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Abstract: Linear regression is often used as a diagnostic tool to understand the relative contributions
of operational variables to some key performance indicator or response variable. However, owing to
the nature of plant operations, predictor variables tend to be correlated, often highly so, and this can
lead to significant complications in assessing the importance of these variables. Shapley regression is
seen as the only axiomatic approach to deal with this problem but has almost exclusively been used
with linear models to date. In this paper, the approach is extended to random forests, and the results
are compared with some of the empirical variable importance measures widely used with these
models, i.e., permutation and Gini variable importance measures. Four case studies are considered,
of which two are based on simulated data and two on real world data from the mineral process
industries. These case studies suggest that the random forest Shapley variable importance measure
may be a more reliable indicator of the influence of predictor variables than the other measures that
were considered. Moreover, the results obtained with the Gini variable importance measure was as
reliable or better than that obtained with the permutation measure of the random forest.

Keywords: random forest; variable importance; Shapley regression; mineral processing; Gini variable
importance; permutation variable importance

1. Introduction

Insight into the underlying physical phenomena in process systems is key to the development
of reliable process models. These models are in turn vital to the development of advanced process
control systems and optimization of process operations. With the availability of large amounts of plant
data becoming more commonplace, there is a growing interest in the use of operational data to gain
deeper insights into process systems and plant operations [1].

Linear regression is well established as a diagnostic tool to understand the relative contributions
or the statistical significance of operational variables to some key performance indicator or response
variable on process plants. However, owing to the nature of plant operations, predictor variables tend
to be correlated, and this can lead to significant complications in assessing the importance of these
variables. Despite a number of methods that have been proposed to surmount the problem, Shapley
regression is seen as the only axiomatic approach to deal with it [2–4]. As a consequence, linear Shapley
regression models and variants thereof [2,5,6] have seen steady growth in application over the last
few decades.

However, while linear models can be used to explicitly capture nonlinear process behavior,
this would require a sound understanding of the underlying process phenomena, which may not be
available. Although there is no reason why the same approach cannot be used with machine learning
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models in general, few, if any, such studies have been reported in the literature as yet. Therefore, in this
paper, Shapley regression using random forests, instead of linear models, is investigated.

Random forests are a popular approach to develop reliable models for process systems. They are
robust, i.e., they contain few hyperparameters to be specified by the user and can also be used
to quantitatively assess the contributions of predictor variables to the response. These models
have been used in variable importance analysis in a wide range of technical disciplines, including
the mineral processing industries. Examples of these applications include the use of such models
in comminution [7–10], froth flotation systems [11–16], sensor-based ore sorting [17], and blast
fragmentation from open pit mines [18]. Most of these applications are comparatively recent, and this
is a reflection of the rapid growth of random forests in mineral processing in the wake of similarly
strong and continued growth in other disciplines.

The rest of the paper is organized as follows. In Section 2, Shapley regression as a methodology
is introduced, followed by a brief overview of random forests in Section 3. Section 4 discusses the
variable importance measures considered in the paper, as well as the use of random forests in a Shapley
regression framework. This is followed by four case studies in Section 5. In Section 6, the results are
discussed and the conclusions of the investigation are summarized.

2. Shapley Regression

2.1. Methodology

Shapley regression has its origin in game theory from the 1950s and has been reinvented multiple
times with different terminology, including dominance analysis [5,19] and regression analysis in a game
theory approach [2]. In essence, the fraction of the variance of the response variable explained by the
model can be decomposed as indicated in Equation (1).

R2
j =

∑
S⊆V\{x j}

|S|!(m− |S| − 1)!
m!

[
R2

(
S∪

{
x j

})
−R2(S)

]
. (1)

If the m predictor variables are denoted by a set V = {x1 , x2, . . . xm}, then S is some subset of the
set of predictor variables V and |S| is the number of elements in the set S. V\

{
x j

}
is the set of predictor

variables, excluding variable x j. R2(S) is the R2-value of the regression of the predictor variables in S
on the response y and R2

j is the marginal contribution of variable x2 to the overall model R2-value. It is

further assumed that R2(∅) = 0.
The |S|!(m−|S|−1)!

m! term is a weight that compensates among other for the fact that variable coalitions
generally differ in size. For example, if there are m = 3 variables (A, B and C), then S can either
have 0, 1 or 2 elements. In this case, there are four coalitions to consider in the analysis of any
single variable. For variable A, for example, the models to consider would be y = f (A), y =

f (A, B), y = f (A, C), and y = f (A, B, C). For these models, the respective weights would be
|S|!(m−|S|−1)!

m! =
|0|!(3−|0|−1)!

