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Abstract: The magnetic gradient tensor provides a powerful tool for detecting magnetic bodies
because of its ability to emphasize detailed features of the magnetic anomalies. To interpret field
measurements obtained by magnetic gradiometry, the forward calculation of magnetic gradient fields
is always necessary. In this paper, we present a contraction integral equation method to simulate
the gradient fields produced by 3-D magnetic bodies of arbitrary shapes and high susceptibilities.
The method employs rectangular prisms to approximate the source region with the assumption
that the magnetization in each element is homogeneous. The gradient fields are first solved in the
Fourier domain and then transformed into the spatial domain by 2-D Gauss-FFT. This calculation
is performed iteratively until the required accuracy is reached. The convergence of the iterative
procedure is ensured by a contraction operator. To facilitate application, we introduce a FORTRAN
program to implement the algorithm. This program is intended for users who show interests
in 3D magnetic modeling at high susceptibility. The performance of the program, including its
computational accuracy, efficiency and convergence behavior, is tested by several models. Numerical
results show that the code is computationally accurate and efficient, and performs well at a wide
range of magnetic susceptibilities from 0 SI to 1000 SI. This work, therefore, provides a significant
tool for 3D forward modeling of magnetic gradient fields at high susceptibility.

Keywords: magnetic gradient tensor; high susceptibility; contraction integral equation; magnetic
forward modeling

1. Introduction

Magnetic surveying is a significant and widely used geophysical exploration tech-
nique. Using magnetic measurements, three kinds of data can be obtained: total magnetic
intensity (TMI) data, three-components field data and full tensor magnetic gradient data [1].
Because of easy acquisition, the TMI data and the three-components data were most com-
monly measured in the past decades [2–5]. However, these measurements are seriously
affected by the Earth’s background magnetic field and very sensitive to instrument orienta-
tion, hence not just functions of the target’s magnetic susceptibility [6]. Recently, full tensor
magnetic gradient measurements become available with the development of SQUID-based
sensors [1,4,7]. In comparison with the traditional magnetic field measurements, gradient
measurements offer many potential advantages, which includes less sensitivity to instru-
ment orientation, improved resolution of shallow targets, no necessity for base stations
and diurnal corrections, and suppression of regional anomalies [4,8–10]. Mathematically,
the gradient tensor is a second rank tensor with 3 × 3 = 9 components, which is defined by
derivatives of the magnetic field vector in each of the three directions of three-dimensional
space [11]. Each component of the gradient tensor represents a directional filter and hence
makes certain structures and characteristics of the magnetic bodies more noticeable [10].
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Therefore, the magnetic gradient tensor can work as a useful tool for detecting magnetic
bodies by suppressing specific undesirable contributes and emphasizing certain features of
the magnetic fields.

Magnetic forward modeling of gradient fields plays a significant role in the interpreta-
tion of field measurements obtained from magnetic gradiometry. During the past decades,
various analytic and numerical methods have been developed to simulate magnetic fields.
Generally, analytic methods are limited to provide closed-form field expressions for mag-
netic bodies with regular geometric shapes [12–15]. For magnetic anomalies with arbitrary
and complex susceptibility distribution, numerical methods have to be used. The spatial-
domain method is one of the most commonly used numerical methods for computing
magnetic fields due to bodies of given shapes [16–22]. These methods often represent
the magnetized body using a set of cells (such as cubical cells) and approximate the total
field by the sum of the elementary fields [23,24]. One key limitation of the spatial-domain
method is that its computational time dramatically increases with the size and complexity
of the model. The frequency-domain method is another important approach to model
magnetic anomalies [25–27]. This approach is performed in the frequency domain and
thereby can achieve high computational efficiency by using fast Fourier transform tech-
niques. On the whole, however, most existing numerical methods ignore the effects of
self-demagnetization and are only applicable to magnetic bodies with low susceptibilities.

