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Abstract: Due to the absence of early magma records in pegmatites, it is difficult to investigate the
behavior of Nb and Ta during the transformation from magma to pegmatite melt. Zircon megacrysts
in an NYF-type (Nb-Y-HREE-F) pegmatite from the Arabian Shield could be divided into three
phases from core to margin. The Phase I zircon in the core of the zircon megacrysts had typical
magma oscillatory zonation with ∑REE content from 300 to 400 ppm, Th/U ratios of less than 0.1
and Nb/Ta ratios of less than 1.0. Phase II zircon had oscillatory zonation and was enriched with
LREEs mostly with Th/U ratios of 0.1–0.2 and Nb/Ta ratios of 1.0–3.0. Phase III unzoned zircon had
the highest ∑REE content, from 8000 to 15,000 ppm, with Th/U ratios higher than 3.0 and Nb/Ta
ratios higher than 5.0. The Hf-O isotopic composition was similar in the different phases of zircon
with initial 176Hf/177Hf ratios of 0.28258–0.28277, εHf(t) values from 8.0 to 12.0 and δ18OVSMOW from
+4.0‰ to +5.0‰. Zircon megacrysts in the NYF-type pegmatite from the Arabian Shield record the
transformation from magma to pegmatite melt. Similar Hf-O isotopic compositions mean a closed
magmatic system without contamination by external melt, rock or fluid. The proposed modeling
shows that magma with low Nb and Ta concentrations and Nb/Ta ratios could evolve into residual
pegmatite melt with a high Nb content and superchondrite Nb/Ta ratio during several stages of
melt extraction and fractional crystallization of Ti-rich minerals, such as rutile and titanite. The
Nb/Ta ratio can be used as an effective indicator of the transformation process from magma to
pegmatite melt.

Keywords: fractional crystallization; Nb/Ta ratio; zircon megacryst; NYF-type pegmatite

1. Introduction

The Nb-Ta behavior during the transformation from magma to pegmatite melt has
always been a key issue in the study of pegmatites and this barrier has also restricted a
further understanding of the transition mechanism from magma to hydrothermal fluid [1,2].
NYF-type (Nb-Y-HREE-F) pegmatite could produce Nb deposits; however, the Nb-Ta
fractionation mechanism is also a conundrum. Stepanov et al. [3] compiled the major and
trace elements composition of granite and Ta ore and discovered that mica crystallization
in granite source results in the formation of LCT-type (Li-Cs-Ta) pegmatite with a high Ta
content and Tb/Nb ratio. Černý et al. [2] indicated that NYF-type pegmatite usually has a
high Nb concentration and Nb/Ta ratio, but it is not clear whether the Nb and Ta features
of pegmatite represent that of the source or whether these two elements are fractionated
due to an aspect of the mineralogy or fluid chemistry of their parental alkaline magmas.
Due to the absence of early magma crystallization records in pegmatites, it is difficult to
study the transformation in detail [4]. The zircon megacrysts that record the transition
from magma to pegmatite melt studied in this article are very rare [1,2,4] and, from it, we
can analyze the trace elements and isotopic composition and describe the transformation
and element fractionation from magma to pegmatite melt.
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Zircon is commonly used for dating and tracing and its trace elements and Hf-O
isotopic composition could provide effective indications in terms of the magmatic source
and evolution [5,6]. Limited by crystallization temperature and condition, zircon commonly
records a certain stage of the magmatic evolution process. To the best of our knowledge,
few published reports introduced the evolution process from magma to pegmatite melt.

This paper studies the occurrence, Hf-O isotopic composition and trace elements
composition of zircon megacrysts in a pegmatite from our working area and discusses that
Phase I and II zircon was crystallized from early magma and Phase III zircon formed in
pegmatite melt. The Nb/Ta ratio could indicate the transformation process.

2. Geological Background

The Arabian-Nubian Shield (ANS) is a geological crustal province of the Neoprotero-
zoic age exposed in NE Arabia and Africa, along margin of the Red Sea from Ethiopia in
the south to Jordan in the north [7,8]. It evolved through the accretion of juvenile island-arc
during the closure of the Mozambique Ocean over more than 250 Ma and maturated
crust in early Ediacaran time as a granitoid-dominated continental, following a compres-
sional deformation along the northern part of the East-African orogeny (Figure 1) [7,9].
The magmatic pattern is consistent with the generally accepted view that magmatism in
the Arabian-Nubian Shield evolved during the Cryogenian and Ediacaran from an early
episode of island-arc tholeiite and calc-alkaline tonalite-trondhjemite-granodiorite (TTG)
assemblages to collisional calc-alkaline TTG and granite assemblages to post-collisional
within-plate, extensional and anorogenic A-type alkaline assemblages during the Cryoge-
nian and Ediacaran [7,10–15]. Syenogranite and monzogranite intrusions were emplaced
sporadically during the Cryogenian (850~630 Ma), but became abundant after approxi-
mately 650 Ma. Alkali granites and alkali-feldspar granites overlapped with syenogranites
and monzogranite from 640 Ma onward, with peaks at approximately 630~590 Ma [13]. The
timing of the cessation of the TTG formation and the Ediacaran peak of granitic magmatism
are comparable to the timing of the transition from I-type to A-type magmatism in Sinai at
610 Ma [16,17].
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Figure 1. Simplified geological map: (a) the simplified geology of the study area showing the tectonic setting of subalka-
line-alkaline-peralkaline granite, modified after Johnson and Fayek [16]; (b) simplified lithological map of the sampling 
area where pegmatite is exposed. The location of a sampling site of the zircon megacrysts from pegmatite (41°2.44′, 
25°33.49′) discussed in this study is shown as a blue star. 