3! = 1
3 , |S|!(m−|S|−1)!

m! =
|1|!(3−|1|−1)!

3! = 1
6 , and |S|!(m−|S|−1)!

m! =
|2|!(3−|2|−1)!

3! = 1
3 . This is

to compensate for the fact that there are twice as many two-variable coalitions as one- or three-variable
ones and to ensure that the sum of the weights remain unity, i.e., 1(1/3) + 2(1/6) + 1(1/3) = 1.

For four variables, the coalitions become y = f (A), y = f (A, B), y = f (A, C), y = f (A, D), y =

f (A, B, C), y = f (A, B, D), y = f (A, C, D), and y = f (A, B, C, D), with respective weights of the
variable groups amounting to 1(1/4) + 3(1/12) + 3(1/12) + 1(1/4) = 1. For five-variable systems,
the weights become 1(1/5) + 4(1/20) + 6(1/30) + 4(1/20) + 1(1/5) = 1, etc.

Evaluation of all possible coalitions is computationally expensive, since the number of models
that needs to be evaluated, is equal to 2m. For 20 predictor variables or more, it means more than
a million models need to be evaluated. This is a huge computational cost, which is exacerbated
when Monte Carlo sampling is also performed to determine the statistical significance of the effects
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of variables. As a consequence, the Shapley regression framework has started to gain acceptance in
practice relatively recently, as computational power has become more widespread.

2.2. Axiomatic Properties of Shapley Values

It can be proved that Shapley regression is the only attribution method that satisfies the following
axioms of credit attribution [20]:

As far as regression models are concerned, the variable contributions to the variance explained by
the model all add up to the overall variance explained by the model, i.e.,

∑m
j=1 R2

j = R2
model.

If a variable never adds any marginal value, its credit portion is zero, i.e., if R2
(
S∪

{
xq

})
= R2(S),

for all S ⊆ {x1, x2, . . . xm}\
{
xq

}
, then R2

q = 0.
If two variables add the same marginal value to any subset to which they are added, then their credit

portion is identical, i.e., R2
(
S∪

{
xp

})
= R2

(
S∪

{
xq

})
, for all S ⊆ {x1, x2, . . . xm}\

{
xp, xq

}
, then R2

q = R2
p.

If a model consists of two additive models, then addition of the pay-offs of a variable in the
two submodels should equal the pay-off of the variable in the overall model. With random forests,
for example, the predicted value of the response is equal to the average of the predictions of the
individual trees in the forest. This means that, for a specific variable, the Shapley value can be
calculated for each tree individually and these values can be averaged to get the Shapley value for the
random forest.

As a result, the Shapley decomposition of the variance explained by the variables in a model is
considered to be the ground truth or gold standard against which other methods can be measured [20].

3. Random Forests

Developed in the 1990s, random forests [21] have become known for their state-of-the-art capability
in classification or regression, and their ability to handle categorical or continuous variables, as well
as dealing with missing data [22]. In addition, in most implementations, so-called out-of-bag or
generalization errors are automatically calculated and their performance is not particularly sensitive to
the few hyperparameters that are required to tune the models. As a consequence, the popularity of
these models in the process industries is growing rapidly, with applications, for example, in predictive
modeling [11,23], fault diagnosis and root cause analysis [24,25], and change point detection [26],
as well as diagnostic modeling [27,28]. Random forests consist of ensembles of decision trees, as briefly
summarized below.