To overcome the problem,Ref. [28] develop an iterative method and use a segmented
model consisting of spherical voxels with arbitrary diameter to calculate the magnetic fields
at high susceptibilities through an iterative procedure. Ref. [29] conduct a comprehensive
study of the self-demagnetization effects on magnetic data, and compare the capability of
two existing inversion methods in interpretation of data from highly magnetic areas. More
recently,Ref. [30] develop an efficient and accurate frequency-domain iterative method that
can be used to simulate magnetic fields from magnetic bodies with arbitrary shapes in a
wide range of magnetic susceptibilities (0∼1000 SI). This strategy is based on a contraction
integral equation and can achieve fast convergence. Although these methods perform well
at high susceptibilities, they mainly focus on the calculation of the magnetic fields, and take
no account of the gradient tensor.

In this paper, we present an algorithm to compute the magnetic gradient fields pro-
duced by 3-D magnetic bodies of arbitrary shapes and high susceptibilities based on the
contraction integral equation method developed by [30]. In order to simulate the magnetic
gradient fields for high susceptibility and to facilitate application of the algorithm of [30],
we develop a computer program using FORTRAN language. This FORTRAN program
generates multi-component fields, which includes six components of the magnetic gradient
tensor and three components of the magnetic field vector, and has a good performance at
a wide range of magnetic susceptibilities (0 < χ ≤ 1000 SI), particularly applicable for
strongly magnetic bodies.

The remainder of the paper is organized as follows. In Section 2, the algorithm
for calculating the magnetic gradient fields from strongly magnetic bodies is developed.
Subsequently, a detailed introduction is given to the subroutines, inputs and outputs of the
FORTRAN program. Then, in Section 4 the performance of the algorithm is tested using
several simple models, and the applicability of the code is demonstrated with a synthetic
two-dike model. In Section 5, some conclusions are drawn from the work.

2. Contraction Integral Equation Method

The full magnetic gradient tensor T can be obtained by taking derivatives of the
magnetic vector B with respect to the coordinates x, y and z,

T =

 Txx Txy Txz
Tyx Tyy Tyz
Tzx Tzy Tzz

 =

 ∂xBx ∂xBy ∂xBz
∂yBx ∂yBy ∂yBz
∂zBx ∂zBy ∂zBz

 (1)
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where ∂x, ∂y, and ∂z denote the partial derivation with respect to x, y and z, respectively.
B = µ0 H and µ0 is the permeability of free space. Using

H = −∇U (2)

we can also write T as

T = −µ0

 ∂2
xxU ∂2

xyU ∂2
xzU

∂2
xyU ∂2

yyU ∂2
yzU

∂2
xzU ∂2

yzU ∂2
zzU

 (3)

It is apparent from Equation (3) that the magnetic gradient tensor T is symmetric. This
indicates that using six components of T, namely Txx, Tyy, Tzz, Txy, Txz and Tyz, will be
sufficient in the forward calculation. Actually, because of ∇ · B = 0, the magnetic gradient
tensor has only five independent components.

To obtain the gradient fields at high susceptibility, we will first calculate the anomalous
magnetic fields using the iterative contraction integral equation method, and then derive
frequency-domain expressions for the anomalous gradient tensor based on the resulting
magnetic field vector in the following sections.

2.1. The Integral Equation

In a 3D Cartesian coordinate system with downward positive z direction, the integral
equation with respect to the total magnetic field H can be written as [30]

H(r) = H0(r) +
∫∫∫
V′

G(r, r′)·
(
χ(r′)H(r′)

)
dV′ (4)

where r and r′ are the observation point and the source point in the source region, respec-
tively. χH denotes the magnetization M. G = ∇∇G is the Green’s function tensor, ∇ is
the gradient operator, and G = 1

/
(4π|r− r′|) is the scalar Green’s function, which satisfies

the following differential equation,

∇2G(r, r′) = −δ(r− r′) (5)

where δ denotes the Dirac delta function [19].
The anomalous fields are defined as

Ha(r) =
∫∫∫
V′

G(r, r′)·
(
χ(r′)H(r′)

)
dV′ (6)