The study area is composed of medium- to coarse-grained syenogranite, medium- to 
fine-grained riebeckite granite, peralkaline granite, granophyre, etc. Pegmatite forms as 
lenses in syenogranite (Figure S1) and can be divided into margin and core parts. The 
marginal part was mainly composed of quartz and feldspar with fine-grained granitic 
texture; the core part was mainly composed of coarse-grained to pegmatitic quartz and 
feldspar. Zircon megacrysts picked out from the pegmatite were brown and opaque, 
euhedral to subhedral crystals up to 5 cm in diameter, well preserved, composed of sev-
eral magma crystallization phases, often stuffed with Fe-oxides mineral inclusions in the 
marginal part (Figure 2). 

Figure 1. Simplified geological map: (a) the simplified geology of the study area showing the
tectonic setting of subalkaline-alkaline-peralkaline granite, modified after Johnson and Fayek [16];
(b) simplified lithological map of the sampling area where pegmatite is exposed. The location of a
sampling site of the zircon megacrysts from pegmatite (41◦2.44′, 25◦33.49′) discussed in this study is
shown as a blue star.
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The study area is composed of medium- to coarse-grained syenogranite, medium-
to fine-grained riebeckite granite, peralkaline granite, granophyre, etc. Pegmatite forms
as lenses in syenogranite (Figure S1) and can be divided into margin and core parts. The
marginal part was mainly composed of quartz and feldspar with fine-grained granitic
texture; the core part was mainly composed of coarse-grained to pegmatitic quartz and
feldspar. Zircon megacrysts picked out from the pegmatite were brown and opaque,
euhedral to subhedral crystals up to 5 cm in diameter, well preserved, composed of
several magma crystallization phases, often stuffed with Fe-oxides mineral inclusions in
the marginal part (Figure 2).
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Figure 2. CL images of zircon megacrysts from pegmatite, showing different phases (from Ι to ΙΙΙ) 
of zircon. (a–e) Phase Ι represents zoned igneous zircon. Phase ΙΙ zircons have an oscillatory zona-
tion similar to Phase Ι, but a different trace elements content. Phase ΙΙΙ represent unzoned zircon 
with a high Th and REE content and contain abundant hematite inclusions. 
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and cathodoluminescence (CL) images to reveal their internal textures. U-Pb dating of 
the zircon was conducted using a CAMECA IMS-1280HR ion microprobe (Gennevilliers, 
France) at the Beijing Research Institute of Uranium Geology. We used the shaped and 
monocollector modes to determine the zircon U-Pb ages. 

The O2- primary ion beam was accelerated at −13 kV. The aperture illumination 
mode (Kohler illumination) was used with a 200 μm primary beam mass filter (PBMF) 
aperture. The ellipsoidal spot was about 20 μm × 30 μm in size. Positive secondary ions 
were extracted with a 10 kV potential. Oxygen flooding was used to increase the O2 
pressure to ~2.0 × 10−5 mbar in the sample chamber, enhancing the Pb+ sensitivity. 

In the secondary ion beam optics, a 50 eV energy slit was used, together with a mass 
resolution of 4500 (defined at 10% peak height) to separate the Pb+ peaks from isobaric 
interferences. The field aperture was set to 6000 μm and the entrance slit was adjusted to 
about 120 μm. Rectangular lenses were activated in the secondary ion optics to increase 
the transmission at high mass resolution. The monocollector mode was used to measure 
secondary ion beam intensities by peak jumping sequence: 90Zr216O, 92Zr216O, 200.5, 
94Zr216O, 204Pb, 206Pb, 207Pb, 208Pb, 238U, 232Th16O, 238U16O and 238U16O2. Each measurement 
consisted of 7 cycles and the total analytical time was about 11 min. A correction for 
common Pb was made by measuring the 204Pb amount. Generally, normal zircon has a 
lower concentration than common Pb and measured zircon 206Pb/204Pb ratios are mostly 
higher than 10,000. The data were calculated by Isoplot 4.15. The 207Pb/206Pb-204Pb/206Pb 
isochron age of standard Plešovice zircon was 335 ± 11 Ma (MSWD = 0.93) (Table S3), 

Figure 2. CL images of zircon megacrysts from pegmatite, showing different phases (from I to III) of
zircon. (a–e) Phase I represents zoned igneous zircon. Phase II zircons have an oscillatory zonation
similar to Phase I, but a different trace elements content. Phase III represent unzoned zircon with a
high Th and REE content and contain abundant hematite inclusions.

