were selected as they can highlight the biases due to SAC and
environmental dissimilarity [17]. They are appropriate for big spatial data, as they require
less computation time compared with other methods such as buffer distances [18].

(c) The random forests (RF) [54] spatial predictive uncertainty. The prediction uncer-
tainty is an integral part of spatial modeling, as it provides an in-depth analysis of the
prediction validity. It can also prioritize areas for future sampling; this is of interest particu-
larly in deep-sea research, where available ground-truth data are typically scarce. The RF
prediction uncertainty can be estimated with different methods [18]. Here, the quantile
regression forests (QRF) [55] was selected, as studies showed that it could outperform
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other methods while it produces informative maps without the need for extensive data
preprocessing and model assumptions [18,56–59].

(d) The recently proposed method of dissimilarity index and area of applicability
(AOA) [35]. AOA can identify geographical areas with novel feature space conditions that
could hinder a reliable model transfer.

To our current knowledge, this is the first time that these topics are investigated
for a regression random forests model applied for predicting PMN spatial distribution.
Moreover, the literature research yielded only two studies in the marine environment
(habitat mapping) that consider and include spatial-CV or/and the AOA, highlighting the
need for further investigation. Similarly, QRF has been applied only rarely for seafloor
spatial predictive modeling, despite the popularity of the RF algorithm in general [60].

2. Materials and Methods
2.1. Study Area

The Peru Basin is one of the largest PMN fields globally, with an average abundance of
10 kg/m2 [61]. Although the abundance and metal grade are of economic value [1], only a
few studies have examined the PMN spatial distribution for economic reasons, focusing on
the northern part of the investigated area that exhibits a substantial spatial variance [62–65].
In this northern part, lies the “DISturbance and reCOLonization” (DISCOL) experimental
area (DEA). Inside the DEA (Figure 1), disturbance experiments were conducted to assess
the environmental impact produced by a plough harrow [66,67]. The DEA is spatially
heterogeneous regarding the seafloor morphology, geochemical properties, and PMN
distribution, with many authors highlighting the need for further research [62–64,68,69].
The mapped area extends north and south of the DEA (in the N–S direction) and to-
wards the northeast (hereafter DEA-NE). The entire region lies between −4047 m and
−4179 m water depth, which is slightly above the regional carbonate compensation depth
(CCD) at −4250 m [63]. The DEA itself has low relief, gentle slopes (<3◦), longitudinal
abyssal furrows, and areas with low reflectivity backscatter values and no PMN, hereafter
called black patches (Figure 1). The sediments are layered clayey silts and silty clays,
with foraminiferous residues and shell fragments [67,70].

The observed abyssal furrows strike perpendicularly to the regional contours and
have a U-shape form. They are oriented parallel to the predominant NW bottom current
flow [71,72]. Long-term studies showed that this deep flow is not stable but has periods of
quasi-unidirectional strong currents (>5 cm/s but sometimes up to 17 cm/s) and periods
with slower omnidirectional currents (1–3 cm/s). The recorded bottom current velocities
are inside the velocity range that could preserve abyssal furrows [73]. The abyssal furrows
act as bottom current channels, occasionally eroded during short periods of higher current
velocities or even being relics from an earlier basin period, when the current regime was
stronger [73–75]. Their preservation is supported by the low regional sedimentation rates
of 0.4–2.0 cm/ka [76]. Past erosional bottom currents have also been proposed to be
responsible for the formation of the black patches; these show Plio-Miocene carbonate-rich
sediments as infilling [63,68,72].

The PMN-free black patches are easily recognizable due to their low backscatter reflec-
tivity (Figure 1). They have an ellipsoid shape, with their long axes oriented downslope.
Their depth varies between 2–5 m with remarkable flat and horizontal seafloors [67]. This
downslope direction has been observed in other low reflectivity PMN-free patches in Peru
Basin, connected with downslope sediment transport [68].
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Figure 1. Top left: bathymetric map of the surveyed area in the northern Peru Basin (Southeast Pacific) during research 
cruise SO242-1 [77]. The area is characterized by N–S orthogonal striking graben and horst structures, sea mountains, 
knolls and hills with steep slopes, local depressions, and pit structures [67]. Top right: ship-based MBES backscatter mosaic 
map of the same area. The AUV mapped DEA and DEA-NE areas are indicated as a shaded black polygon. Bottom left: 
(a) DEA and DEA-NE AUV-based bathymetry with photo locations crisscrossing the area (black points). The contours 
have a 2 m depth interval. GC: gravity corer [69], BCM: bottom current measurements [71]. Map (b) is an enlarged map 
showing the abyssal furrows. The furrow height is up to 2 m. Bottom right: (a) DEA and DEA-NE AUV-based backscatter 
map. The northern part has a higher backscatter intensity than the central and southern parts because of the higher number 
of PMN. Backscatter alternations are also created by the presence of abyssal furrows; (b) two of the three low reflectivity 
black patches (PMN-free) that can be identified in the DEA. 

Larger-scale PMN-free areas with low backscatter reflectivity have also been ob-
served for the Clarion-Clipperton Zone [15]. A recent gravity core inside a black patch in 
DEA (Figure 1) revealed that its geochemical conditions differ significantly from the sur-
roundings, having increased organic carbon content (0.5 wt%–0.8 wt%) [69]. The increased 
organic carbon content might have shifted the Mn-redox closer to the seafloor, where the 
diagenetically mobilized Mn is released into the bottom water and thus not supporting 
the PMN formation [68,69,78,79]. Photos inside the black patch confirmed the absence of 
surficial PMN (Figure A1).  