Equation (4) indicates that the total magnetic field H results from two parts: the
background field H0, which is associated with the Earth’s magnetic field (EMF), and the
anomalous fields Ha, which results from magnetic bodies in the source region. In general,
the anomalous fields can be neglected at low magnetic susceptibilities ( χ < 0.01 SI ) [31].
Thus, the magnetization reduces to M = χH0 in this case, and accurate solutions for the
integral Equation (4) can be obtained by direct methods [32,33]. For high susceptibility,
however, the induced magnetization from neighboring material significantly affects the
magnetic field at any point in the medium, which consequently reduces the resultant
magnetic field. This phenomenon is the so-called self-demagnetization [34]. In the case
of large susceptibility, the demagnetization effect is significant and cannot be neglected.
Therefore, the anomalous magnetic fields must be taken into consideration, and the integral
Equation (4) has to be solved by an appropriate iterative procedure.

2.2. Iterative Scheme

To obtain magnetic fields at high susceptibilities, [30] developed a convergent iterative
scheme that efficiently calculates accurate magnetic fields produced by strongly magnetic
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bodies. Here, we follow this method to determine the Fourier-domain anomalous magnetic
fields and then extend the algorithm to compute the magnetic gradient tensor.

In our algorithm, rectangular prisms are used as the building blocks. The whole
computational domain is considered as the source region and is evenly divided into
Nx × Ny × Nz prisms in the x, y and z directions (see Figure 1). The geometric center of
the prismatic element is (xl , ym, zn), and the length is ∆x, ∆y and ∆z in the three directions,
respectively. The magnetization is assumed to be homogeneous in each prism.

Figure 1. The discretization and coordinate system of the computation space. The observation
points are located on the first horizontal plane and have coincident (x, y, z) coordinates with the
source points.

To simplify mathematical operations, we start with the anomalous magnetic potential
Ua [30,35],

Ua(r) =
∫∫∫
V′

GU(r, r′)·M(r′)dV′ (7)

where GU is the negative gradient of the scalar Green’s function, i.e., GU = −∇G and
M = χH. Using the spatial discretization strategy aforementioned, we can get the discrete
form of Ua

Ua(r) =
Nz

∑
n=1

Ny

∑
m=1

Nx

∑
l=1

 zn+0.5∆z∫
zn−0.5∆z

ym+0.5∆y∫
ym−0.5∆y

xl+0.5∆x∫
xl−0.5∆x

GU(r, r′)dx′dy′dz′

 ·M(xl , ym, zn) (8)

We deal with Equation (8) in the frequency domain of the horizontal coordinates so that
the triple integral involved in the equation can reduce to a single integral only associated
with z.

Taking the 2D Fourier transform of Equation (8) with respect to x and y, we have

Ûa(z) = W
Nz

∑
n=1

IG(zn, z) · M̂(zn) (9)
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with

IG(zn, z) =
zn+0.5∆z∫

zn−0.5∆z

ĜU(z− z′)dz′ (10)

W =
4 sin(0.5kx∆x) sin(0.5ky∆y)

kxky∆x∆y
(11)

where kx and ky are wavenumbers in the x and y directions. Ûa and M̂ are the corre-
sponding spectrum of Ua and M, respectively. According to GU = −∇G, the 2D Fourier
transform of GU becomes

ĜU(z− z′) =
(
−ikx, −iky, sign(z− z′) · k

) e−k|z−z′ |

2k
(12)

Here, sign(z− z′) is the sign function and k =
√

k2
x + k2

y.
Substituting Equations (10)–(12) into Equation (9), the anomalous magnetic potential

in the Fourier domain is obtained

Ûa(z) = W
2k2

[
e−kz ∑

zn<z
ekzn A1(zn)H(zn)

+e−kz ∑
zn=z

ekzn A2(zn)H(zn) + ekz ∑
zn=z

e−kzn A2(zn)F(zn)− 2P(z)

+ekz ∑
zn>z

e−kzn A1(zn)F(zn)