3. Methods
3.1. SIMS Zircon U-Pb Dating

The zircon megacrysts were mounted in epoxy resin along with Plešovice, Qinghu
zircon standards. The mounts were polished to expose the internal parts of the grains.
The mounts were ultrasonically cleaned with deionized water and alcohol and coated
with gold prior to the SIMS (secondary ion mass spectrometry) analysis. Prior to U-Pb
isotopic analysis, the zircon grains were examined with transmitted and reflected light
and cathodoluminescence (CL) images to reveal their internal textures. U-Pb dating of
the zircon was conducted using a CAMECA IMS-1280HR ion microprobe (Gennevilliers,
France) at the Beijing Research Institute of Uranium Geology. We used the shaped and
monocollector modes to determine the zircon U-Pb ages.

The O2- primary ion beam was accelerated at −13 kV. The aperture illumination mode
(Kohler illumination) was used with a 200 µm primary beam mass filter (PBMF) aperture.
The ellipsoidal spot was about 20 µm × 30 µm in size. Positive secondary ions were
extracted with a 10 kV potential. Oxygen flooding was used to increase the O2 pressure to
~2.0 × 10−5 mbar in the sample chamber, enhancing the Pb+ sensitivity.

In the secondary ion beam optics, a 50 eV energy slit was used, together with a
mass resolution of 4500 (defined at 10% peak height) to separate the Pb+ peaks from
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isobaric interferences. The field aperture was set to 6000 µm and the entrance slit was
adjusted to about 120 µm. Rectangular lenses were activated in the secondary ion optics to
increase the transmission at high mass resolution. The monocollector mode was used to
measure secondary ion beam intensities by peak jumping sequence: 90Zr2

16O, 92Zr2
16O,

200.5, 94Zr2
16O, 204Pb, 206Pb, 207Pb, 208Pb, 238U, 232Th16O, 238U16O and 238U16O2. Each

measurement consisted of 7 cycles and the total analytical time was about 11 min. A
correction for common Pb was made by measuring the 204Pb amount. Generally, normal
zircon has a lower concentration than common Pb and measured zircon 206Pb/204Pb ratios
are mostly higher than 10,000. The data were calculated by Isoplot 4.15. The 207Pb/206Pb-
204Pb/206Pb isochron age of standard Plešovice zircon was 335 ± 11 Ma (MSWD = 0.93)
(Table S3), similar to the commonly accepted age of 337 Ma [18]. More details can be found
in Li et al. [19].

3.2. SIMS Zircon Oxygen Isotopic Analysis

The oxygen isotopic analysis of zircon was conducted using a CAMECA IMS-1280HR
ion microprobe at the Beijing Research Institute of Uranium Geology and the Guangzhou
Institute of Geochemistry, Chinese Academy of Sciences. We used the Gaussian and
multicollector modes to determine the zircon O isotopic composition. The 133Cs primary
ion beam was accelerated at 10 kV with an intensity of ~2 nA. The Gaussian mode was
used with a 400 µm mass aperture. The ion beam was approximately 10 µm in size and a
raster with 10 µm was used to scan an area of approximately 20 µm. Positive secondary
ions were extracted with a ~10 kV negative potential.

In order to compensate for sample charging during the analysis, a normal incidence
electron flood gun was applied with a homogeneous electron density over a 100 µm
elliptical area. In the secondary ion beam optics, a 50eV energy slit was used, together with
a mass resolution of 2400 (defined at 10% peak height) to separate the peaks from isobaric
interferences. The entrance silt and exit silt were set to 150 µm and 405 µm, respectively; the
field aperture and contrast aperture were adjusted to 5000 µm and 400 µm, respectively. A
multicollection mode was adopted to measure the oxygen isotope compositions. Secondary
16O and 18O ions were measured simultaneously using two Faraday cup detectors. Each
analysis was composed of 20 cycles and per-sputtering of approximately 3 min and 40 s [20].

The standards (Penglai and Qinghu) were analyzed simultaneously to apply the
instrumental mass bias correction. The instrumental mass fraction factor (IMF) was ac-
counted for using the Penglai zircon standard with δ18OVSMOW = +5.31 ± 0.1‰ [20] or
the Qinghu zircon standard with δ18OVSMOW= +5.39 ± 0.1‰ [21]. The standards analyses
and measured values precision of individual analyses were better than 0.3‰ by 2SD. The
results of the18O/16O ratios are reported in per mil notation relative to the Vienna Standard
Mean Ocean Water (VSMOW, 18O/16O = 0.0020052).

During the analytical session, the Qinghu zircon standard was measured as an un-
known. The Qinghu oxygen isotopic results of SIMS at the Beijing Research Institute of
Uranium Geology and Guangzhou Institute of Geochemistry, Chinese Academy of Sciences,
during samples oxygen isotopic testing, yielded a weighted mean of δ18OVSMOW = +5.46 ±
0.13‰(1σ), which is consistent within the error in the reported value of +5.39 ± 0.1‰ (1σ)
(Table S5).