3.1. Decision Trees

Decision trees are built based on recursive partitioning of a data set to perform. Given a training
set D with n samples, consisting of m predictor variables X ∈ Rn×m and a target variable y ∈ Rn×1,
the classification and regression tree (CART) algorithm recursively partitions the input space X to
obtain a tree predictor TD(x) (with ŷ the estimated response as a function of the predictors):

ŷ(x) = TD(x). (2)

The algorithm accomplishes this by repeatedly seeking a binary partitioning of the input space
X that increases the target purity in the subspaces formed by the partition. The partition is defined
by a hyperplane perpendicular to one of the coordinate axes of X. The Gini criterion is often used as
a measure of the purity for classification, while a mean squared error criterion is used for regression.
Recursive binary partitioning of each new subspace is terminated when some level of subspace response
homogeneity is achieved. At that point, the predicted value for a particular subspace is typically
obtained via the majority vote in the case of classification or the average in the case of regression of the
training targets in the subspace.
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3.2. Ensembles of Decision Trees

Random forests are ensemble algorithms, where the training data seen by each tree are generated
by bagging. That is, a different bootstrapped sample D(θk) of size ntry ×mtry from the training set
(D) of size n×m is generated for each tree TD(θk)

. The predictions by the individual trees, TD(θk)
(xi),

are subsequently averaged over all the trees in the random forest to generate the prediction of the
model, as indicated in Equations (3) and (4) for regression and classification, respectively.

i. ŷ(xi) =
1
K

∑K

k=1
TD(θk)

(xi), (3)

ii. ŷ(xi) = majority vote
{
TD(θk)

(xi)
}K

1
. (4)

The construction of a random forest, generally with K trees, as shown in Figure 1, proceeds
as follows:

1. From the data, draw ntry bootstrap samples.
2. Grow a tree for each of the sets of bootstrap samples. For each tree (k = 1, 2, . . .K), randomly

select mtry variables for splitting at each node of the tree. Each terminal node in this tree should
have no fewer than nlea f cases.

3. Aggregate information from the K trees for new data prediction, according to Equations (3)
and (4).

4. Compute an out-of-bag (OOB) error rate based on the data not in the bootstrap sample.

3.3. Splitting Criteria

The Gini index in Equation (5) is based on the squared proportions of the classes and favors larger
partitions. Perfect classification is associated with a Gini index of zero, while an even distribution of
classes would yield an index Gini = 1− 1

C , where C is the number of classes.

Gini = 1−
C∑

i=1

(pi)
2 (5)
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4. Variable Importance Measures

Three variable importance measures are considered in this investigation, as defined by Equations
(1), (7) and (9) and described in more detail below.

4.1. Shapley Variable Importance with Random Forests and Linear Regression Models

The Shapley variable importance measure is derived from Equation (1), where the R2-values were
generated by both linear regression and random forest regression models in this study. Each random
forest model that was constructed was based on a random selection of the data, as well as a random
selection of the subset of variables seen by that specific random forest in the coalition. Likewise,
the regression results were collected on an independent test set randomly constructed from the data,
which was different for each model. For the random forests, the Shapley variable importance measures
are denoted as VIRF

shap

(
x j

)
= R2

j as calculated by Equation (1).
For comparative purposed, the linear regression models were evaluated on the same basis, i.e.,

the models were fitted on a training data set and the regression results reported on a test set. The results
were essentially the same as when the models were fitted to all the data, as would normally be done in
the case of linear regression (not reported here). Likewise, for the multiple linear regression models,
the Shapley variable importance measures are denoted as VIMLR

shap

(
x j

)
= R2

j as generally calculated by
Equation (1).

4.2. Permutation Variable Importance

The permutation variable importance of each variable is the increase in the mean square error
(MSE) in the model when the particular variable is permuted. That is, the association between the
predictor and the target is destroyed by randomly shuffling the observations of the particular variable.

More formally, the permutation variable importance VI(k)perm

(
x j

)
can be computed in the k’th tree

for variable x j as indicated by Equation (6).

VI(k)perm

(
x j

)
=

1
nOOB

∑nOOB

i=1

(
y(k)i − ŷ(k)i

)2
−

1
nOOB

∑nOOB

i=1

(
y(k)i − ŷ(k)j,i

)2
. (6)

In Equation (6), y(k)i , ŷ(k)i and ŷ(k)j,i are the i’th response variable observation in the OOB sample
seen by the k’th tree in the random forest, the estimate of the this response by the k’th tree and the
estimate of this response by the k’th tree when the j’th variable is permuted, respectively. nOOB is the
number of samples in the out of bag (OOB) data set seen by each of the K trees in the forest.

VIperm
(
x j

)
=

1
K

∑K

k=1
VI(k)perm

(
x j

)
. (7)

Unlike univariate screening methods, the permutation variable importance accounts for both the
individual impact of each predictor variable, as well as multivariate interaction with other predictor
variables [21].