] (13)

with
A1(zn) = e−0.5k∆z − e0.5k∆z

A2(zn) = e−0.5k∆z

P(zn) = ikx M̂x(zn) + iky M̂y(zn)
F(zn) = P(zn) + kM̂z(zn)
H(zn) = P(zn)− kM̂z(zn)

(14)

where M̂x, M̂y and M̂z are three components of M̂.
Note that P, F and H in Equation (14) are functions of M̂, where M̂ = 2DFT[χH]

with 2DFT[·] being a 2D Fourier transform operator. This implies that the values of P,
F and H will change with the number of iterations, since the magnetic field vector H is
renewed iteratively. In contrast, A1, A2 and e±kzn are all independent of M̂ and hence can
be pre-computed so as to improve the computational efficiency.

According to Equation (2), we can also write the Fourier-domain anomalous magnetic
field as

Ĥa(z) = −
(

ikx, iky, ∂z
)
Ûa(z) (15)

As can be seen, the vertical component Ĥa
z presents an implicit form due to the spatial

derivative ∂zÛa. In order to make it explicit, we substitute Equation (13) into Equation (15)
and then have

Ĥa
z (z) =

W
2k

[
−e−kz ∑

zn<z
ekzn A1(zn)H(zn)

−e−kz ∑
zn=z

ekzn A2(zn)H(zn) + ekz ∑
zn=z

e−kzn A2(zn)F(zn)

+ekz ∑
zn>z

e−kzn A1(zn)F(zn)

] (16)

Therefore, once Ĥa is determined, the 2D inverse Fourier transform of Ĥa immediately
gives its spatial-domain counterpart Ha.

To solve Ha, we rewrite the integral Equation (4) as

H(r) = H0(r) + Ha(r) (17)



Minerals 2021, 11, 1129 6 of 17

From Equations (14)–(17), we can find that Ha is a function of M (or H, since M =
χH). Thus, a convergent iterative algorithm is necessary, in order to obtain the magnetic
fields caused by strongly magnetic bodies. But the fact is that the iterative calculation of
Equation (4) does not always converge, because `2-norm of the linear integral operator in
Equation (4) is bigger than 1 in general cases [30]. It indicates that a contraction operator
must be used to ensure convergence stability and convergence rates.

Therefore, instead of Equation (17), we adopt the contraction integral equation devel-
oped by [30]

H(j+1)(r) =
2
[
H0(r) + Ha(r, H(j)(r))

]
+ χH(j)(r)

2 + χ
, j = 0, 1, 2, · · · (18)

By doing this, an iterative format which makes the successive calculation of the total
magnetic field always convergent is established using Equations (13)–(16) and (18).

Our final purpose is to calculate the anomalous magnetic gradient tensor produced
by magnetic bodies with high susceptibilities. This can be achieved by taking 2D Fourier
transform of Equation (1) and making use of Equation (13). It gives the anomalous gradient
tensor as

T̂a = µ0

 ikx Ĥa
x iky Ĥa

x ikx Ĥa
z

iky Ĥa
y ikyĤa

z
sym. −∂2

zzÛa

 (19)

with

∂2
zzÛa=W

2

[
e−kz ∑

zn<z
ekzn A1(zn)H(zn)

+e−kz ∑
zn=z

ekzn A2(zn)H(zn) + ekz ∑
zn=z

e−kzn A2(zn)F(zn)

+ekz ∑
zn>z

e−kzn A1(zn)F(zn)

] (20)

where Ĥa is given by Equations (15) and (16). It is noteworthy that the calculation of the
gradient tensor should be carried out only when the iterative computation of the magnetic
field is totally completed or the required convergence accuracy is reached. Certainly,
the gradient tensor can also be calculated iteratively, but this only leads to an unnecessary
computational cost.

Finally, we obtain the spatial-domain gradient fields through 2D inverse Fourier transform.