3.3. LA-ICP-MS Zircon Hf Isotopic Analysis

The zircon Hf isotopic analyses were conducted at the Beijing Research Institute of
Uranium Geology using a Nu Plasma II multi-collector (MC)-ICP-MS (Wrexham, UK) with
an attached GeoLasPro 193 nm excimer laser-ablation system. During the Hf analysis, a
laser repetition rate of 10 Hz and energy of 15J/cm2 were used and the spot size was 40 µm.
The raw count rates for 172Yb, 173Yb, 175Lu, 176(Hf+Yb+Lu), 177Hf, 178Hf, 179Hf, 180Hf and
182W were collected and the isobaric interference corrections for 176Lu and 176Yb on 176Hf
were precisely determined. The total analytical time was approximately 1 min, including
20 s of blank gas collection and 30 s of laser ablation. The detailed analytical procedure and
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correction for interferences followed those described by Wu et al. [22]. During the analyses,
the 176Hf/177Hf ratios of the Plešovice zircon standard were 0.282481 ± 23 (1SD, n = 13),
similar to the commonly accepted 176Hf/177Hf ratio of 0.282482 ± 23 (2SD) [18]. The
176Hf/177Hf ratios of 91,500 zircon standard were 0.282303 ± 22 (1SD, n = 29), similar to the
commonly accepted 176Hf/177Hf ratio of Z 0.282308 ± 6 (2SD) [23]. The 176Hf/177Hf ratios
of Mud Tank zircon standard were 0.282507 ± 20 (1SD, n = 29), similar to the commonly
accepted 176Hf/177Hf ratio of 0.282523 ± 10 (2SD) [24] (Table S7).

3.4. LA-ICP-MS Trace Elements Analysis

Zircon trace elements experiments were carried out on an Analytik Jena AG Plas-
maQuant MS Plus, ICP-MS instrument (Jena, Germany) in combination with an excimer
193 nm laser ablation system (NewWave, NWR193 UItra Compact). The rutile trace el-
ements were analyzed by using an Element XR SF-ICP-MS instrument (Thermo Fisher
Scientific, Massachusetts, USA) with a GeoLas HD 193 nm ArF excimer laser-ablation
system at the Beijing Research Institute of Uranium Geology. Generally speaking, LA-
ICP-MS measurements of zircons were carried out using a time-resolved analysis in fast,
peak jumping mode. Each spot a nalysis consisted of approximately 30 s of background
acquisition followed by 40 s of data acquisition from the sample. The excimer laser system
was equipped with apertures, which imaged the laser beam onto the sample surface. This
optical configuration allows a constant fluence to be selected, which is independent of
crater diameters. Helium was used as carrier gas. Calibration was performed using NIST
SRM610 and -612 as the external calibrants in conjunction with internal standardization
using Si according to Anczkiewicz et al. [25]. Data reduction was performed by using the
GLITTER 4.0 software (Macquarie University). The concentration values of NIST SRM 610
used for external calibration were taken from Pearce et al. [26]. Trace elements measure-
ments of rutile were carried out using low mass resolution to maximize sensitivity. Helium
was used as the carrier gas to enhance the efficiency of transportation. A repetition rate of
3 Hz and a laser energy density of 3 J cm−2 were used.

4. Results
4.1. Trace Elements Composition of Zircon Megacrysts

We collected spectacularly large (up to several centimetres in size), brown, opaque
zircons with subhedral to euhedral shapes in pegmatites. Three phases of zircon could be
distinguished. The characteristics of Phase I zircons in the core of the zircon megacrysts
included typical magma oscillatory zonation, sizes from 100 µm to 1000 µm, Th/U ratios
of less than 0.1, ∑REE content from 315 ppm to 417 ppm and low contents of light REE
(LREEs), heavy REE (HREEs), U, Th, Y, a positive Ce anomaly and a negative Eu anomaly.
Phase II zircons had clear oscillatory zonation with HREE concentrations similar to Phase I.
Phase II were enriched with LREEs with Th/U ratios from 0.1 to 0.3 and more abundant
than Phase I. The characteristics of Phase III unzoned zircons were Th/U ratios higher
than 2.0 (even up to 10.0), a higher concentration of HREEs, U, Th, P and Y and higher
positive Ce anomaly. Phase III, in the marginal parts of the zircon megacryst, contained
abundant hematite mineral inclusions. The minerals associated with zircon megacrysts
were bastnaesite, fluorite, arfvedsonite, rutile and titanite (Figures 3 and 4; Supplementary
Figures S2 and S4). The Ce/Ce* of Phase I, II and III zircons changed sequentially from ~2
to ~100 and the degree of magma oxidation evolved from a reducing (corresponding to Iron-
wüstite) to an oxidizing environment (corresponding to Magnetite-hematite) (Figure S7),
which corresponds with the occurrence of hematite inclusions in Phase III zircon.
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Figure 3. REE patterns of different phases zircons from pegmatite. Chondrite-normalized values are
from McDonough and Sun [27]. The plots show the REE profiles of zircon (from Phase I to Phase III)
with greater than approximately 200 ppm Fe analyses removed to avoid contamination by inclusions.
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Figure 4. Nb/Ta ratio vs. Nb and Ta content of Phase I, II and III zircon. (a) Nb/Ta ratio vs. Nb content of Phase I, II and III;
(b) Nb/Ta ratio vs. Ta content of Phase I, II and III.

