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Abstract: Carbonate reservoirs, especially dolomite reservoirs, contain large reserves of oil and gas.
The complex diagenesis is quite challenging to document the dolomite reservoirs formation and
evolution mechanism. Porosity development and evolution in dolomite reservoirs primarily
reflect the comprehensive effect of mineral dissolution/precipitation during dolomitization.
In this study, multicomponent multiphase flow and solute transport simulation was employed
to investigate dolomitization in the deep carbonate strata of the Tarim Basin, Northwest China,
where active exploration is currently under way. One- and two-dimensional numerical models with
various temperatures, fluid compositions and hydrodynamic characteristics were established to
quantificationally study dolomitization and its effect on porosity. After determining the main control
factors, detailed petrologic characteristics in the studied area were also analyzed to establish four
corresponding diagenetic numerical models under different sedimentary environments. These models
enabled a systematic analysis of mineral dissolution/precipitation and a quantitative recovery of
porosity evolution during various sedimentation-diagenesis processes. The results allowed for a
quantitative evaluation and prediction of reservoir porosity, which would provide a basis for further
oil and gas exploration in deep carbonate reservoirs.
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1. Introduction

Carbonate reservoirs are widely distributed over the world and crucial for oil and gas exploration
because of their proven reserves. However, carbonate reservoirs are usually developed with complicated
crack/pores during diagenesis, which make the reservoir prediction difficult and hinder the development
of oil and gas exploration [1-7] It is of great importance to understand the effect of diagenesis on the
reservoir porosity evolution as it is one of the key factors affecting the reservoir quality.

The formation and evolution of reservoir porosity are the topic of carbonate reservoir research
and constitute the premise for the efficiency improvement of oil and gas exploration [5,8-10].
In carbonate reservoirs, reservoir porosity evolution is mainly the result of carbonate minerals
dissolution and precipitation, such as dolomitization [11-14]. Fluid-rock reactions are usually the main
factor for the porosity evolution because it results in carbonates dissolving to form voids, although
in some cases minerals may precipitate to fill such voids [2,15,16]. However, the reservoir condition
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(e.g., temperature, pressure, mineral species, formation water hydrochemistry and fluid dynamics) is
crucial to the porosity evolution during the long process of diagenesis [9,17-22].

As the most important carbonate reservoir, dolomite has received wide attention [13,23-25].
With the continuous exploration and discovery of oil and gas in deep-buried dolomite formations, a
string of new issues has arisen. The most important issue is how dolomitization affects the reservoir
porosity during various sedimentation-diagenesis processes [26-29]. This, however, has not received
notable attention as the majority of previous research works focused on qualitative testing and analysis
of dolomitization, which did not provide a systematic description of carbonate minerals under different
burial conditions during the whole diagenetic process [30].

In this study, the deep strata of the Tarim Basin in Northwestern China were selected to establish a
number of one- and two-dimensional numerical models under various diagenetic conditions. This allowed
us to analyze the effect of temperature, fluid and hydrodynamic conditions on dolomitization, and for the
quantitative evaluation of the reservoir porosity change induced by dolomitization. Then, quantitative
recovery of porosity evolution during various sedimentation—diagenesis processes was successfully
implemented. The results allowed for a quantitative evaluation and prediction of reservoir porosity,
which would provide a basis for further oil and gas exploration in deep carbonate reservoirs.

2. Geological Background

2.1. Tectonic Locations

Tarim Basin is one of the most important petroliferous basins in China, which contains thick
marine carbonate deposits. The most well-developed carbonate sequence within the basin is the
Cambrian-Ordovician carbonate, which is also the key intervals for oil and gas exploration [31-33].
The Ordovician carbonate reservoirs in the Shunnan (SN) area, located in the central uplift of the
Tarim Basin, are selected in this study, as shown in Figure 1, based on [33,34].
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Figure 1. Tectonic locations of the Shunnan (SN) area in the northern slope of the middle Tarim Basin.
(a) Location of Tarim Basin in China; (b) Location of SN in Tarim Basin; (c¢) Tectonic map.