2.3. Workflow for Modeling Gradient Fields

The workflow for modeling magnetic gradient tensor at high susceptibility is summa-
rized in Figure 2. In this study, the Gauss-FFT technique with 4 nodes is applied, and the
root mean square (rms) difference is adopted as the convergence criterion, that is,

rms =

√√√√∑i,m,n
∣∣H(j)(xi, ym, zn)−H(j+1)(xi, ym, zn)

∣∣2
Nx NyNz

(21)

where H(j) denotes the total magnetic field after the j-th iteration.
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Figure 2. Workflow for modeling the magnetic gradient tensor produced by 3D magnetic bodies
with high susceptibility (modified after [30]).

3. Description of The Code
3.1. Subroutines

The developed FORTRAN program for calculating magnetic gradient fields at high
susceptibilities consists of a main program, six major subroutines and four supporting
subroutines. The functions of these subroutines are listed in Table 1.

All subroutines are called by the main program (Main). The computer code initially
reads the input file para.txt and sets the required parameters in the subroutine ReadIn.
Some significant matrices are pre-computed to improve the computational efficiency in
the subroutine Storage. Next, the loop over the iteration number starts to operate. In each
iteration, the magnetic fields are calculated layer by layer. For low magnetic suscepti-
bility, having the first iterative cycle done is adequate enough to get accurate results.
For high magnetic susceptibility, the total magnetic fields are calculated iteratively until
the maximum number of iterations is reached or the required convergence accuracy is met.
Finally, the magnetic gradient tensor is computed and then recorded in the output file
MagneticField_3D.dat. The structure of the main program is shown in Figure 3.
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Figure 3. Basic structure of the main program.

Table 1. Subroutines for modeling the magnetic gradient tensor at high susceptibility.

Main Program Main Perform the Iterative Procedure and Calculate the Magnetic Gradient
Tensor

Major subroutines

ReadIn Initialize all required parameters and read model parameters from the
input file (para.txt ).

Storage Pre-compute and save important matrices.

Wavenumber Generate wavenumbers for the 2D Gauss-FFT.

Background Set background fields.

Model Establish a model.

GaussFFT_2D_Fast Achieve forward and inverse 2D Gauss-FFT.

Major subroutines

Module Include initial variable declarations.

Coordinates Generate rectangular prims.

Output Output the calculation results, including six gradient field components and
three magnetic field components.

DeOrAllocate Allocate and deallocate parameters.

3.2. Inputs and Outputs

The FORTRAN program requires a set of input parameters (see Table 2), such as
the size of the computation space, the maximum iteration number and the strength and
direction of the inducing magnetic field, etc. All these parameters are given in the input file
para.txt. The magnetic susceptibility distribution of the studied magnetic bodies can be set
freely in the subroutine Model. In the original version of the subroutine Model, we provide
four types of magnetic models, including a sphere, a spherical shell, an ellipsoid and a
two-dike model. One can modify the code in this subroutine to establish any expected
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magnetic model with arbitrary susceptibility distributions. It is also noteworthy that the
default values of the minimum x and y coordinates of the prism’s center are set to be zero
in the FORTRAN program, i.e., x0 = y0 = 0.

Table 2. The required input parameters in the file para.txt.

Nx, Ny, Nz Number of prismatic elements in the x, y and z directions.

z0 The minimum z coordinate of geometric center of prisms (m).

x1, y1, z1 The maximum x, y and z coordinates of geometric center of prisms (m).

NI Maximum number of iterations

NG Number of Gaussian nodes used in 2D Gauss-FFT (NG = 1, 2, 3 or 4)

Ang1 Inclination angle (degree)

Ang2 Declination angle (degree)

Bgr Strength of the inducing field (nT)

The output of the FORTRAN program is saved in a single file MagneticField_3D.dat.
This file contains ten columns: x-coordinate, y-coordinate, z-coordinate, three magnetic
field components (Ba

x, Ba
y, Ba

z , nT) and six magnetic gradient tensor components (Ta
xx, Ta

yy,
Ta

zz, Ta
xy, Ta

xz, Ta
yz, nT/m).

4. Numerical Tests

In this section, the performance of the algorithm is evaluated and several numerical
examples are presented to reveal the validity and applicability of the code.