Phase I zircons had the lowest Nb and Ta concentrations and Nb/Ta ratios, while Phase
II and III zircons had similar Nb concentrations; however, Ta concentrations decreased from
Phase II to III zircons. The Nb/Ta ratio of the zircon megacrysts continuously increased
from Phase I to III from <1.0 to > 5.0 (Figure 4).

4.2. Timing Evolution of Zircon Megacrysts

Considering the variable trace elements content in the zircon phases, especially the
Th content and possible matrix effect, the in situ zircon U–Pb age determination was not
a suitable method for determining the time of zircon crystallization, although the dating
results show that the U-Pb isotopic system remained almost closed and without an obvious
Pb loss. In order to minimize the matrix effect, we chose to use the 207Pb/206Pb-204Pb/206Pb
isochron age to date. All Phase I to Phase III zircon showed a close correlation between
the measured 204Pb/206Pb and 207Pb/206Pb ratios. The Isochron ages of Phase I, II and
III zircon were obtained; Phase I, II and III zircon were 640 ± 12 Ma (MSWD = 0.74),
642 ± 17 Ma (MSWD = 0.53) and 636.1 ± 4.3 Ma (MSWD = 0.62), respectively. The timing
of the zircon phases by SIMS were too close to distinguish the duration of the crystallization
(Figure S9, Table S3).



Minerals 2021, 11, 1139 7 of 15

4.3. Hf-O Isotopic Characteristics of Zircon Megacrysts

The δ18OVSMOW values of Phase I and II showed a larger range than those of Phase
III of zircon megacrysts (from +3.6‰ to +6.8‰), most of which fell between +4.0‰ and
+5.0‰, partly in the mantle δ18OVSMOW range. The δ18OVSMOW values of Phase III mostly
ranged from +4.0‰ to +5.0‰ and some values showed mantle values. The δ18OVSMOW
values of zircons of different phases were mostly similar from the core to the margin
(Figure 5). Higher values of > +6.0‰ usually had higher internal precisions of 16O counts,
indicating contamination by the inclusions (Figure 5; Figure S10, Table S4).
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Figure 5. The δ18O values of Phase I, II and III zircons. Error bars are 2σ.

Zircons of different phases had similar initial 176Hf/177Hf ratios and εHf(t) values.
Phase I had initial 176Hf/177Hf ratios from 0.28261 to 0.28267 and εHf(t) values from +8.4
to +10.4, calculated at 640 Ma, with TDM ages from 810 Ma to 890 Ma. Phase II had initial
176Hf/177Hf ratios from 0.28259 to 0.28268 and εHf(t) values from +7.7 to +10.9, calculated
at 642 Ma, with TDM ages from 790 Ma to 920 Ma. Phase III had initial 176Hf/177Hf ratios
from 0.28258 to 0.28277 and εHf(t) values from +7.1 to +13.8, calculated at 636.1 Ma, with
TDM ages from 680 Ma to 990Ma. Higher εHf(t) values of >12.0 in Phase III may have
resulted from the high Yb content and inaccurate correction of 176Yb (Figure S11). The
εHf(t) values of zircon megacrysts were mostly from +8.0 to +12.0 and the εHf(t) values
of different phases zircons from the core to the margin were stable, indicating that there
were no obvious variations of Hf isotope composition during the magma crystallization
(Figure 6, Table S6).
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4.4. Petrological Characteristics and Trace Elements Composition of Marginal Zone

Marginal zone of pegmatite had a fine-grained texture, massive structure. The main
minerals were K-feldspar, quartz and the accessory minerals included zircon, rutile, titanite,
hematite, fluorite, columbite and other minerals rich in REEs or uranium. Quartz commonly
has typical oscillatory zonation. Arfvedsonite is rare and no biotite nor muscovite were
found in pegmatite. The SiO2 concentration of marginal zone ranged from 68% to 69%,
which is lower than that of typical granite. Marginal zone had a relatively higher alkali
concentration with K2O + Na2O of 7.63%~ 7.70% and the content of K2O was much greater
than that of Na2O. Chondrite-normalized REE patterns of marginal zone showed a slight
fractionation of LREE and HREE with ∑HREE/∑LREE from 0.36 to 0.43 and an obviously
negative Eu anomaly, which may mean the crystallization of plagioclase occurred before
the formation of marginal zone (Supplementary Figure S1). Marginal zone was enriched
with REE and Nb; however, the enrichment of Li, Ta and Cs was limited. Pegmatite,
particularly, had a superchondritic Nb/Ta ratio of ~18.0 (Table S8).

Pegmatites can be classified into two compositional classes. One consists of the NYF-
type characterized by an enrichment in Nb, Y (and HREE) and F, formed at a higher
temperature, usually accompanied by a small amount of biotite and a large amount of
monazite and zircon; the other, the LCT-type, is enriched with Li, Cs and Ta, derived
from H2O-rich low-temperature granitic magma with a low LREE and Zr content [1–3,28].
Marginal zone of pegmatite belongs to NYF-type pegmatite.