2.2. Diagenesis

A good overview of the typical diagenesis in the studied area has been provided by various
previous research, as shown in Figure 2 [32,33,35,36] A series of core and thin sections and other
petrological analyses show that the diagenesis mainly includes micritization (Figure 2a), cementation
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(Figure 2b—g), structural fractures (Figure 2e), dissolution (Figure 2f), dolomitization (Figure 2h-k),
and silicification (Figure 21).
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Figure 2. Typical diagenesis types of the Middle-Lower Ordovician carbonate. (a) SN6, 7325.50 m, sparry
dolomitized calcarenite, small scale, cathodoluminescence; (b) SN4, 6361.13 m, micrite calcarenite,
plane polarized light; (c) SN6, 7325.50 m, sparry dolomitized calcarenite, plane polarized light;
(d) SN6, 6849.50 m, micrite clastic limestone, cathodoluminescence; (e) SN1, 6639.70 m, micrite
calcarenite, plane polarized light; (f) SN7, 6876.40 m, sparry calcarenite, plane polarized light;
(g) SN6, 6849.50 m, micrite calcarenite, plane polarized light; (h) SN6, 7318.50 m, sand cutting fine
crystalline dolomite, plane polarized light; (i) SN6, 7319.43 m, fine-medium crystal residual sandy
dolomites, cathodoluminescence; (j) SN7, 6534.10 m, micrite clastic limestone, cathodoluminescence;
(k) SN4, 6461.00 m, micrite calcarenite, plane polarized light; (I) SN4, 6673.22 m, siliceous limestone,
orthogonal polarization.

The diagenetic evolution of the Ordovician reservoirs in the Tarim Basin is complex, which mainly
experience submarine diagenesis, meteoric diagenesis and the deep burial diagenetic settings.
It is characterized by an early weak cementation, a late compaction and pressure solution,
formation of stylolite, dissolution and karstification, mixed dolomitization in the supergene stage and
the rupture and formation of multiphase fractures, which are all favorable conditions for developing
favorable reservoirs [28,37].

Several studies suggest that the syngenetic karst and inter-stratal karst of the upper highstand
system under the Middle-Lower Ordovician III interface are controlled by paleotopography and
paleo-fault [38]. Such eogenetic karst reservoirs have a “quasi-layered” development model, and are
filled by the subsequent formation of carbonate cement. In the late diagenetic stage, acidic hydrothermal
fluids with medium-low temperature, high salinity and rich SiO, penetrated along the fault zones,
leading to hydrothermal alterations such as hydrothermal dissolution, silica replacement and quartz
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precipitation to become the main controlling factors for the formation of reservoirs. Liu [39] theorized
that the Middle-Lower Ordovician dolomites in the SN area are mainly resulted from shallow burial,
burial (transitional environment) and deep burial dolomitizations. The fine-grained dolomite strata
formed during the burial stage have the best reservoir properties, causing grain bank metasomatism and
sustained dolomitization of the mud-sized dolostone formed under a shallow burial environment [37].

The diagenetic evolution sequence of the reservoirs in the studied area is summarized in Figure 3.
According to the diagenetic history, the diagenetic evolution process in the studied reservoir can be categorized
into six consecutive stages, including sedimentary-parasyngenetic, parasyngenetic-shallow burial,
supergene, shallow burial, middle-deep burial and the deep burial stages.
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Figure 3. Diagenetic evolution of the Middle-Lower Ordovician carbonate.
2.3. Sedimentary Environments

The diagenetic evolution of the Ordovician carbonate rocks in the SN area occurred under
different sedimentary environments. According to the diagenesis and petrological characteristics,
the sedimentary environment can be divided into four categories: (1) marine phreatic environment in
a subtidal zone, (2) meteoric fresh water and fresh water phreatic environment in a supralittoral zone,
(3) seawater and freshwater interaction environment in an intertidal zone and (4) seawater evaporation
environment in a shoal setting.
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3. Model Setup

3.1. Model Tools

The model tool employed is a multicomponent multiphase flow and solute transport software
TOUGHREACT, which introduces reactive chemistry into the multiphase fluid and heat flow code
TOUGH. The numerical method for fluid flow and chemical transport simulations is based on the
integral finite difference (IFD) method for space discretization. Thermal, hydraulic and chemical fields
are coupled to model fluid flow, solute transport and reactions simultaneously [40].