4.1. Performance

To test the performance of the algorithm, we analyze its computational accuracy,
convergence behavior and computational efficiency using several models (a spherical shell,
a prolate ellipsoid and a sphere). The center of these magnetic bodies is located in the
middle of the computational domain which extends from 0 km to 1 km in the x−, y− and
z− directions. The strength, inclination and declination of the inducing magnetic field
are 50,000 nT, 60◦ and 45◦, respectively. Analytical solutions for the spherical shell model
are provided in Appendix A. Because no analytical solution is available for the prolate
ellipsoid, the reference gradient tensor of this model is computed by numerically taking
derivatives of the magnetic field vector obtained from the routines of [36]. All tests are
carried out on a personal computer with 2.3 GHz CPU and 12 GB RAM.

In order to verify the accuracy of the algorithm, we compare the six components of
the magnetic gradient tensor calculated using the contraction integral method with the
theoretical solutions. In the test, the computational domain is divided into 200 × 200 × 200
regular prisms and the magnetic anomalies are a spherical shell with susceptibility of 50 SI
and a prolate ellipsoid with susceptibility of 10 SI (see Figure 4).

Figure 4. The magnetic spherical shell model with susceptibility of 50 SI and the prolate ellipsoid
model with susceptibility of 10 SI used in the accuracy test.
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Figures 5 and 6 show the numerical and analytical solutions of the two models and the
differences between them. The statistical properties of the misfits for both models are listed
in Table 3. As can be seen from Figure 5, the modeled results for the spherical shell have a
perfect agreement with the analytical solutions. The rms error in this case is 0.082 for Ta

xx
and Ta

yy, 0.094 for Ta
xz and Ta

yz, 0.046 for Ta
xy and 0.142 for Ta

zz. The relative root mean square
(rrms) errors in six magnetic gradient tensor components are all less than 0.5% (Table 3).
For the prolate ellipsoid model, there is also a good agreement between the computed and
reference solutions, but with a relatively larger rrms error (see Table 3). Part of such error
is considered to be caused by the numerical derivation of the magnetic fields in order to
obtain the reference magnetic gradient tensor.

Figure 5. Cont.
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Figure 5. Surface anomalous magnetic gradient fields produced by a magnetic spherical shell
with susceptibility of 50 SI. Ta∗

xx , Ta∗
xy , Ta∗

xz , Ta∗
yy , Ta∗

zz , Ta∗
yz denote the analytical solutions,

and Ta
xx, Ta

xy, Ta
xz, Ta

yy, Ta
zz, Ta

yz denote the numerical results calculated using the proposed algorithm.

Figure 6. Cont.
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Figure 6. Surface anomalous magnetic gradient fields produced by a magnetic prolate ellip-
soid with susceptibility of 10 SI. Ta∗

xx , Ta∗
xy , Ta∗

xz , Ta∗
yy , Ta∗

zz , Ta∗
yz denote the analytical solutions,

and Ta
xx, Ta

xy, Ta
xz, Ta

yy, Ta
zz, Ta

yz denote the numerical results calculated using the proposed algorithm.

Table 3. Statistical parameters of the misfits for the spherical shell and the prolate ellipsoid.

Gradient Fields
Min (nT) Max (nT) Rms Rrms ∗ (%)

Shell Ellipsoid Shell Ellipsoid Shell Ellipsoid Shell Ellipsoid

Ta
xx −54.188 −14.931 19.733 6.691 0.082 0.158 0.455 2.812

Ta
xy −17.159 −5.358 18.884 5.818 0.046 0.079 0.467 2.533

Ta
xz −54.908 −16.482 44.953 12.703 0.094 0.276 0.431 4.031

Ta
yy −54.188 −17.190 19.733 6.210 0.082 0.092 0.455 1.534

Ta
yz −54.908 −16.983 44.953 13.923 0.094 0.177 0.431 2.459

Ta
zz −13.582 −5.235 108.377 32.115 0.142 0.565 0.457 5.538

* The relative rms error is defined as: rrms[T] = rms[T − T∗]
/

rms[T∗]× 100%.