4.3. Gini Variable Importance

The third approach to estimating the importance of individual predictors is based on the changes
in the node impurities at each split in each tree in the random forest. This Gini importance or mean
decrease in the impurity of the node is the difference between a node’s impurity and the weighted sum
of the impurities of the two descendent nodes.

More formally, the importance of variable x j for predicting a response variable y, can be determined
by summing the decreases in impurity (∆I) for all the nodes t, where variable x j is split. These impurity
decreases are weighted by the fractions of samples in the nodes p(t) and averaged over all trees
(k = 1, 2, . . .K) in the forest [13].
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VI(k)gini

(
x j

)
=

∑
t∈Tk:v(st)=x j

p(t)∆I(st, t), (8)

VIperm
(
x j

)
=

1
K

∑K

k=1
VI(k)gini

(
xj

)
. (9)

In Equation (8), the number of nodes in the k’th tree in the random forest is Tk, p(t) = nt
n is the

fraction of the samples reaching node t, while v(st) is the variable used in the split st. When the Gini
index is used as the impurity function I

(
x j

)
, the variable importance measure VIgini

(
x j

)
is referred to as

the Gini variable importance.

5. Case Studies

5.1. Linear System with Weakly Correlated Predictors

The data in the first case study were generated by the same model used by Olden et al. [29] to
investigate variable importance analysis with multilayer perceptrons. A 1000 samples with six random
variables were generated with a mean vector of zero and a covariance matrix (Σ) as follows.

Σ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0.2 0.2 0.2 0.2 0.8
0.2 1 0.2 0.2 0.2 0.6
0.2 0.2 1 0.2 0.2 0.4
0.2 0.2 0.2 1 0.2 0.2
0.2 0.2 0.2 0.2 1 0
0.8 0.6 0.4 0.2 0.2 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(10)

The first five variables (x1, x2, . . . x5) constituted the predictors, while the last variable (y,) was the
target or response variable, linearly related to the predictor variables. The predictor variables were
mildly correlated, as indicated by the covariance matrix in Equation (1), with bivariate correlation
coefficients of rxi−x j = 0.2 for all i, j. The first predictor variable (x1), was strongly correlated with the
target variable, i.e., rx1−y = 0.8, the subsequent predictors having progressively weaker correlations,
i.e., rx2−y = 0.6, rx3−y = 0.4, rx4−y = 0.2 with the fifth predictor having no correlation with the target at
all (rx5−y = 0).

Figure 2 shows a scatter plot matrix of the predictor data set (left), as well as the relationship
between the response and the two most influential predictors.
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Figure 2. Scatter plots of the predictor matrix X, showing bivariate relationships and the distributions
of the variables x1, x2 . . . x5 on the diagonal from top left to bottom right (left) and a 3D scatter plot of
the simulated data set, y = f (x1, x2) (right).
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Random forest models were fitted to the data, with the following optimal parameters: mtry = 2,
ntry = 80% of the data, minimum leaf size, nlea f = 5. On average, the random forest model could
explain 93% of the variance of the response variable. The effect of the parameter mtry on the performance
of the model is shown in Figure 3
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Figure 3. Effect of the random forest hyperparameter mtry on the model performance in Case 1 based
on 30 runs.

In addition to the random forest, multiple linear regression models were also run in a Shapley
framework. The variable importance measures based on 30 runs are shown in Figure 4. These are the
Shapley regression values (top, left), permutation indices (top, right), and Gini indices (bottom, left)
obtained with random forest models, as well as the Shapley regression values obtained with a multiple
linear regression model (bottom, right).

The boxes in the box plots show the median values of the importance measures (red horizontal
bar in the center of the box), and the 25th and 75th percentiles (lower and upper edges of the boxes).
The whiskers extend to the most extreme data points not considered outliers, which are indicated by
‘+’ markers. More specifically, points were drawn as outliers if they were larger than Q3 + W(Q3 −Q1)

or smaller than Q1 −W(Q3 −Q1), where Q1 and Q3 are the 25th and 75th percentiles, respectively.
W = 1.5 was used, corresponding to approximately 2.7 standard deviations of a normal distribution.
The notches in the boxes can be used to compare the median values of the importance measures.
That is, non-overlapping notches indicate a difference between the median values of the variables with
95% certainty.