At present, TOUGHREACT has been widely used in diagenesis-related research, enhanced
geothermal system, CO, storage and other geological study. It can accommodate any number of
chemical species present in the liquid, gas and solid phases. Several porosity—permeability models are
available to calculate the reservoir porosity and permeability changed by mineral transformation in
real time. Mineral dissolution and precipitation are simulated by equilibrium and kinetic equations,
which are showed as follows [40].

3.1.1. Equilibrium Mineral Dissolution/Precipitation

The mineral saturation ratio can be expressed as
Nc
Qp = K,;}H c;)'"’y;)m’ m=1,..., Np )
j=1

where m is the equilibrium mineral index, K;, is the corresponding equilibrium constant, ¢ is
concentration, y is thermodynamic activity coefficient, and Nc is aqueous species. At equilibrium,
we have

Shy = logy Q=0 )

where SI;, is called the mineral saturation index.

3.1.2. Kinetic Mineral Dissolution/Precipitation

Kinetic rates could be functions of non-basis species as well. Usually the species appearing in rate
laws happen to be basis species.

= flenca o en) = thaAn1 - QYT n =1, ..., N, ®3)

where positive values of 1, indicate dissolution, and negative values precipitation, k, is the rate constant
(moles per unit mineral surface area and unit time), which is temperature dependent, A, is the specific
reactive surface area per kg H,O and # is the kinetic mineral saturation ratio.

3.2. One-Dimensional Flow

In order to clearly distinguish and understand the influence of any single factor on mineral
transformation and porosity evolution, and to avoid multi-factor interference, a simple and typical
one-dimensional model was established. The total length of this horizontal direction model was
150 m, divided into 50 equidistant grid cells. Fluid was injected from the left side at a constant rate,
which promoted the flow of formation water from the left to the right.

In the Base Case, parameters were set according to the actual physical properties and chemical
conditions of the carbonate reservoir studied. The initial temperature was set to 40 °C and the initial
pressure was set to equal to the atmospheric pressure. The initial state of the reservoir was assumed to
be homogeneous, and the initial porosity was 0.35. At the beginning of the model run, the minerals in
the formation were all calcite. The flow rate of fluid in the formation was set to 4 m per year, while the
pH of the inflowing external water was 8.5, and the Mg/Ca ratio was 5.25. Thirteen different models,
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Cases 1-13 were set up to compare the effects of different factors on dolomitization, such as temperature,
flow rate, seawater concentration, Mg/Ca ratio, pH and SO42~ concentration. The specific conditions
of these various experiments are listed in Table 1. The values not specified in Table 1 are shown with a
dash (-) and indicate same conditions as the Base Case. Table 2 displays four seawater concentrations
involved in the simulation.

Table 1. Parameters setting for one-dimensional flow models.

Model No. T (°O) Flow Rate (m/yr) Seawater Index Mg/Ca pH S042~ (mmol/L)

Base Case 40 4 1# 5.25 8.5 22.208
Case 1 - - - - 222.08
Case 2 - 2 - - - -
Case 3 - 8 - - - -
Case 4 - - 2# - - -
Case 5 - - 3# - - -
Case 6 - - 44 -
Case 7 - - - 52.5 - -
Case 8 - - - 10.5 - -
Case 9 - - - - 6.5 -
Case 10 - - - - 9 -
Case 11 60 - - - - -
Case 12 80 - - - - -
Case 13 100 - - - - -

Table 2. Multiple seawater concentrations for one-dimensional flow models.

CaZt Mg+ K* Na* Cl- HCO3~ SO42-
Seawater Index  Saltness (ppt)
mmol/L
1# 27 8.075 42.375 8.051 368.130  428.310 1.836 22.208
2# 15 4.475 23.333 4.436 202.696  235.775 1.016 12.219
3# 42 12.750 66.458 12.641 577913 672.620 2.754 34.854
4# 32 9.625 50.417 9.564 437913  509.380 2.180 26.417

3.3. Vertical Profile Flow

Shallow areas, close to the surface were not water-saturated, which inevitably led to unsaturated
areas to exit. As different groundwater levels must affect the hydrodynamic conditions in the
reservoir, two different groundwater levels (50 m and 100 m) were set to compare their effects on the
dolomitization. Except for the different groundwater levels, the simulation conditions in both models
were the same.