Next, we investigate the convergence behavior of the algorithm. To this end, we
compute the convergence errors in three total magnetic field components based on a
magnetic sphere model with different susceptibilities ranging from 1 SI to 1000 SI. Figure 7
shows the trend of the convergence error versus the number of iterations at different
magnetic susceptibilities. We can see that the convergence behavior of the algorithm
is significantly influenced by the magnitude of the magnetic susceptibility. At lower
susceptibilities (χ ≤ 10 SI), the algorithm converges with a high speed. But when the
magnetic susceptibility becomes larger (χ > 10 SI), the convergence rate slows down.
Although the convergence speed of the algorithm decreases with an increase of magnetic
susceptibility, the algorithm exhibits a good and stable convergence behavior at a rather
wide range of susceptibilities on the whole (0 < χ ≤ 1000 SI).

Now, we test the computation efficiency of the code. According to the theory of the
algorithm mentioned in Section 2, the calculation of the magnetic gradient fields mainly
consists of two parts. The first part is the computation of the frequency domain magnetic
field at each wavenumber point (kx, ky). The efficiency of this part is mainly affected by
the number of prismatic elements (Nz) used in the z direction. The second part is the
implementation of the 2D inverse Gauss-FFT applied to obtain the spatial domain wave-
fields. For this part, the calculation time is determined by the number of prismatic elements
(Nx × Ny) on the x − y plane and the Gauss nodes (which is set to be 4 in our test) that
one uses. Therefore, Nz and Nx × Ny have different influence on the calculation speed.
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To assess these factors, two cases are considered in this test. In case 1, we hold Nh = 100,
where Nh = Nx = Ny, and set Nz = 60, 80, 100, 150, 200, 250, 300. In case 2, we hold
Nz = 100 and set Nh = 60, 80, 100, 150, 200, 250, 300. Figure 8 shows the average
computer time per iteration for calculating six magnetic gradient components and three
magnetic field components in case 1 and case 2. As can be seen, when the number of the
prismatic elements increases, the average computation time exhibits an approximately
linear growth trend in both cases.

Figure 7. Convergence errors in Bx, By and Bz versus the number of iterations at different mag-
netic susceptibilities.

Figure 8. Average computer time per iteration for calculating six magnetic gradient components and
three magnetic field components in case 1 and case 2.

4.2. Example

In this subsection, we present a synthetic example with a slightly more complicated
geometry to further demonstrate the capability of the algorithm (Figure 9). This synthetic
example is a two-dike model with a vertical dike striking east-west, and a stepped dike
that strikes north-south and dips to the west at 45◦. Both dikes spans a depth of 50–150 m
and are assigned a high magnetic susceptibility value of 3 SI. The inducing field for this
study has strength of 50,000 nT, inclination of 45◦ and declination of 45◦. The whole
computational space, with cells of 5 m cubed, extends from 0 m to 1000 m in the x and y
directions and from 0 m to 250 m in the z direction.

Figure 10 presents the surface total-field anomaly and the magnetic amplitude for the
two-dike model with a magnetic susceptibility of 3 SI subject to a uniform inducing field.
To verify the reliability of the computed results, we also display the magnetic data from a
similar two-dike model calculated by [29] (see Figure 11). The geometric parameters of the
west-dipping dike used in the work of [29] are slightly different from ours, but the values
of other parameters are set the same. By comparing Figures 10 and 11, we can see that the
magnetic fields obtained from both methods have consistent shape characteristics, which
further validates our algorithm.
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Figure 9. A synthetic two-dike model with a west-dipping dike striking north-south and a vertical
dike striking east-west.

Figure 10. Surface total-field anomaly (a) and magnetic amplitude (b) due to the two-dike model
with a magnetic susceptibility of 3 SI.

Figure 11. Total-field anomaly (a) and magnetic amplitude (b) from [29] for a similar two-dike model
with a susceptibility of 3 SI.