In the DEA-NE area, the seafloor is heterogeneous, with elongated and conical knolls 
and hills separated by local depressions. Visual inspection showed that the slopes have 
an extremely thin sediment coverage, while the local depressions act as sediment depo-
centers with increased sediment accumulation and talus debris [77]. The debris of basaltic 
fragments could act as nuclei supply to form new PMN [63,64]. PMN surficial coverage 
in this area varies, with black patches also present (Figure 1). The high-reflectivity sub-
areas are mainly due to an exposed basement, such as the two 10 m high outcropping 
volcanic cones of pillow basalt inside a crate-shaped structure (Figures 1 and A2). The 

Figure 1. Top left: bathymetric map of the surveyed area in the northern Peru Basin (Southeast Pacific) during research
cruise SO242-1 [77]. The area is characterized by N–S orthogonal striking graben and horst structures, sea mountains, knolls
and hills with steep slopes, local depressions, and pit structures [67]. Top right: ship-based MBES backscatter mosaic map
of the same area. The AUV mapped DEA and DEA-NE areas are indicated as a shaded black polygon. Bottom left: (a) DEA
and DEA-NE AUV-based bathymetry with photo locations crisscrossing the area (black points). The contours have a 2 m
depth interval. GC: gravity corer [69], BCM: bottom current measurements [71]. Map (b) is an enlarged map showing
the abyssal furrows. The furrow height is up to 2 m. Bottom right: (a) DEA and DEA-NE AUV-based backscatter map.
The northern part has a higher backscatter intensity than the central and southern parts because of the higher number of
PMN. Backscatter alternations are also created by the presence of abyssal furrows; (b) two of the three low reflectivity black
patches (PMN-free) that can be identified in the DEA.

Larger-scale PMN-free areas with low backscatter reflectivity have also been observed
for the Clarion-Clipperton Zone [15]. A recent gravity core inside a black patch in DEA
(Figure 1) revealed that its geochemical conditions differ significantly from the surround-
ings, having increased organic carbon content (0.5 wt%–0.8 wt%) [69]. The increased
organic carbon content might have shifted the Mn-redox closer to the seafloor, where the
diagenetically mobilized Mn is released into the bottom water and thus not supporting
the PMN formation [68,69,78,79]. Photos inside the black patch confirmed the absence of
surficial PMN (Figure A1).

In the DEA-NE area, the seafloor is heterogeneous, with elongated and conical knolls
and hills separated by local depressions. Visual inspection showed that the slopes have an
extremely thin sediment coverage, while the local depressions act as sediment depocenters
with increased sediment accumulation and talus debris [77]. The debris of basaltic frag-
ments could act as nuclei supply to form new PMN [63,64]. PMN surficial coverage in this
area varies, with black patches also present (Figure 1). The high-reflectivity sub-areas are
mainly due to an exposed basement, such as the two 10 m high outcropping volcanic cones
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of pillow basalt inside a crate-shaped structure (Figures 1 and A2). The visual inspection
revealed the absence of sediments in their current-exposed, steep sides. PMN were found
in the base of the crater, mixed with talus debris [67,77]. Geochemical analyses of the GC
sediments revealed depth-profile variations for several chemical compounds, which exceed
the area variability of other stations, highlighting the need for further research [69].

2.2. Hydroacoustic Data

High-resolution MBES data were acquired with the AUV Abyss from GEOMAR [80,81].
Bathymetric data processing was performed with the QPS Qimera 1.7 and MB-System
5.7 software (Monterey Bay Aquarium Research Institute (MBARI) University of New
Hampshire and MARUM, Handelsweg, The Netherlands) [82]. The backscatter processing
was carried out with QPS FMGT 7. The finally generated GeoTIFF grids have a 3 m × 3 m
cell size, projected in Universal Transverse Mercator (UTM) zone 16S. Parts of the MBES
data have been presented already by [67,83], but here they have been reprocessed and
merged into one unified dataset.

Seafloor Geomorphological Analysis

Sixteen derivatives of the bathymetric data were computed (Table 1), following the
recommendations of the current literature in the field of quantitatively geomorphometric
analysis of seafloor data [50,84]. Derivatives were calculated based on a 10-cell (30 m)
neighborhood, which is the minimum defined size for some of the derivatives (e.g., vector
ruggedness measure) [85]. However, there are bathymetric derivatives that are calculated
from a 3 × 3 cell neighborhood (e.g., slope, aspect). For those derivatives, the mean
bathymetry was calculated first, and afterwards the derivative was determined. This
approach shows better results than grid resampling or derivative averaging [86]. The 30 m
neighborhood relates to the AUV positioning uncertainty, ensuring that the correct seafloor
derivatives values will be extracted for each photo location. In this respect, a spatial
autocorrelation of the predictors can further reduce the impact of positional uncertainty
on the ML accuracy [87,88]. Moreover, the spatial autocorrelation could eliminate existing
MBES artifacts that could affect the predictive modeling [52,89–91]. A multiscale approach
was applied for the bathymetric position index, with finer and broader scales to better depict
seafloor heterogeneity (0–30 m, 30–100 m, and 100–300 m). The aspect was transformed
to northness and eastness [92–94]. Abbreviations and references to the algorithms of the
calculated 14 derivatives are given in Table 1.

Table 1. MBES derivatives, their abbreviations, and references to their calculation algorithms.

MBES Derivatives Abbreviation Algorithm

Mean Depth MD Focal statistics *1

Deviation from Mean Depth DFMD Focal statistics *1

Slope S Zevenbergen and Thorne, 1987 *1 [95]
Northness N Olaya, 2009 *2 [96]
Eastness E Olaya, 2009 *2

Profile Curvature PrC Zevenbergen and Thorne, 1987 *1

Plan Curvature PlC Zevenbergen and Thorne, 1987 *1

Terrain Surface Convexity TSC Iwahashi and Pike, 2006 *1 [85]
Vector Ruggedness Measure VRM Sappington et al., 2007 *1 [97]
Bathymetric Position Index BPI Weiss, 2000 [98], Wilson et al., 2007 *1 [99]

Backscatter BS Focal statistics *1

Backscatter SD BSSD Focal statistics *1

Backscatter Local Moran BSLM Anselin, 1995 *3 [16]
Backscatter Entropy BSE Haralick et al. 1973 *4 [100]

*1 SAGA GIS [101], *2 Benthic Terrain Modeler [102], *3 raster package [103], *4 glcm package [104].
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2.3. Optic Data

High-resolution photos were acquired by the deep survey camera system onboard
the AUV Abyss [105]. The compact morphology-based nodule delineation (CoMoNoD)
algorithm [9] was used for automated image analysis, providing the number of PMNs/m2.
CoMoNoD has been used for quantitative assessment and predictive modeling already [7,8],
in which the advantages and limitations of the algorithm have been discussed.