The initial mineral in the model was calcite, and the initial water type was set as shallow
formation water, with a low concentration of K*, Ca?*, Na™, Mg2+, Cl~, SO42~, HCO3™, etc.
During the simulation, external fluids were continuously injected into the reservoir from the upper side
of the formation. The external fluid had the same properties as seawater with higher concentrations of
Ca%* and Mg?*.

3.4. Diagenesis Evolution

Based on the six successive diagenetic stages categorized in Section 2, six corresponding sub-models
were established. The parameters of temperature, pressure and fluid for each diagenetic stage were
taken from measured data of the reservoirs studied (Table 3).

In four different sedimentary environments models, the parameter settings were as follows: the
simulated temperature and pressure was 25 °C and 0.1 MPa respectively. The seawater component
had a salinity of 35 ppt [41]. The initial mineral was calcite, and the mineral content of each sub-model
was based on real-time data from the previous stage.

@® Marine phreatic environment in the subtidal zone. Under the influence of tides, seawater leaks
from the surface. The infiltration rate corresponds to the water exchange rate between seawater
and formation.
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@  Meteoric fresh water and freshwater phreatic environment in the supralittoral zone. The diagenetic
process consists of two sub-processes: (1) the atmospheric freshwater leaching process, with the
following parameters: infiltration rate referenced to the infiltration rate of rainfall in equatorial
regions, fluid composition corresponding to the equatorial region rainwater composition. (2) The
shallow layer water flow process, with the fluid defined as mixed atmospheric fresh water and
formation water.

® Seawater evaporation environment in shoal. The infiltration rate corresponds to that at the surface.

® Seawater and freshwater interaction environment in intertidal zones: The diagenetic process
includes two sub-processes: (1) atmospheric freshwater leaching with an infiltration rate
corresponding to the annual rainfall in the equatorial region and a fluid composition referring
to the rainwater component in the equatorial region. (2) Seawater infiltration process after
sea level rise. The infiltration rate corresponds to the water exchange rate between seawater
and formation.

Table 3. Parameters of six sub-models corresponding to different diagenetic stages.
Sub-Models Diagenesis Stage Diagenetic Buried Temperature Fluid Mineral
No. & & Time (Ma) Depth (m) (o) Composition Composition
14 Sedimentary-parasyngenetic 488-465 0-100 05 seawater, meteoric m1gr1tlzat10n,
stage fresh water calcite cement
24 Parasyngenetic-shallow 465-460 50-600 25-40 mixed water, calcite cement
burial stage formation water
3# Supergene stage 460455 0-50 25 meteoric fresh calcite cement
water
4# Shallow burial stage 455-445 50-600 25-40 formation water calcite cement
5# Middle-deep buried stage ~ 445-252 600-4600 4010 ~formationwater, calcite, dolomite,
hydrothermal siliceous cement

6# Deep buried stage 252-0 4600-7000 120-165 formation water calcite cement

4. Results

The main chemical reactions occurring in carbonate reservoirs are shown in reaction formulas (4)—(6).
With the intrusion of external fluid, the original balance was disrupted, which made the calcite
dissolve and release Ca?* and CO32~, which could then combine with Mg?* in the external fluid to
generate dolomite. The released Ca’* could combine with SO,42~ to generate gypsum under certain
conditions in this process.

CaCO; — Ca’" + CO3%~ (4)
2CaCO; + Mg?* — CaMg (CO3), + Ca?* (5)
Ca?* + SO4% — CaSOy (6)

4.1. One-Dimensional Flow

Relative content of calcite, dolomite and porosity evolution in the Base Case are shown in Figure 4.
At the initial model (T = 0 My), the relative content of calcite, dolomite and gypsum were 0.65,
0.00 and 0.00, respectively. Calcite nearer the injection point (left of the model, X = 0 m) dissolved first
and gradually transformed into dolomite. All calcite was converted to dolomite within 15 m from the
injection point at 0.5 My, while the content of calcite was 0.00 and the content of dolomite was close to
0.60 within 60 m from the injection point at 1 My. The porosity within 15 m from the injection point
was up to about 44% at 0.5 My and reached its maximum from the injection point within 60 m at 1 My.
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Figure 4. Calcite and dolomite content and porosity evolution (Base Case).