In addition to the total-field anomaly, we also present the surface anomalous magnetic
fields and gradient fields generated by the two-dike model in Figures 12 and 13, respectively.
The white lines in these figures outline the projection of the magnetic bodies on the surface.
As expected, the gradient tensor is superior to the magnetic field vector in enhancing the
directional features of the magnetic anomaly.
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Figure 12. Surface anomalous magnetic fields due to the two-dike model with susceptibility of 3 SI.

Figure 13. Surface anomalous magnetic gradient fields due to the two-dike model with susceptibility
of 3 SI.

5. Conclusions

We have developed a computer program in FORTRAN programming language and
provided a detailed description of the code for modeling magnetic gradient fields at high
susceptibilities. The program generates multi-component fields produced by magnetic
bodies of arbitrary shapes and high susceptibilities, including six components of the
magnetic gradient tensor and three components of the magnetic field vector. A user
friendly interface (i.e., input file) is also established to facilitate wide application of the
FORTRAN program. Computational performance and capability of the scheme have
been illustrated through several numerical examples (a spherical shell, a prolate ellipsoid,
a sphere and a synthetic two-dike model). It is shown that the code performs well at a
wide range of susceptibilities (0 < χ ≤ 1000 SI) and is particularly applicable for strongly
magnetic bodies. This work, therefore, provides a significant open tool for modeling
magnetic gradient fields at high susceptibility.

Author Contributions: Conceptualization, L.C.; methodology, L.C. and F.O.; software, F.O; formal
analysis, F.O; resources, F.O; data curation, F.O; writing—original draft preparation, F.O; writing—
review and editing, L.C.; visualization, L.C.; supervision, L.C.; project administration, L.C.; funding
acquisition, L.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Natural Science Foundation of Guangxi Province grant
number 2020GXNSFDA238021.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The name of the FORTRAN program (version 1) is 3D-MGTM-HS.
This program is free and available at https://github.com/Yonfou/3D-MGTM-HS (accessed on 2

https://github.com/Yonfou/3D-MGTM-HS


Minerals 2021, 11, 1129 16 of 17

June 2021). The users can redistribute it and/or modify it under the terms of the GNU General Public
License.

Acknowledgments: The authors are very grateful to the two anonymous reviewers for their helpful
comments and constructive suggestions that helped to improve the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Analytical Solutions

The analytical solutions for anomalous magnetic gradient fields outside a magnetic
spherical shell have the forms of

Ta
xx = A4

(
H0

xα1β1+H0
yα2γ1+H0

z α3γ1

)
Ta

xy = A4

(
H0

xα2γ1+H0
yα1γ2 − H0

z α1γ4

)
Ta

xz = A4

(
H0

xα3γ1 − H0
yα1γ4+H0

z α1γ3

)
Ta

yy = A4

(
H0

xα1γ2+H0
yα2β2+H0

z α3γ2

)
Ta

yz = A4

(
H0

yα3γ2 − H0
xα1γ4+H0

z α2γ3

)
Ta

zz = A4

(
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xα1γ3+H0
yα2γ3+H0

z α3β3

)
(A1)

with

A=
χ(2χ + 3)

(
1− r−3

i r3
o

)
2χ2r−3

o − (2χ+3)(3+χ)r−3
i

(A2)

and
α1 = 3(x−x0)

r5 , α2 = 3(y−y0)
r5 , α3 = 3(z−z0)

r5

β1 = 3− 5(x−x0)
2

r2 , β2 = 3− 5(y−y0)
2

r2 , β3 = 3− 5(z−z0)
2

r2

γ1 = β1 − 2, γ2 = β2 − 2, γ3 = β3 − 2, γ4 = 5(z−z0)(y−y0)
r2

(A3)

where r =
√
(x− x0)

2 + (y− y0)
2 + (z− z0)

2 is the distance between the observation
point (x, y, z) and the center of the magnetic spherical shell (x0, y0, z0), ri and ro denote the
inner and outer radius of the spherical shell, respectively.
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