The Shapley regression values obtained with the random forest are the only ones that could
correctly identify the ranking of the importance of the variables, although the Gini importance measure
came close to correct identification, as well. The Gini measure could rank variables x1 to x3 correctly,
but the relative importance of variables x4 and x5 was swopped around by a small margin. The Shapley
regression values obtained with the linear model yielded the same results as the Gini measure. Although
significant, it is a relatively minor error again, bearing in mind that variable x4 explains approximately
4% of the variance of the response only, as opposed to the zero percent of variable x5.

The permutation index could correctly identify the relative importance of variables x4 and x4,
but rated the relative importance of the fifth predictor as markedly higher than that of the fourth and
also higher than that of the third predictor with 95% confidence. As discussed by Gregorutti et al. [30],
the higher the interpredictor correlation and the larger the number of correlated predictors, the less
important the predictor will appear to be, at least for additive models. On this basis, the variable
importances of the last two variables would be fairly similar and would be difficult to distinguish from
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one another by any model. However, it does not explain the higher value of the last variable shown in
Figure 4 (top, right).Minerals 2020, 10, 420 8 of 17 
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Figure 4. Relative importance of predictors in Case Study 1, based on 100 iterations, showing Shapley
values (top, left), permutation indices (top, right), Gini indices (bottom, left), and Shapley values for
a multiple linear regression model (bottom, right), based on 30 runs.

5.2. Nonlinear System with Strongly Correlated Predictors

In the second case study, a simulated data set with 1000 samples was generated, where X ∈ R1000×5

and y ∈ R1000×1, where y = x2
4 + x4x5. The matrix X consisted of multivariate random numbers

with a mean vector x = [0 0 0 0 0] and a covariance matrix Σ. As indicated by Equation (2), the first
four (x1, x2, x3, x4) variables were strongly correlated with each other, while the last variable (x5) was
independent from the other four.

The data are shown in Figure 5. As before, the random forest models were constructed with the
same hyperparameters that were used in the first case study, except for mtry = 4. The effect of this
parameter on the performance of the model is shown in Figure 6. On average, the random forest model
could account for approximately 96% of the variance in the response variable, while the linear model
was completely unable to capture the relationship.

Σ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0.9 0.9 0.9 0
0.9 1 0.9 0.9 0
0.9 0.9 1 0.9 0
0.9 0.9 0.9 1 0
0.9 0.9 0.9 1 0

0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(11)
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Figure 6. Effect of the random forest hyperparameter mtry on the model performance in Case 2 based
on 30 runs.

The random forest Shapley variable importance indicator and the permutation index indicator
were both able to identify the two important variables, x4 and x5, although they differed in the ranking
of these two variables. Interestingly, as indicated in Figure 7, the Gini variable importance measure
could not distinguish the important variable x5 from the unimportant variables x1, x2, and x3.

As expected, it is clear that a linear model could not give a reliable indication of the importance of
the predictors.
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Figure 7. Variable importance analysis with the Shapley regression forest (top, left), permutation with
the random forest (top, right), Gini index with the random forest (bottom, left), and Shapley regression
with a linear model (bottom, right), based on 30 runs.

5.3. Free Swelling Index of Coal

Chelgani et al. [31] studied the free swelling index of coal. In this case study, the same data
set is used, but only eight predictors variables (x1, x2 . . . x8) were considered, as indicated in Table 1.
The predictor data matrix, X ∈ R3691×8 and the associated response vector, the free swelling index,
y ∈ R3691×1 contained 3691 samples, which can be visualized based on a principal component score
plot of the variables in Figure 8.

Table 1. Predictor variables in coal data set.

x1 x2 x3 x4 x5 x6 x7 x8

Moisture Vol Ash H C N O S

The 100-tree random forest model fitted to the data, with the following optimal hyperparameters:
mtry = 5, ntry = 80% of the data, minimum leaf size, nlea f = 5 was fitted to the data. This forest could
explain approximately 82.5% of the variance of the free swelling index. The correlation coefficient
matrix of the predictor data set is given in Table 2. From this table, it can be seen that variables x1, x5,
and x7 show significant correlation with the free swelling index (FSI).
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content (𝑥 ), and the moisture (𝑥 ) in the coal. The latter two variables are practically of equal 
importance. 