In Case 1, the concentration of SO4?~ in the injected water was 10 times higher than that in the
Base Case. Results in Figure 5 show that the calcite nearest to the injection point dissolved first and
gradually transformed to dolomite. No calcite was found within 70 m of the injection point after
1 My, when the dolomite content was up to 0.55. During the transformation of calcite to dolomite,
the generated Ca?* moved continuously to the right area as the water flows. When Ca?* and SO,2~
concentrations in the system reached the conditions for gypsum precipitation, gypsum was formed.
As the curve of gypsum content shows, the content reached the highest value at a distance of 10 m
from the injection point after 0.5 My. With continuous injection of external fluids, more and more
gypsum precipitated. The gypsum content was close to 0.4 between 20 and 80 m from the injection
point after 1 My. The porosity increased to about 0.45 within 20 m of the injection point after 0.5 My,
whereas it decreased to about 0.05 between 20 and 80 m from the injection point after 1 My.
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Figure 5. Calcite and dolomite content and porosity evolution (Case 1).

The change of porosity in different models is shown in Figure 6. The main difference between
Case 2, Case 3 and the Base Case was hydrodynamic conditions. The fluid velocity in Base Case was
4 m/yr, while that of Case 2 and Case 3 was 2 m/yr and 8 m/yr, respectively. In Case 2, the porosity
exhibited a significant increase only within 5 m of the injection point after 0.5 My. It took 0.8 My for
the porosity to increase to about 44% in the range of 20 m from the injection point. However, in Case 3,
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the range where the porosity increased to 44% was close to 40 m from the injection point after 0.5 My
and became nearly 90 m after 0.8 My.
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Figure 6. Porosity evolution in each model (Case 2—Case 13).

The difference between Case 4, Case 5, Case 6 and the Base Case was the injected seawater. In the
Base Case, Seawater 1# was injected, while Seawater 2#, 3# and 4# were injected to Case 4, Case 5
and Case 6, respectively (Table 2). The salinities of the four types of seawater were 27 ppt, 15 ppt,
32 ppt and 42 ppt, respectively. The porosity in Case 4 was seen to increase significantly and reached a
maximum of 46%. The porosity higher than 0.44 at 1 My was within 30 m in Case 4, while within 90 m
and 75 m in Case 5 and Case 6, respectively.

The difference between Case 7, Case 8 and the Base Case was the Mg/Ca ratio in the injected fluid.
The Mg/Ca ratio in the Base Case was 5.25, while that in Case 7 and Case 8 were 10 times and 2 times
that of the Base Case. The porosity in the whole simulation range increased to more than 0.4 after
0.5 My in Case 7 while the range was only about 50 m in Case 8.
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Case 9 and Case 10 differed from the Base Case in pH values of the injected fluid, which was 8.5
in the Base Case, against 6.5 and 9 for Case 9 and Case 10, respectively. Within 20 m of the injection
point, the porosity in Case 9 was 44% at the injection point, whereas 41% in Case 10.

Case 11, Case 12 and Case 13 differed from the Base Case with regards to the reservoir temperature,
which was 40 °C for the Base Case, against 60 °C, 80 °C and 100 °C, for Cases 11, 12 and 13, respectively.
These porosity evolution curves were largely different.

4.2. Vertical Profile Flow

The calcite and dolomite content at three key times for groundwater levels of 100 m and 50 m
are shown in Figure 7, respectively. Regardless of the level of the groundwater, the external fluid
first infiltrated into the saturated zone, after which it infiltrated into the reservoir from the surface,
initiating a reaction. The reaction was enhanced at the interface between the unsaturated and the
saturated zone. In the unsaturated zone, the reaction was gradually developed in the fluid flow path as
a result of the accumulation of ions. For a groundwater level of 100 m, the reaction extended to more
than 200 m in the horizontal direction, while for a groundwater level of 50 m, the reaction expanded to
100 m in the horizontal direction after 0.2 My.