We need to highlight that the primary goal of SO242-1 was to re-map in high-resolution
the seafloor (acoustically and visually) inside and outside the DEA, which had been
ploughed in 1989 [66,67], to have data that can provide insight into the current state of the
environmental status and change when compared to previous data acquired between 1989
and 1996 [67,77]. The crisscrossing AUV photo surveys were baseline exploration surveys
about the general PMN occurrence and faunal distribution and were not meant to be a
proper resource estimation survey. Generally, the optic data underestimate the number and
abundance of PMN, and local correction factors (based on box-corer data from the photo
locations) must be applied for a more realistic resource assessment [14,15,106–109].

For compiling the ground-truth dataset, all photos inside and next to the plough
disturbance tracks were excluded, as they do not represent the original seafloor state [67].
The degree of blanketing around the tracks varies [67]. Nevertheless, the PMN abundance
estimation in the area of the full coverage photomosaic (Figure 1) showed that the PMN
could be effectively quantified, while it revealed the first signs of a correlation between
PMN occurrence and seafloor morphology [9].

The optic data sampling in general has good geographical coverage (Figure 1), which
is vital to efficiently depict the PMN spatial distribution trend, especially in local-scale
studies such as ours [7,8,110]. The correlation points towards an underlying relationship
between PMN and seafloor morphology that, synergistically with other environmental
factors, influenced the PMN genesis and current spatial distribution. This is true, although
the observed PMN number only represents the minimum number of nodules, as another
part might occur within the sediment or due to a sediment cover that was not detected by
the CoMoNoD algorithm.

In total, analyses of 30,000 photos were considered reliable and exported as ESRI
shapefile in UTM 16S for further spatial analysis steps. The exported dataset was split into
two independent datasets, creating the train and test dataset with 20,000 and 10,000 photos,
respectively. The random data split without replacement was performed using the Subset
Features tool (Geostatistical Analyst) in ArcMap 10.6 (© Environmental Systems Research
Institute Inc. (ESRI), West Redlands, CA, USA); this tool ensures the same geographical
coverage and statistical characteristics of the two generated datasets (Figure A3). The train-
ing dataset was used for the spatial autocorrelation analysis, feature selection, and spatial
modeling, and the test dataset was used only for the final model evaluation. An overview
of the different processing steps of the presented modelling workflow is given in Figure 2.

2.4. Spatial Data Analysis

The presence of spatial autocorrelation was investigated using the local indicators of
spatial association (LISA) and particularly the local Moran’s I [16]. The local Moran’s I
identifies clusters with significant spatial aggregation of similar high (H-H) or low (L-L)
values (i.e., many or few PMN). The index was calculated using the Cluster and Outlier
Analysis (Anselin Local Moran’s I) Tool (Spatial Statistics) in the ArcMap 10.6, according to
the equations and null hypothesis provided as default from the software (i.e., the examined
attribute is randomly distributed). The spatial relationship was based on the inverse
Euclidian distance, and spatial weights were standardized to eliminate any bias that could
be induced due to the uneven number of spatial neighbors. The analysis was based on
999 permutations. A false discovery rate correction was applied as the recommended
approach to deal with the multiple testing and spatial dependency biases in large datasets;
it provides significant clusters and outliers for a 95 per cent confidence level [111,112].
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A visual boxplot analysis was performed between the two spatial clusters and their
underlying MBES derivative values. In addition, the non-parametric Wilcoxon–Mann–
Whitney [42–44] was used to identify significant differences in the MBES derivatives
between the two spatial clusters. Due to the large sample size (inherent sampling vari-
ability), the substantive significance (effect size) was additionally used together with the
statistical significance (p-value) for the interpretation of the results, when the p-values are
similar or the same [113]. The base [114] and rstatix R packages were used here [115].

2.5. Feature Selection

The results from the spatial autocorrelation analysis were used jointly with the Boruta
analysis for the feature selection. The Boruta algorithm creates a shuffled copy of each
predictor variable and calculates the average variable importance using the ranger-RF algo-
rithm [45]. The variables with higher importance than their shuffled copies are considered
relevant to the target variable (PMN). Since all the relevant variables have been identified,
Spearman’s rank correlation coefficient [116] was used to exclude correlated features with
coefficient values > 0–5. Between two correlating features, the one with the higher relevance
was kept. The Spearman correlation was preferred instead of, e.g., the Pearson correlation,
as it is a non-parametric measure, which assesses the presence of monotonic relationships
while being robust to outliers and deviations from normality [117,118]. For executing the
features selection, the Boruta [45] and GGally [119] R packages were used.

2.6. Quantile Regression Forests

Random forests is an ensemble machine learning method designed of multiple classifi-
cation or regression trees [54]. Each tree uses a random subset of the training data through
bootstrapping. The remaining data (out-of-bag data) are used for internal error validation.
Each tree node is split using the best subset of predictors randomly chosen, minimizing the
correlation among trees. A tree is developed until the maximum depth is reached; the final
predicted value of the regression results after averaging all trees predictions is finished.
The QRF extends the random forests approach by keeping all the predicted values for each
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observation. This information assesses the conditional distribution and, thus, quantiles
can be estimated. The range between the maximum and minimum quantile for a single
prediction expresses the model uncertainty for this prediction. Here, the 0.05th and 0.95th
quantiles were used for the lower and upper prediction uncertainty value.

RF performs well with the recommended default hyperparameter values (e.g., minimal
node size, maximal tree depth) [7,48,120]. Nevertheless, the default caret [121] ranger-
RF optimization process was applied, focusing on the number of variables available for
splitting (mtry) and the splitting criterion. The permutation variable importance and the
partial dependence plots (PDP) were also calculated using the pdp [122] R package. In a
subpart of this study area, previous RF modelling showed an overall good prediction
performance based on the internal OOB data [83].