Shapley analysis with a linear regression model gave markedly similar results (bottom, right, 
Figure 9), as did the random forest based on the Gini variable importance measure (bottom, left). 
However, except for the most important variable, the random forest model using the permutation 
importance index (top, right) yielded different results, suggesting, for example, that the nitrogen 
concentration (𝑥 ) is comparatively important, while this did not appear to be the case with the other 
models. 
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Figure 8. Principal component score plot of the eight predictor variables in the free swelling index
system (left) and a scatterplot of the most important variables (right). The colors imposed on the
markers show the corresponding values of the free swelling index, as indicated by the color bar.

Table 2. Correlation coefficient matrix of the predictors and response variable in the coal data set.

x1 x2 x3 x4 x5 x6 x7 x8 y

x1 1.000 0.024 −0.050 0.397 −0.594 −0.325 0.919 0.086 −0.597
x2 0.024 1.000 −0.241 0.482 −0.058 0.068 0.166 0.343 −0.258
x3 −0.050 −0.241 1.000 −0.693 −0.711 −0.364 −0.110 0.370 −0.091
x4 0.397 0.482 −0.693 1.000 0.220 0.184 0.425 −0.176 −0.185
x5 −0.594 −0.058 −0.711 0.220 1.000 0.491 −0.569 −0.498 0.570
x6 −0.325 0.068 −0.364 0.184 0.491 1.000 −0.281 −0.336 0.160
x7 0.919 0.166 −0.110 0.425 −0.569 −0.281 1.000 −0.046 −0.748
x8 0.086 0.343 0.370 −0.176 −0.498 −0.336 −0.046 1.000 −0.042
y −0.597 −0.258 −0.091 −0.185 0.570 0.160 −0.748 −0.042 1.000

With the full set of predictor variables, the random forest could explain approximately 82.7%
of the variance of the free swelling index on average on unseen test data set. As indicated by the
Shapley analysis, in Figure 9 (top, left), the three most important variables are the oxygen content
(x7), carbon content (x5), and the moisture (x1) in the coal. The latter two variables are practically of
equal importance.

Shapley analysis with a linear regression model gave markedly similar results (bottom, right,
Figure 9), as did the random forest based on the Gini variable importance measure (bottom, left).
However, except for the most important variable, the random forest model using the permutation
importance index (top, right) yielded different results, suggesting, for example, that the nitrogen
concentration (x6) is comparatively important, while this did not appear to be the case with the
other models.

Figure 10 shows the partial dependence plots of the individual variables, as generated by the
random forest model. Figure 11 shows the bivariate partial dependence plot of the two most important
variables on the free swelling index of the coal, i.e., the oxygen and carbon content of the coal.
The observed data are indicated by ‘o’ markers in this figure.
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Figure 9. Variable importance analysis with the Shapley regression forest (top, left), permutation
random forest (top, right), Gini random forest (bottom, left), and Shapley linear regression (bottom,
right), based on 30 runs.
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more important than the other variables. 

Although the percentage extraction of the gold (𝑥 ) was identified as the most important variable 
by all the measures, as well, the results differ as far as the other variables are concerned. For example, 
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5.4. Consumption of Leaching Reagent in a Gold Circuit

In the final case study, a small data set related to the leaching of gold ore is considered, as described
in Aldrich [32]. The consumption of lixiviant (y) depending on seven predictors variables (x1, x2 . . . x7)
were considered. The variables represented the percentage extraction of the gold (x1), the residual
grade of the ore (x2), the cyanide concentration in the leach tank (x3), the gold grade of the ore (x4),
the source of the ore (x5), and the agitation rate of the tank (x6), as well as the leach temperature (x7).

The predictor data matrix, X ∈ R54×7 and the associated response vector, consumption of lixiviant,
y ∈ R54×1 contained 54 samples. The correlation of the variables are summarized in Table 3. The 100-tree
random forest model, with the following hyperparameters: mtry = 4, ntry = 80% of the data, minimum
leaf size, nlea f = 3 was fitted to the data. Figure 12 shows the decrease in the mean square error of the
random forest model, as a function of the number of trees in the forest.

Table 3. Correlation coefficient matrix of the predictors and response variable in the leach data set.