50 100 150 200 250 50 100 150 200 250 50 100 150 200 250
Distance (m) Distance (m) Distance (m)

d o

50 100 150 200 250 50 100 150 200 250 50 100 150 200 250

Distance (m)

Saturated zone

50 100 150 200 250
Distance (m)

Distance (m)

Saturated zone

50 100 150 200 250
Distance (m)

Distance (m)

Saturated zone

50 100 150 200 250
Distance (m)

Figure 7. Calcite and dolomite content distribution after 0.01 My, 0.05 My and 0.2 My. (a—c) Calcite
with groundwater level of 100 m; (d—f) Dolomite with groundwater level of 100 m; (g—i) Calcite with
groundwater level of 50 m.
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4.3. Diagenetic Evolution

4.3.1. Marine Phreatic Environment in the Subtidal Zone

Porosity evolution under marine phreatic environment is shown in Figure 8. Strong seawater
cementation resulted in a calcite cement content of 5.1% during the sedimentary-parasyngenetic stage.
During the parasyngenetic-shallow burial stage, seawater with high concentration of Ca?* and Mg?*
was filled, which led to a strong cementation and to a drop of porosity to 20%. Dissolution occurred
with the development of numerous secondary pores during the supergene stage. During the shallow
burial stage, a large amount of dolomite and calcite precipitated, which decreased porosity to 18%.
As a considerable amount of calcite was replaced by dolomite, the porosity decreased to 4.8% during
the middle-deep burial stage. Finally, the porosity decreased to 1.6% because of calcite cementation in
the deep burial stage.
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Figure 8. Porosity and typical mineral content evolution under marine phreatic environment.

4.3.2. Meteoric Fresh Water and Freshwater Phreatic Environment in the Supralittoral Zone

Porosity evolution under meteoric fresh water and freshwater phreatic environment is shown in
Figure 9. With the synergistic effect of fresh water leaching, freshwater cementation and mechanical
compaction, the porosity decreased to 38% during the sedimentary-parasyngenetic stage. As sea
levels rose, the overlying seawater seeped into the stratum, and the porosity decreased to 22.2%
in the parasyngenetic-shallow burial stage. During the supergene stage, dissolution occurred in
the freshwater leaching environment, and the porosity increased to 33.9%, while during the burial
stage, calcite cementation and dolomitization made the porosity decrease to 14.5%. As high salinity
acidic hydrothermal fluid acted as diagenetic fluid, contributing to cementation, dissolution and
dolomitization, porosity was almost constant throughout the middle-deep buried stage. Poor fluidity
of formation water led to the weak cementation of calcite and the porosity reduced to 4.2% during the
deep burial stage.
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Figure 9. Porosity and typical mineral content evolution under meteoric fresh water and freshwater
phreatic environment.

4.3.3. Seawater Evaporation Environment in Shoal

Porosity evolution under seawater evaporation environment is shown in Figure 10. During the
sedimentary-parasyngenetic stage, cementation, dolomitization and mechanical compaction were
the main reactions and porosity decreased to 36%. In the parasyngenetic-shallow burial stage,
poor fluidity of the infiltration fluid caused a large amount of calcite cement, resulting in a decrease
in porosity. The porosity increased to 30.5% during the supergene stage. Due to calcite cementation and
dolomitization, porosity decreased to 18.2% during the shallow burial stage. During the middle-deep
buried stage, a large amount of calcite was converted into dolomite and a small amount of siliceous
cement was formed, resulting in porosity decrease. Lastly, porosity decreased to 10.8% during the
deep burial stage.
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Figure 10. Porosity and typical mineral content evolution under seawater evaporation environment.
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4.3.4. Seawater and Freshwater Interaction Environment in Intertidal Zones

Porosity evolution under seawater and freshwater interaction environment is shown in Figure 11.
Dissolution, cementation and mechanical compaction were the main diagenetic processes during the
sedimentary-parasyngenetic stage, and the porosity decreased to 35%. The porosity decreased to 19.7%
because of calcite cement during the shallow burial stage and increased to 29% under the action of
atmospheric freshwater leaching during the surface stage. In the shallow burial stage, the pore water
gradually evolved into dolomitized fluid, causing calcite cementation and dolomitization and the
porosity decreased to 13.9%. During the middle-deep buried stage, acidic hydrothermal fluid with
medium-low temperature, high salinity and rich SiO; penetrated along the fault zone, and the porosity
decreased to 9.3%. However, the porosity increased to 19.0% after hydrothermal alteration. The poor
fluidity of the formation water and low porosity-permeability resulted in a weak cementation and a
porosity decrease of 17.1% during the deep burial stage.
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Figure 11. Porosity and typical mineral content evolution under seawater and freshwater interaction
environment.