2.7. Cross-Validation Techniques

Three different cross-validation techniques have been tested.

2.7.1. Random k-fold Cross-Validation

Here, the model is repeatedly trained through random 10-fold CV, and its prediction
performance is evaluated on the left-out fold data (k-1). Ten folds are recommended for
large datasets, as they provide a good bias-variance trade-off [123].

2.7.2. Systematic k-fold Spatial-Blocking Cross-Validation

Ten spatial non-overlapping folds (sub-areas) with equal geographical coverage
(2 km × 1 km) were created using ArcMap 10.6 [Create Fishnet Tool (Data Management)]
(Figure 3). The size of the block is a trade-off between the spatial autocorrelation range
and the need for extrapolation [17,22,23,31]; it should minimize the influence of spatial
autocorrelation in the training locations without creating extensive feature space differ-
entiation among the blocks [17]. The Moran’s I incremental analysis [Incremental Spatial
Autocorrelation Tool (Spatial Statistics)] showed that the spatial autocorrelation quickly
drops after the 1st km (<0.25) and approaches almost zero (<0.05) from 2 km onward
(Figure 3).

2.7.3. Feature Space k-fold Clustering Cross-Validation

As third method, the clustering large applications (CLARA) algorithm was used.
CLARA [124] is a fast implementation of the partitioning around medoids [125] algo-
rithm designed for large datasets. It uses an actual data point (medoid) as the center of
each class, in which the sum of pairwise dissimilarities in this cluster is minimal; this
method is robust to outliers. Only the predictors that resulted from the feature selection
were clustered (Figure 3). The optimal number of clusters was based on the Calinski-
Harabasz index [126]. The clustering was performed with the R packages cluster [127],
clusterCrit [128], and RStoolbox [129].

It needs to be mentioned that both the random and the spatial k-fold CV can only be
applied inside the DEA, where AUV footage exists and an objective comparison between
the three CV techniques is possible. Nevertheless, it provides the opportunity for transfer-
ring the model to a different neighboring area, the DEA-NE. The spatial/cluster-blocking
integration within the model training was performed with the CAST R package [130].
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Figure 3. (a) Systematic spatial block CV data assignment, consisting of 10 spatial blocks with equally sized sub-areas
(2 km × 1 km). The background map is the bathymetric hillshade. (b) Seafloor clustering CV consisting of 10 clusters
with varying areas between 0.80–3.81 km2. (a1,b1) The sampling effort (here expressed as training points per km2 inside
each spatial/cluster block) is unevenly distributed among the blocks/clusters and within each block/cluster. Noteworthy,
the AUV data acquisition did not aim at predictive modeling and was not optimized to achieve a balanced spatial sampling.
More samples have been acquired in the central part of the area due to dedicated photomosaic survey [4,9]. (a2) PMN
Moran’s I value at varying distances; the Moran’s I still does not reach zero beyond 2 km. (b2) Calinski–Harabasz index
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score for different numbers of clusters. Ten (10) is the optimum number in CLARA clustering, which is relatively high for the
small area (≈17 km2), indicating considerable spatial heterogeneity. The central and northern parts have higher variability.
(c) Boxplot of training (hold-in) and validation (hold-out) data that are used in every training iteration for each CV scheme
(RanCV = random-CV, SpaCV = spatial-CV, CluCV = cluster-CV). We noticed that in each training iteration a similar number
of training data is used, reducing the unequal number of sampling points in each block or cluster. (d) Two-dimensional
representation of the clustered feature space with both independent and overlapping clusters. Due to the area heterogeneity,
the first two principal components retained variation accounts only for ≈50% of the total variation.

2.8. Dissimilarity Index and Area of Applicability

The recently proposed approach of using the dissimilarity index (DI) and area of
applicability (AOA) [35] is a model-based method that assesses geographical areas, which
have new feature space conditions and where the prediction error of a given pre-trained
model exceeds the training CV error. The DI is based on the Euclidean feature space
distances between the training dataset and the respective data of the new area. Before
the distance calculation, predictors are scaled and weighted according to their variable
importance of the model training. Thus, the distances of more important predictors account
more to the DI estimation. The 0.95th quantile (outlier removed) of the DI is used as the
AOA threshold. DI values between 0 and 1 indicate similar conditions, while values >1
indicate dissimilarity. Conversely, AOA values closer to 0 indicate unknown conditions for
the extrapolation. The CAST R package was used.

3. Results
3.1. PMN Spatial Distribution and Spatial Autocorrelation

Plotting of the CoMoNoD results in a spatial context revealed a local scale heteroge-
neous PMN distribution, with higher numbers in the northeast and southwest parts of
the studied area. Of particular interest is the central area within the photomosaic survey,
where patches of high PMN numbers coexist next to areas with lower numbers. The PMN
distribution follows the small-scale seafloor variations created by the abyssal furrows and
the prevailing current regime (Figure A4). The local Moran’s I reveals that the majority of
PMN (62%) are spatially aggregated into areas of H-H (27.5%) and L-L (34.5%) distributions
(Figure 4). The boxplot analysis and the Wilcoxon–Mann–Whitney test show differences
in the derivative distribution between the H-H and L-L clusters (Figure 4 and Table 2).
In detail, higher BS values are linked with H-H clusters having a large effect in the test.
The broad-scale BPI (100–300 m) also has significant differences between the two groups,
with an observable moderate substantive significance (effect size). In contrast, the small-
scale BPI (0–30 m) has no statistically significant variation between the two clusters. Similar
to the backscatter entropy (BSE), the aspect of the seafloor surface plays a role in H-H
clustering, as areas with higher numbers of PMN tend to be north-faced oriented (i.e.,
northness values closer to 1).
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Figure 4. Top: PMN spatial H-H and L-L cluster distribution based on the local Moran’s I analysis.
(a) The northwest and southeast parts have mainly or exclusively H-H values. Conversely, the eastern
part has L-L values. (b) The clustering zonation follows the seafloor microrelief (abyssal furrows).
Bottom: boxplots between statistically significant spatial clusters and MBES derivatives, showing the
differences between H-H and L-L clusters.
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Table 2. Wilcoxon–Mann–Whitney test results between statistically significant spatial clusters and
MBES derivatives. The statistical significance (p-value) is given together with the substantive
significance (effect size) for the interpretation of the results when the p-values are the same or
similar. Its calculation and magnitude classification were based on [115].