Zircons crystallized from marginal zone of pegmatite were in sizes ranging from
~100 µm to ~600 µm, with Th/U ratios of 0.2~0.7, ∑REE content from ~20,000 ppm to
~40,000 ppm, Nb content from 918 ppm to 1325 ppm, Ta content from 79 ppm to 108 ppm,
relatively lower content of LREEs, high content of HREEs and Y, a slightly positive Ce
anomaly and a negative Eu anomaly (Figure 7; Table S11).
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Figure 7. REE patterns of different phases zircons crystallized from marginal zone of pegmatite.
Chondrite-normalized values are from McDonough and Sun [27].

4.5. Trace Elements Composition of Rutile in Marginal Zone

Rutile and titanite, two typical Ti-rich accessory minerals, disseminated in marginal
zone in the sizes of <50 µm and <20 µm, respectively. Titanite was too small to acquire
in situ trace elements compositions by LA-ICP-MS. Chondrite-normalized REE patterns
of rutile showed a slight fractionation of LREE and HREE with ∑HREE/∑LREE from
0.9 to 3.2 and obviously negative Eu anomalies from 0.04 to 0.09, which also means that
the crystallization of plagioclase occurred before the formation of marginal zone and the
crystallization of rutile may not have significantly affected the ∑HREE/∑LREE of the
residual melt. The Nb and Ta concentrations of rutile ranged from 24,003 to 40,924 ppm
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and from 4413 to 7246 ppm, respectively. The Nb/Ta ratios of rutile ranged from 4.8 to 6.9,
which are obviously lower than those in marginal zone (Table S9).

5. Discussion
5.1. Closed Mgmatic Evolution System

Zircon megacrysts were predominantly pure at all stages, lacking in impurities and
pores. Hematite mineral inclusions occurred in the margin of Phase III, but mineral
inclusions rich in U, Th and Y were rare. The Th/U ratios increased from Phase I to Phase
III, the marginal Phase III zircons surrounding the hematite inclusions usually had REE
characteristics similar to that of pure Phase III zircons and there was no obvious loss of
radiogenic lead, which is different from the zircon formed by a dissolution-reprecipitation
process [29,30].

Normally, zircon has δ18O values of < +5‰, which requires that the parental magma
is either directly assimilated, or mixed with partial melts of low-δ18O rocks that had
previously undergone relatively high-temperature hydrothermal alteration by surface
waters or seawater [31–33], corresponding to contamination with lower continental crust
or oceanic crust. Only one of the δ18O values was higher than normal mantle δ18O values,
probably resulting from mixing with heterogeneously altered crust.

The εHf(t) values, ranging from ~8 to ~11, were lower than the depleted mantle (DM)
εHf(t) of 14.75, that was calculated using the DM present-day Lu-Hf isotopic ratio; however,
we realized that the isotopic composition of new continental crust was different from that
of the DM. The Hf isotope compositions and crystallization ages of thousands of zircons
worldwide show that very few zircons plotted close to the DM [34]. Dhuime et al. [34]
argued that model ages should be calculated using the composition of new continental
crust. By using the εHf(t) values of 13.2 ± 1.1 as the best estimate for the present-day
composition of average new crust, we calculated the εHf(t) of new continental crust, which
yielded values from 10.4 to 12.3.

Plenty of evidence indicate that the lower crust and lithospheric mantle of the region
formed during the Neoproterozoic [8,35]. The great majority of detrital zircons in the
late Neoproterozoic Elat conglomerate displayed positive εHf(t) values. Moreover, the
εHf(t) values in the zircons were from 3.6 to 11.6, representing island-arc magmatism at
~880–760 Ma, and from 4.9 to 9.2, representing the younger, post-collisional magmas from
~660 to 580 Ma. To some extent, the εHf(t) values can be representative of the Arabian
lower crust. We can calculate the εHf(t) values of ~5 for the typical lower crust by using the
average εHf(t) value of the island-arc group and the average crustal 176Lu/177Hf ratio of
0.0113 [9]. The εHf(t) values can be estimated from 6.5 to 11.9 for the Arabian lower crust
using εNd(t) data from Arabian lower crust granulite xenoliths [35] and a terrestrial Hf–Nd
array of εHf(t) = 1.36εNd(t)+2.95 [36,37], which is similar to the εHf(t) value of arc-derived
metasediments as described by Morag et al. [38]. In conclusion, we propose that the εHf(t)
value for the Arabian lower crust varies from 5.0 to 12.0.

We consider that the contamination of continental crust with the lower εHf(t) and δ18O
value is a reasonable explanation for the lower εHf(t) and δ18O value of zircon megacrysts.

The similar Hf-O isotopic composition of zircons of different phases indicates that the
original magma may not have been subjected to the mixing of external magma, rock and
fluid and the magmatic evolution system is closed without contamination.