5. Discussion

5.1. Effect of Geological Factors on Dolomitization

The effect of the temperature, flow rate, fluid properties and other geological factors on
dolomitization varied [23,42,43]. Results of one-dimensional models indicated that if the flow rate of
the external fluid, i.e., the hydrodynamic condition, was different, the degree of dolomitization varied.
The porosity change extent was consistent under various flow rate conditions, but different amounts
of time were needed for the porosity to reach the same level. In short, the better the hydrodynamic
conditions, the faster the fluid migration, which then pushed the reaction and expands the scope
of dolomitization.

In two-dimensional models, comparing different groundwater surfaces, it was found that when
the groundwater level was low, a 100 m unsaturated zone exist in the shallow layer, which contained
much more gas. When external fluid entered the formation, it took a longer path to reach saturation,
while more pores need to be filled in the meantime. Therefore, the reaction occurred later, and the
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degree of reaction was also weak due to the large number of ions being diluted during the porous
flow process.

Different solution properties also lead to various levels of dolomitization [13,43]. The higher
the Mg/Ca ratio in the fluid, the better the precipitation of dolomite, due to the large amount of Mg
needed in the dolomitization process. However, the pH value of the fluid only had a limited influence
compared with other factors.

Dolomitization is a reaction that involves a volume decrease, i.e., the volume of minerals is
reduced with the conversion of calcite to dolomite, so that the number of pores within the reservoir
increases [13,23]. However, if a large amount of gypsum that can occupy some pores is formed in
this process, then the porosity will decrease. The results of this study demonstrated that the amount and
the degree of precipitation gypsum were various under different diagenetic temperatures, which led to
a large disparity in reservoir porosity.

5.2. Comparison of Model and Test Results during Successive Diagenetic Stages

Diagenetic models’ results were consistent with test data both in mineral transformation and
porosity evolution. In models, calcite and dolomite contents increased and the porosity decreased
from 45% to about 35% throughout the sedimentary-parasyngenetic stage (488-465 Ma), meanwhile,
an observation also shows that the main diagenesis was carbonate cementation. It is worth noting that
the porosity evolution varied under different sedimentary environments, which was determined by
the complex fluid composition.

The depth ranges in the parasyngenetic-shallow burial stage (465-460 Ma) was 50-600 m. As sea
levels rose, the overlying seawater seeped into the formation and replenished Ca?* and HCO;™ in the
pore water. Both test and model results indicate that increased temperature and pressure with the
burial depth was beneficial to calcite cementation.

During the supergene stage (460—455 Ma), deeply buried rocks were uplifted below the diving
surface due to tectonic movements and underwent short-term erosion and weathering. With the
leaching and dissolution of meteoric fresh water, fresh water with low ion concentration infiltrated
into the formation, thus dissolving calcite, which led to the development of a large number of
secondary pores.

During the shallow burial stage, porosity and mineral contents evolution show that the main
diagenetic reactions were cementation and dolomitization, associated with a porosity decrease. As the
burial depth increased, a gradual increase of formation temperature favored the overcoming of the
dynamic obstacles to dolomite formation, which were dominant at the beginning of the shallow burial
stage [44]. High-salinity concentrated seawater is the diagenetic fluid at this stage, which can easily
flow downward under the effect of gravity and cause convection with low-density seawater at the
bottom. Following the penetration of the high-salinity seawater in the stratum, calcite would begin to
cement, causing the Ca?* concentration in the fluid to decrease, and the Mg?*/Ca?* to increase, which is
beneficial for the fluid to overcome the kinetic obstacles. Calcite can then be replaced by dolomite,
hence resulting in the decrease in calcite content with burial time. Previous studies have also shown
that massive dolomitization of sediments is the main diagenesis in the shallow burial stage [45,46].