Derivatives Significance Effect Size Magnitude

Backscatter (BS) p < 2.2 × 10−16 0.537 large
Bathymetric Position Index (BPI100_300) p < 2.2 × 10−16 0.346 moderate

Northness (N) p < 2.2 × 10−16 0.273 small
Mean Depth (MD) p < 2.2 × 10−16 0.269 small

Backscatter Local Moran (BSLM) p < 2.2 × 10−16 0.216 small
Bathymetric Position Index (BPI30_100) p < 2.2 × 10−16 0.149 small

Plan Curvature (PlC) p < 2.2 × 10−16 0.133 small
Terrain Surface Convexity (TSC) p < 2.2 × 10−16 0.117 small

Eastness (E) p < 2.2 × 10−16 0.077 small
Vector Ruggedness Measure (VRM) p = 8.156 × 10−16 0.072 small

Profile Curvature (PrC) p = 3.031 × 10−12 0.063 small
Slope (S) p = 1.437 × 10−6 0.043 small

Deviation from Mean Depth (DFMD) p = 0.00225 0.027 small
Backscatter SD (BSSD) p = 0.04903 0.018 small

Bathymetric Position Index (BPI0_30) p = 0.09455 0.015 small
Backscatter Entropy (BSE) p = 0.64650 0.004 small

3.2. Boruta Analysis and Feature Selection

Similar to the spatial analysis, the Boruta algorithm shows that BS, BPI100_300,
and northness are important and relevant predictors. However, the MD and not the BS is
the most relevant predictor (Figure 5). Moreover, S and BSSD are ranked high, although
both have not a significant difference between H-H and L-L groups (Table 2). Opposite to
the Wilcoxon–Mann–Whitney test, Boruta results indicate that all derivatives are relevant
to predict the PMN distribution. Using all variables leads to a highly correlated dataset
(Figure A5) but excluding highly-correlated variables (r > ±0.5; in the Boruta importance
score) results in the following predictors: MD, S, BS, N, BPI100_300, E, BSSD, and BPI0_30.
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3.3. Model Training and CV Results

Based on the random-CV assessment, the QRF prediction performance was R2 = 0.93.
The same performance also results from the RF internal OOB error. However, when the
spatial- and cluster-CV schemes were used, the prediction performance was reduced to
R2 = 0.19 and R2 = 0.53, respectively (Table 3). The performance is minimized when the
spatial-blocking CV is applied. This shows that the model cannot efficiently transfer the
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predictions towards spatial blocks, where the SAC is low/absent and feature space extrap-
olation occurs to different degrees (Figure A6). The effect of feature space extrapolation
is also depicted in the clustering CV error assessment. Here, in every training repetition,
the model is trying to predict a new feature space cluster. This feature space can be com-
pletely new, or it has overlap with other clusters to a varying degree (Figure 3). This
fact combined with the varying degree of spatial distance among the training points (and
consequently varying SAC) results in a higher training error variance than spatial- and
random-CV (Figure 6). The random-CV has a minimum training error variance due to
the almost identical spatial and feature space characteristics of the randomly resampling
folders. The performance analysis of each spatial/cluster block could provide in-depth
information regarding the specific areas and seafloor clusters for which the model performs
worst, potentially guiding future sampling (Figure A7).

Table 3. QRF performance (R2) for the three different CV schemes. The internal RF OBB error
assessment is also provided.

Training Data OOB Random-CV Spatial-CV Cluster-CV

H-H and L-L data (12,327) 0.93 0.93 0.19 0.53
All training data (19,952) 0.87 0.87 0.14 0.46
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The RF hyperparameter optimization differs between the spatial/cluster and random
CV. In spatial- and cluster-CV, the optimum mtry value is eight (8), whereas it is five (5) in
random-CV. This difference might result from the increased difficulty the model faces in
spatial- and cluster-CV to extrapolate the predictions; it uses all the available information
to gain predictive knowledge. In random-CV, the validation hold-out samples are identical
to the training samples. Consequently, the model can predict well using fewer predictors.

3.3.1. Model Training and Sample Size

No significant correlation was found between the number of training samples used
from the hold-in data and the prediction performance in the remaining (k-1) hold-out
data (random-CV: −0.03 p = 0.93; spatial-CV: −0.11 p = 0.75; cluster-CV: 0.23 p = 0.51).
The inclusion of all the available training points did not further improve the modeling
performance, but resulted in a decrease, particularly in spatial- and cluster-CV (Table 3).
This decrement is attributed to the noise added to the model by using the additional 38% of
data that are not spatially aggregated. This ‘noise’ could be the result of the inherent natural
variability of PMN distribution and/or wrong analyses of the CoMoNoD algorithm, e.g.,
through noise or lower resolution image data (greater distance to the seafloor).