5.2. Nb–Ta Behaviour from Magma to Pegmatite Melt

The research study shows significant differences in the partition coefficients of Nb and
Ta (expressed as DNb and DTa) and the DNb/DTa value (expressed as DNb = Nbin mineral/
Nbin melt, DTa = Tain mineral/Tain melt) in different types of rocks or melts (Table S13). The
two relatively extreme values of DNb/DTa = 0.3 and DNb/DTa = 3 were used to calculate
the Nb/Ta ratios of melts [39–42]. Even if DNb/DTa = 0.3 in Phase I and DNb/DTa = 3 in
Phase III, the Nb/Ta ratio in the melt still rose (Table S14). Therefore, it is reliable to infer
that the Nb/Ta ratio in the melt increased (Figure 8), which is contrary to the conclusion
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drawn by Stepanov et al. [3] on LCT-type pegmatite. The mean Nb/Ta ratio of marginal
zone of pegmatite was ~18.0, which is higher than the chondritic value of 17.5 [27], and the
DNb/DTa value was ~0.5, which also verifies this conclusion.
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Figure 8. Nb/Ta ratio of zircon vs. Nb/Ta ratio of melt. Nb/Ta ratio of melt was calculated by using
Nb/Ta ratio of zircon and DNb/DTa, assuming the two relatively extreme values of DNb/DTa = 0.3
and 3.

To understand the evolution in the Nb and Ta contents and the Nb/Ta ratio of zircon
megacrysts more rationally and easily by using the partition coefficient theory, the DNb
and DTa calculated by marginal zone and zircons crystallized from marginal zone were
used as parameters to study the Nb and Ta contents and the Nb/Ta ratio of the melt,
corresponding to Phase I, II and III zircons. The specific partition coefficients were as
follows: DNb = the mean Nb content of the zircons/the mean Nb content of the marginal
zone = 1078.2 ppm/13016 ppm = ~0.08; DTa = the mean Ta content of zircons/the mean Ta
content of the marginal zone = 94.0 ppm/723.5 ppm = ~0.13; the DNb/DTa value was ~0.6.

The variations in the Nb and Ta contents and the Nb/Ta ratio in the melt are shown in
Figure 9 (Table S15). The results show that Nb content in the melt continuously increased
from 10–100 ppm in Phase I to 500–2000 ppm in Phase III, whereas the Ta content increased
and then decreased, varying from 10–100 ppm in Phase I to 100–1000 ppm in Phase II and
then to 50–200 ppm in Phase III; the Nb/Ta ratio continuously increased from < 1 in Phase
I to > 10 in Phase III.

5.3. Nb-Ta Fractionation Caused by Crystallization Differentiation

Low-degree partial melting tended to form melts that were rich in incompatible
elements and the zircon crystallized from such melts had high REE, Nb, Ta, Th, U and other
incompatibility element contents, which conflicts with the characteristics of Phases I, II and
III zircon. Therefore, the partial melting cannot explain the evolution of zircon megacryst.
The study of Burnham and Berry [43] showed that there is no obvious correlation among
DNb, DTa and magma oxygen fugacity; therefore, oxygen fugacity is not the main parameter
for Nb and Ta fractionation.

High-temperature melts usually have high Ti and low H2O contents, which indicates
that melts tended to crystallize Ti-rich minerals, such as rutile and titanite, rather than
H2O-bearing minerals, such as biotite, muscovite and amphibole [3], corresponding to the
minerals’ occurrence in FGP (Figure S4).
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proportion of titanite in Stage I is 2% and in Stage II is 10%. The influence of pyroxene, feldspar and quartz crystallization
on the Nb/Ta ratio was not considered because of low DNb and DTa. Amphiboles were also not considered because of a low
distribution in FGP. In addition, NYF-type pegmatite is poor in water and it is impossible to crystallize a large amount of
biotite and muscovite. The DNb and DTa of rutile and titanite are from Green [44], Prowatke and Klemme [45], respectively.
Numbers close to curves represent the amount of fractional crystallization. Stages I and II in Figure 9 refer to the residual
melt produced after fractional crystallization as an independent magma system to continue crystallization. The difference
between Stage II in (c,d) is the amount of fractional crystallization in Stage I.

Rutile has a higher compatibility with Ta than Nb (DNb = 27 and DTa = 44, DNb/
DTa <1) [44]; therefore, fractional crystallization of rutile can cause the Nb/Ta ratio of
the residual melt to increase. As shown in Figure 9a,b, the Nb and Ta contents in the
initial melt were low and the Nb/Ta ratio was lower than 1. After fractional crystallization
(approximately 99 wt.%), in which rutile accounted for 1.2%, the Nb and Ta contents
and the Nb/Ta ratio in the residual melt of Stage I increased. Subsequently, the residual
melt underwent 99 wt.% fractional crystallization, in which rutile accounted for 3.5 wt.%
and the Nb and Ta contents and the Nb/Ta ratio in the melt of Stage II increased further
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to ~870 ppm, ~50 ppm and ~18, respectively. The Nb and Ta compositions of the melt
calculated by rutile composition are consistent with the melt evolution curve and show that
rutile crystallization differentiation may have caused Nb and Ta fractionation (Figure 9).