During the middle-deep burial stage, the diagenetic fluids were medium-high salinity, SiO,-rich
and CO;-rich deep hydrothermal fluids. SiO, had a relatively high saturation in the hot liquid, whose
temperature was about 200 °C after entering the formation (the formation temperature was about 100
°C). As the fluid flowed upward, reactions became different because of the different crack and fracture
system in the formation. Strong hydrothermal dissolution happened in the fault zone of SN4 and SN5,
with a developed fracture system.

During the deep burial stage (252-0 Ma), the temperature and pressure were high, which was
conducive to the cementation and dolomitization. Calcite cementation occurred when high Ca?* fluid
entered the formation from the Lower Cambrian source rock, leading the content of calcite to increase
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and the porosity to decrease. With the high concentration of Ca?*, the Mg/Ca continuously diminished,
which is unfavorable for the dolomite precipitation.

5.3. Implications for Reservoir Evolution under Various Sedimentary Environments

The carbonate rock in the studied area experienced complex diagenesis under different sedimentary
environments [43]. The various diagenetic phenomena observed were in the present results from the
comprehensive effects of the sedimentary environments [47].

In the marine phreatic environment, cementation and compaction were the main diagenesis.
As the carbonate deposits were all located below the sea level, the diagenetic fluid was seawater with a
high concentration of Ca?* and Mg?*, which favored the formation of calcium carbonate but not that
of dolomite. A large number of thick ring-like cements and fibrous calcite cements could be seen in the
thin slices of the SN6, which is a typical single well representative of sedimentary diagenesis in the
seawater subsurface flow environment.

In the meteoric water and freshwater phreatic environment, dissolution, cementation and
compaction were the main diagenesis. With the sea level decline, some carbonate sediments
became exposed. Atmospheric fresh water leach causing calcite dissolution porosity increased.
With continuous infiltration, the saturation increased and calcite cement was formed, leading the
porosity to decrease. A large number of fenestrae secondary pores and few equiaxed-granular
freshwater cements filling the slab hole could be seen in the thin slices of the SN7, which is a typical
single well of sedimentary diagenesis in the meteoric fresh water and freshwater phreatic environment.

In the seawater evaporative environment, dolomitization and compaction were the main diagenesis.
Under dry climatic conditions, strong evaporation caused seawater to concentrate. High salinity
seawater flowed into the formation, resulting in an increase in the concentration of Mg2+ and Ca%* in
the pore water. This hypersaline water with a high concentration of Mg?* increased the probability of
effective collision between Mg?* and CO3%, increasing the dolomite content. SN3 and SN5 are typical
wells of the sedimentary diagenesis in the seawater evaporation environment.

In the seawater and freshwater interaction environment, cementation, dissolution and compaction
were the main diagenesis. Controlled by secondary sedimentary cycles and the sea level decline
temporarily, carbonate deposits in the intertidal zone were exposed to the atmosphere. Afterwards,
as the sea level rose, carbonate deposits were submerged again by seawater. A large number of
intragranular and intergranular dissolved pores and casting pores were formed in SN4, and the pores
were filled with equiaxed-granular freshwater cements and fibrous calcite seawater cements formed
during the parasyngenetic stage.

6. Conclusions

A series of test analysis and numerical simulation were combined to study the effects of various
factors (such as temperature, flow rate, seawater concentration, Mg/Ca ratio, pH and SO4® concentration)
on dolomitization during diagenesis in carbonate reservoirs. The degree of dolomitization varied with
the flow rate and other hydrodynamic conditions of the external fluid. The better the hydrodynamic
conditions, the faster the fluid migration, which then pushed the reaction and expanded the
scope of dolomitization. Different solution properties and minerals also led to various levels of
dolomitization. During successive diagenetic stages under different sedimentary environments with
various temperatures, minerals, solutions and other conditions, reservoir experienced complicated
fluid-rock reactions. The diagenetic process and porosity evolution curves in four different sedimentary
environments were re-established in the studied area. The main controlling factors of dolomitization
were identified, which is helpful to clarify the genesis and distribution of carbonate reservoirs. As the
fluid—rock interaction mechanism in carbonate reservoirs is a complex process, further experimental
and numerical simulation studies are planned to elaborate and enhance our understanding.
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