3.3.2. Model Performance in Test Data

The performance for the test data is the same for the three models (R2 = 0.76), in-
dependently of the CV scheme followed. The higher predictive performance during the
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random-CV implies that data overfitting occurred. This is not the case for the spatial- and
cluster-CV. At the end of the training cycle, the model has seen the same training data
from the random folds, spatial blocks, and clusters and similar weights and relationships
between predictors and response variables are established. The relationship type (e.g.,
monotonic, complex) and the marginal effect on the response variable are depicted as PDP
in Figures 7 and A8–A10. The low-correlated dataset ensures that the assumption of inde-
pendence (uncorrelated predictors) holds, and the PDP calculation is not violated [131,132].
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Figure 7. Top left: The QRF variable importance and PDP between PMN and seafloor derivatives.
The QRF response curve is represented by a black line; the LOESS curve [133] (blue line) shows the
difference between a complex ML algorithm and a simpler non-parametric regression model [122].
Blue ticks on the x-axes represent the data deciles. All RF relationships have a non-linear character,
with BS, MD, N, E, and BSSD having a monotonic response. For BS, a clear trend between higher
backscatter values and an increasing number of PMN can be observed. A similar trend is noticed
for the N and E features, with the highest PNM numbers observed towards NW dipping slopes,
which are parallel the dominant bottom current direction. The BPI100_300 and slope S have complex
relationships, with data aggregating in a specific range of the variable. This information could, in
general, be a valuable indication for favorable geomorphological characteristics of PMN occurrence
(e.g., slopes < 2◦), but clearer indications are not given due to the sampling distribution in relation
to the values of the derivatives. In most cases, the training samples are well distributed across the
feature range, providing confidence regarding the established response curves. For BPI100_300 and
BPI0_30, the data are aggregated in a small range, creating none-sampled regions inside the training
feature space that consequently force model extrapolation. The model extrapolation is visualized
better in the two- and three-way interaction PDP, where the data convex hulls between two predictor
variables are presented (Figures A8–A10). All models have the same variable importance ranking
and PDP and, thus, only this from spatial-CV is presented.

3.3.3. QRF Variable Importance

The backscatter (BS) has the highest variable importance, followed by mean depth
(MD), northness (N), and the coarse bathymetric position index (BPI100_300). Slope (S) and
eastness (E) contribute less, while the backscatter standard deviation (BSSD) and BPI0_30
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have marginal or no contribution at all (Figure 7). This ranking is closer to the spatial
analysis results than from the Boruta analyses, where the BSSD, S, and MD have scored
higher. The overall higher agreement between local Moran’s I analysis and a spatially
trained QRF shows that the Boruta may result in sub-optimum importance ranking, due to
the overfitting that occurs when non-spatial training is performed.

3.4. QRF Spatial Predictions and Uncertainty

The model prediction shows a heterogeneous PMN distribution, with a higher number
of PMN aggregated in the northern and southern areas of the DEA that follow the overall
seafloor topography and the bottom current regime (Figure 8). The lower and upper
quantile predictions differ, with the 0.05th quantile being less affected by sampling artifacts,
which are prominent in the 0.95th quantile. Moreover, the 0.05th and 0.50th quantile predict
the spatial extent of PMN-free patches better (Figure 9). Inside the DEA, the central and
southern parts have the lowest quantile difference, due to the increased sampling effort.
The DEA-NE area also has parts with alternating high and low numbers of PMN (Figure 8).
In Figure 10, the RF model results were plotted together with the visual observations
from the ocean floor observation system, showing an overall spatial agreement. However,
the predictions inside the DEA-NE area have high uncertainty, as the model has seen no
training data from this area and the seafloor is morphologically more complex than the
DEA (Figure 8).
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Figure 8. QRF spatial predictions for the entire AUV-mapped area. PMN are spatially aggregated in
the northern and southern parts of the DEA, with the eastern part being the least covered. Despite
the overall spatial agreement, the 0.05th and 0.50th quantiles predict the extent of the PMN free
black patches better. In addition, the 0.95th quantile has linear artifacts; these are caused due
to the difference between the model trend and sample values. The quantile uncertainty (QU) is
minimized in the areas that have samples (here images) and have a similar seafloor geomorphology.
The superimposed bathymetric contours have a 1 m depth interval.
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3.5. Dissimilarity Analysis and Area of Applicability

The dissimilarity analysis showed that the DEA-NE is dissimilar to the training
samples, especially in the areas with rugged seafloor, increased slopes, and shallower
bathymetric depth range. These circumstances reduce the area of applicability of the model,
showing that additional samples must be added for better predictions. Data derived from
the random-CV model have the smallest AOA. The overoptimistic error assessment that
occurs limits the model AOA to a small region around the training locations, where the
CV error is still small and comparable. Conversely, spatial- and cluster-CV have a larger
prediction error. Hence, this error applies towards a wider area (Figure 11). The AOA
also increased when excluding the MD, BSSD, and BPI0_30 features. The latter two
were excluded due to their negligible contribution in the final model. Although, they
are well sampled (Figure 11). MD was excluded, as the training samples do not cover
the entire depth range of the study area (Figure 11). We have prior knowledge from
video observations (e.g., Figure 10 and previous studies [62,63,69]) that the DEA-NE is
inside the bathymetric depth range that favors the aggregation of PMN. The exclusion of
the mean depth could provide a simpler and better transferable model (on local scales),
putting a greater importance on relative bathymetric variations, such as local elevations
and depressions expressed by the BPI. The exclusion of the three variables MD, BSSD,
and BPI0_30 resulted in a decreased dissimilarity and a larger AOA (Figure 11), but the
predictive performance for the test data was reduced (R2 = 0.73). In general, several parts
of the DEA-NE remain unsuitable for predictions using the developed model, due to the
complex geomorphology and lack of samples that cover this complex terrain.
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Figure 11. Top left: the dissimilarity index (DI) between training samples and the study area resulted
from the QRF model weights. Top right: the random-CV has the most limited AOA, which is restricted
to the area directly around the training samples. For block- and cluster-CV (middle left), the pre-
diction error is comparable for the entire DEA and a small part of the DEA-NE (0 = Not applicable,
1 = Applicable). Without the mean depth (MD) as predictor variable, the AOA increases (middle
right). The spatial- and cluster-CV have very similar AOA statistic values (r = 0.96, p < 2.2 × 10−16).
Thus, only the cluster-CV AOA is presented in the density plots (bottom). The density plots show
the difference between the training samples (blue) and the entire study area (red). Mean depth (MD)
has the most significant difference, followed by backscatter (BS), northness (N), and eastness (E).