Variables x1 x2 x3 x4 x5 x6 x7 y

x1 1 0.644 −0.396 0.173 −0.280 0.00490 0.417 0.678
x2 0.644 1 −0.305 −0.113 −0.269 0.0455 0.200 0.502
x3 −0.396 −0.305 1 −0.214 0.266 0.468 0.167 −0.294
x4 0.173 −0.113 −0.214 1 −0.0512 −0.185 0.150 0.156
x5 −0.280 −0.269 0.266 −0.0512 1 −0.0247 −0.443 0.169
x6 0.00490 0.0455 0.468 −0.185 −0.0247 1 0.392 −0.229
x7 0.417 0.200 0.167 0.150 −0.443 0.392 1 −0.0212
y 0.678 0.502 −0.294 0.156 0.169 −0.229 −0.0212 1

Figure 13 shows the results obtained with the different variable importance measures. The Shapley
random forest variable importance measure identified variables x1 and x5 as significantly more
important than the other variables.

Although the percentage extraction of the gold (x1) was identified as the most important variable
by all the measures, as well, the results differ as far as the other variables are concerned. For example,
the linear Shapley regression, permutation, and Gini variable importance indicators all flagged variable
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Figure 12. Decrease in mean square error (MSE) with number of trees in the random forest model of
the leach system based on 100 runs.
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Figure 13. Variable importance analysis with the Shapley regression forest (top, left), permutation
random forest (top, right), Gini random forest (bottom, left), and Shapley linear regression (bottom,
right), based on 30 runs.
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Figure 14. Bivariate partial dependence plot showing the effect of the two most influential variables, 𝑥  and 𝑥 , on reagent consumption. The observed data are indicated by ‘o’ markers. 

6. Discussion and Conclusions 

In this paper, the use of random forest models in a Shapley regression framework was 
investigated, as a means to determine the importance of the predictors in these models. The results 
were compared with the widely used Gini and permutation importance measures used with random 
forests, as well as with multiple linear regression models, the latter also in the same framework. 

Overall, the results suggest that the Shapley random forest variable importance measure yielded 
more reliable results than the other measures, at least with regard to the first two case studies based 
on simulated data. 

The Gini importance measure is known to be biased towards variables with many categories or 
numeric values and even variables with many missing values [33]. However, in all the case studies 
considered here, the variables were of the same type, so this bias was not manifest. This may explain 
why the Gini importance measure arguably performed better than the permutation measure in two 
of the four case studies, and compared with mixed results in the other two case studies. 

The random forest and multiple linear regression model used in a Shapley regression framework 
gave similarly reliable results for the linear system considered, as would be expected. However, the 
linear model broke down when it failed to capture the relationships in the nonlinear system in Case 
study 2, in particular. 

Although the Shapley random forest measure arguably gave the most reliable results of the 
measures considered, these results would need to be validated by further work. Future work will 
also be extended to the use of other machine learning algorithms, such as multilayer perceptrons, 
which are also widely used as tools in variable importance analysis. 
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Figure 14. Bivariate partial dependence plot showing the effect of the two most influential variables,
x1 and x5, on reagent consumption. The observed data are indicated by ‘o’ markers.

6. Discussion and Conclusions

In this paper, the use of random forest models in a Shapley regression framework was investigated,
as a means to determine the importance of the predictors in these models. The results were compared
with the widely used Gini and permutation importance measures used with random forests, as well as
with multiple linear regression models, the latter also in the same framework.

Overall, the results suggest that the Shapley random forest variable importance measure yielded
more reliable results than the other measures, at least with regard to the first two case studies based on
simulated data.

The Gini importance measure is known to be biased towards variables with many categories or
numeric values and even variables with many missing values [33]. However, in all the case studies
considered here, the variables were of the same type, so this bias was not manifest. This may explain
why the Gini importance measure arguably performed better than the permutation measure in two of
the four case studies, and compared with mixed results in the other two case studies.

The random forest and multiple linear regression model used in a Shapley regression framework
gave similarly reliable results for the linear system considered, as would be expected. However,
the linear model broke down when it failed to capture the relationships in the nonlinear system in
Case study 2, in particular.

Although the Shapley random forest measure arguably gave the most reliable results of the
measures considered, these results would need to be validated by further work. Future work will also
be extended to the use of other machine learning algorithms, such as multilayer perceptrons, which are
also widely used as tools in variable importance analysis.
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