Titanite also has higher compatibility with Ta than Nb (DNb = 4.6 and DTa = 46.4) [45];
the DNb/DTa value was about 0.1, which is much lower than that of rutile. Compared to
rutile, the fractional crystallization of titanite had a stronger effect on the differentiation of
Nb and Ta in the melt. As shown in Figure 9c,d, the Nb and Ta contents and the Nb/Ta ratio
of the Stage I melt could be simulated well by 95 wt.%–99 wt.% fractional crystallization,
in which titanite accounted for 2%. The residual melt of Stage I was extracted as the initial
melt of Stage II and the Nb and Ta composition of the Stage II melt agreed well with the
theoretical simulation results of 90% fractional crystallization, in which titanite accounted
for 10% (Figure 9). The DDy/DTb and DGd/DSm values of titanite were both close to 1, while
the DYb/DNd value was significantly less than 1 [45]; therefore, the fractional crystallization
of titanite simultaneously caused slight changes in the DyN/YbN and GdN/SmN values of
the residual melt and led to an obvious increase in the YbN/NdN value, which is consistent
with the content of rare earth elements, including Sm, Gd, Dy and Yb, in zircon megacryst
(Figure S6). There was little titanite crystallized in Stage I and the behavior of REE was
more susceptible to other crystalline minerals. This is also a possible reason for the higher
YbN/NdN of Phase I zircon. The fractional crystallization of titanite is another possible
controlling factor in the differentiation of Nb and Ta.

It should be noted that the fractional crystallization of biotite, muscovite and amphi-
bole (DNb/DTa > 1) directly affects the evolution trend of the Nb and Ta contents and the
Nb/Ta ratio [3]. However, NYF-type pegmatite melts are poor in water and difficult to
crystallize a large amount of H2O-bearing minerals, which resulted in the absence of biotite
and muscovite in marginal zone and their influence on the Nb/Ta ratio was not significant.
The DNb and DTa values of feldspar and quartz were too small to have an influence on the
Nb/Ta ratio; however, extensive crystallization of feldspar and quartz caused an increase
in Nb and Ta content [2,3,46]. The crystallization of columbite was too low to affect the
Nb/Ta ratio of the residual melt. If columbite had crystalized significantly from the melt,
the Nb content of the residual melt would have decreased, which does not correspond to
the results. In addition, columbite has higher compatibility with Nb than Ta; therefore,
fractional crystallization of columbite could cause the Nb/Ta ratio of the residual melt to
decrease. In fact, the Nb/Ta ratio of the residual melt increased; therefore, the fractional
crystallization of columbite cannot explain the result.

In addition, the escape of residual melts from a magma system with a high degree
of fractional crystallization of 90% or more is a problem, which is also important when
studying whether high-silica magma could be derived from basaltic magma through
fractional crystallization. However, most geologists still believe that rhyolitic magma can be
evolved from a basaltic magma chamber through large-scale crystallization differentiation
but that the evolution mechanism needs to be reevaluated [47–49]. We assume that the
residual melt that had undergone a high degree of fractional crystallization could be a
separate magma system to continue fractional crystallization, which corresponds to Stages
I and II of the crystallization of rutile or titanite. Moreover, high-density zircon megacrysts
during magma fractional crystallization could have undergone multiple stages of magmatic
activity, which indicates that the residual melt and zircon had the crystallization space.
Besides that, magma fractional crystallization reached 90% in Stage II, which can overall
explain the variation in the contents of Nb and Ta (Figure 9c,d).

5.4. Nb-Ta Marker of Transformation from Magma to Pegmatite Melt

The Phases I, II and III of zircon megacrysts recorded the transformation from magma
to pegmatite melt, indicating that pegmatite melt could carry and retain the early crystal-
lization material. It also proves that pegmatite melt has a close genetic relationship with
deep magma. The obvious difference in the Nb/Ta ratio between magma and pegmatite
melt makes it a key indicator to distinguish the transformation. In addition, Phases I, II and
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Phase III had significant variation of REEs composition, which indicates that judging the
source and evolution of pegmatite by the REEs characteristics of zircon or by the pegmatite
itself may be one-sided. It may explain why NYF-type pegmatite is often enriched in HREE,
while the source of pegmatite and alkaline magma is often enriched with LREE [2]. It is
worth noting that zircon Hf–O isotopic compositions remained relatively constant during
fractional crystallization, which indicates that zircon Hf–O isotopic compositions may be a
reasonable choice for identifying the source and evolution process of pegmatite.

6. Conclusions

Zircon megacrysts occurring in NYF-type pegmatite recorded the evolution process
from the initial magma to pegmatite melts. The REEs composition of zircon indicates that
judging the source of pegmatite by the REE characteristics of zircon or by the pegmatite
itself may be incorrect. The modeling of fractional crystallization proposed by this study
shows that the Nb content and the Nb/Ta ratio of melts increased during several stages
of melt extraction and fractional crystallization of Ti-rich minerals in a closed magma
system without contamination by extraneous melt, rock, or fluid. The Nb/Ta ratios were
an effective indicator for recording the magma-to-pegmatite conversion process. It is
conceivable that several stages of melt extraction and fractional crystallization are required
for the formation of NYF-type pegmatite melt with economic concentrations of Nb.
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