4. Discussion

This article presents a PMN prediction case study based on AUV hydroacoustic
and image data from the Peru Basin in the Pacific. The study highlights the presence
of spatial autocorrelation within the polymetallic nodule (PMN) distribution, with the
PMN being spatially aggregated due to local geomorphological settings and the prevailing
bottom current regime. The northwest oriented bottom current is channeled through
abyssal furrows and erodes fine sediments. This leaves abundant fragmental materials
(fish teeth, basalt debris, tiny pieces of broken shell, or nodules) as nuclei for the formation
of PMN [134]. The higher number of PMN in the northern part of the DEA and DEA-NE
is supported by the vicinity to seamounts (Figure 1), which provides additional nucleus
material, initiating the nodule formation presence [135]. It is still unclear to what degree
such influence has in comparison or synergistically to the geochemical properties of the
sediment, which play an essential role in the PMN spatial distribution, their abundance,
and size [134,136]. Using spatial geochemical information as input data in the modeling
process would have been advantageous, as omitting such drivers limits the predictive
performance. Unfortunately, the existing sampling methods (gravity cores, push cores,
multi-cores, and box-corers) have limited spatial coverage, are typically clustered in small
sub-regions due to the need for multiple replicates in biological studies, and generally do
not occur in great numbers due to the time-consuming sampling (4–5 h per sample) and
subsequent geochemical analyses.

Although our knowledge of the real reasons and their interrelationship with PMN
formation is incomplete, analyzing the spatial autocorrelation has a strong potential to
explore complex geomorphological relations, as it is an inherent part of the natural PMN
distribution and variability across different spatial scales. In this respect, calculating the
local Moran’s I can contribute in three ways:

(a) Local Moran’s I reveals significant PMN spatial clusters. Further investigation of
such areas revealed the spatial dependency of PMN by the seafloor morphology (exogenous
autocorrelation), as the MBES derivatives values differ significantly between the H-H and
L-L groups.
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(b) Local Moran’s I can effectively identify predictors for spatial modeling. In contrast,
the non-spatial Boruta algorithm showed increased relevance in predictors such as the
BSSD and BPI0_30 that had a minor to zero contribution in the final RF model.

(c) Local Moran’s I reduces the number of training samples needed. Only the data
that contribute the most are kept, and the model becomes computationally lighter while its
performance increases. Studies have highlighted the need for better data (i.e., representative
with low sampling uncertainty and noise, having enough variation to capture critical
patterns in the data, and well distributed across the entire feature space) in data-driven
approaches such as geostatistical and ML predictive modeling [18,137,138]. In this respect,
the local Moran’s I analysis could be an efficient tool.

Spatial autocorrelation (SAC) can help to address the issues mentioned above, at the
same time not considering spatial autocorrelation may result in over-optimistic CV predic-
tions. Similar to recent studies [17,19–21,23,24,139,140], we showed that the conventional
and commonly applied random 10-fold CV could not assess the model performance when
spatial autocorrelation is present. In such cases, spatial- and cluster-blocking perform better.
Spatial-blocking is the least biased and results in lower variance than cluster-blocking;
the higher variance of cluster-blocking has also been mentioned by others [17].

The spatial- and cluster-CV also yielded different mtry hyperparameter values. Five
predictors were adequate to predict the hold-out samples inside the random (and identical)
folders. However, for the spatial- and cluster-CV, all available predictors (eight) were
needed. The final models have the same performance in the unseen (but similar) test data.
By applying different CV methods, we changed our assessment method, not the model
itself. This fact shows that a spatially similar test dataset can show how well the model
can reproduce the data, but it cannot inform about how the model performs when it is
transferred to another area. In this case, the spatial-CV is recommended.

The random-CV could still be preferable in case of a) small datasets with geograph-
ical separation within the training points that exceed the area of spatial autocorrelation
(influence zone) or b) when the predictions are restricted to nearby locations of the training
samples [20,33,141]. Random-CV is the most straightforward implementation. Contrast-
ing spatial-blocking demands a prior correlogram calculation to identify the block size,
and cluster-blocking demands the use of clustering indexes (e.g., Calinski–Harabasz) to
find the optimum number of clusters along with data preprocessing (e.g., scaling of input
MBES derivatives). These procedures usually demand the use of more than one software,
increasing the time and complexity of the processing.

However, the biggest challenge lies in realizing the need for training data that are
simultaneously well spread across the geographical and feature space of the covariates used
for the analysis. Despite the significant advances in terrestrial spatial sampling [142–146],
deep-sea studies have only lately started developing methods to optimize AUV photo
sampling in a way that maximizes the environmental information [147–150]. In this respect,
the QRF and AOA could guide sampling efforts in previously sampled areas or even
during sampling surveys (adaptive sampling or/and active learning).

The poor representation of the feature space, especially the range of the most important
predictor variables, causes a reduced performance and transferability of regression random
forests modelling [151,152]. In our case, the dissimilarity analysis (DI and density curves)
showed differences between the training samples and the targeted feature space. This
becomes visible in the quantile uncertainty (QU), which is maximized in the DEA-NE.
The QU is a helpful tool to explore the model variation inside the convex hull of the
training points (Figures A8 and A9). QU is correlated with DI (r = 0.65, p < 2.2 × 10−16).
However, there are subareas inside the DEA-NE with high dissimilarity but no high
analogue uncertainty. This is a misleading extrapolation effect that has been described
by the AOA authors [35]. In other words, QRF can provide locations that have increased
model variation, but it cannot identify if this is caused due to the inherent uncertainty of
the hydroacoustic and image data or due to extrapolation.



Minerals 2021, 11, 1172 20 of 33

Any model extrapolation beyond the training domain should be accompanied by a
thorough transferability assessment, ideally with an external evaluation using data from
the new area [22,33,153]. This was not possible here, due to a lack of data. Instead, we used
the recently proposed AOA method. Within the DEA-NE area, the expected prediction
error is higher than in the trained area of the DEA, reducing the model applicability. The ex-
clusion of predictors that are prone to overfitting, such as elevation/depth, increases the
generalization performance, which has also been mentioned by [22]. The advantage of RF
to build complex non-linear response curves with the training data, outperforming other
regression methods [154], could result in a disadvantage when these associations occur
only locally [155]. A successful transfer thus relies on the assumption that the relationship
between response variable and predictor exists in both areas. The generalization perfor-
mance is maximized when the data information and feature selection are combined with
the domain knowledge, even if the domain knowledge is basic or imperfect [156,157]. Other
studies also showed that machine learning models with only a few predictor variables are
more transferable in marine habitat mapping than complex ones [158].

Similarly, less complex models (e.g., partial least squares regression) could generalize
better when spatial-CV schemes are applied, highlighting the trade-off decision to be made
between accuracy and generalization performance [21,25,27]. Similarly, ensemble ML mod-
els that average predictions of different single models could also yield better predictions
across different areas, as presented by [23,141]. The comparison of different models was
beyond the scope of this paper. Here, we focused on the widely used random forests
algorithm and its quantile uncertainty (i.e., QRF). We should underline that transferability
is not the primary goal when applying machine learning-based spatial modelling. ML is
designed to derive accurate predictions based on an existing measurement that captures
the underlying relationship, for which our knowledge or conceptual understanding is still
developing. Towards this direction, the RF importance score is a valuable measure to test
known hypotheses, but also to generate new ones [155,159,160].

Future research in other parts of the Peru Basin and other known fields with poly-
metallic nodules (e.g., the Clarion-Clipperton Zone) could further enlighten the drivers
of spatial autocorrelation. In addition, the spatial analysis in various scales would also
provide insights for the underlying mechanisms that influence the spatial distribution of
polymetallic nodules.

5. Conclusions

Our case study shows that spatial predictions of polymetallic nodules with ML meth-
ods need to be spatial-cross-validated when the spatial autocorrelation is present, and that
the seafloor morphology varies. Similarly, model transfer to areas with scarce or no data
should be evaluated by regarding the new area similarity with the training domain. Ideally,
each ML predictive spatial map should be accompanied with its cross-validation strategy,
uncertainty prediction, and area of application analyses, for supporting the model interpre-
tation and decision making. In other words, the focus should not only lie in generating
the final prediction map, but also on how this map has been derived from the fitted model
and data.
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Figure A2. Examples of OFOS photos (SO242-1_135_OFOS06) inside the crate-shaped structure with 
two outcropping volcanic cones of pillow basalts (DEA-NE). Top left: the short hillcrest with in-
creased slopes; top right: PMN mixed with talus debris in the foot slope and crater floor; middle: 
3D bathymetric representation (exaggerated ×5); bottom: the base of the volcanic cone (left) and the 
summit (right). 

  

Figure A2. Examples of OFOS photos (SO242-1_135_OFOS06) inside the crate-shaped structure
with two outcropping volcanic cones of pillow basalts (DEA-NE). Top left: the short hillcrest with
increased slopes; top right: PMN mixed with talus debris in the foot slope and crater floor; middle:
3D bathymetric representation (exaggerated ×5); bottom: the base of the volcanic cone (left) and the
summit (right).
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Figure A3. Top left: train and test dataset distribution have the same geographical coverage and 
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the Extract Multi Values to Points tool (Spatial Analyst) in ArcMap 10.6. 

Figure A3. Top left: train and test dataset distribution have the same geographical coverage and
distribution characteristics. The MBES derivative values were extracted at each photo location using
the Extract Multi Values to Points tool (Spatial Analyst) in ArcMap 10.6.
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Figure A4. (a) PMN distribution within the study area (DEA). (b) The central part of the area is 
characterized by successive alternations of higher and lower numbers of PMN. These alternations 
seem to follow the abyssal furrows microrelief. The background map is the backscatter intensity, 
with brighter areas to imply higher reflectivity. A higher-resolution map of PMN distribution inside 
the photomosaic area is provided by [9]. 

 
Figure A5. MBES derivatives correlation plot (left) and low-correlated predictors according to the Boruta ranking (right). 

Figure A4. (a) PMN distribution within the study area (DEA). (b) The central part of the area is
characterized by successive alternations of higher and lower numbers of PMN. These alternations
seem to follow the abyssal furrows microrelief. The background map is the backscatter intensity,
with brighter areas to imply higher reflectivity. A higher-resolution map of PMN distribution inside
the photomosaic area is provided by [9].
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Figure A6. Seafloor clusters within each spatial block; at least one cluster is absent in each of the 
spatial blocks. This causes spatial-CV extrapolation, which creates results such as the cluster-CV 
approach. 

Figure A6. Seafloor clusters within each spatial block; at least one cluster is absent in each of the
spatial blocks. This causes spatial-CV extrapolation, which creates results such as the cluster-CV
approach.
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Figure A7. Random fold (top), spatial block (middle), and cluster block (bottom) resam-
pling prediction performance during CV. The model uses the information included in the nine
folds/blocks/clusters to predict the remaining fold/block/cluster.
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Figure A8. Shown are 2D PDPs between slope, BPI100_300, and PMN. Left: extrapolated feature
space, Right: convex hull of the two variables and the none-described empty feature space. The inter-
pretation outside of the convex hull is inadvisable.
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Figure A9. Three-way interaction PDP show the PMN response (colored) related to the BS, N, and 
E. The convex hull of the three variables is presented. The number of PMN increases with higher 
backscatter intensity and to the NW direction. In order to display the 3rd continuous variable (N), 
the PDP package converts it into shingles (a data structure that consists of a numeric vector along 
with four intervals that define the classes of the shingle. The intervals overlap is 10%). 
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Figure A9. Three-way interaction PDP show the PMN response (colored) related to the BS, N, and E.
The convex hull of the three variables is presented. The number of PMN increases with higher
backscatter intensity and to the NW direction. In order to display the 3rd continuous variable (N),
the PDP package converts it into shingles (a data structure that consists of a numeric vector along
with four intervals that define the classes of the shingle. The intervals overlap is 10%).
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