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Abstract: Polymetallic nodules are promising resources for the extraction of valuable metals such as
copper, nickel, and cobalt, as well as manganese alloys. To achieve efficient extraction of useful metals
from the emerging resource, high-temperature carbothermic reduction of nodules was investigated
by optimizing the reductant addition, slag and alloy systems. Thermochemical software FactSage
was used to predict the liquidus temperature of the slag system, which is not sensitive to FeO, CaO
and Al2O3, but decreases significantly with decreasing MnO/SiO2 mass ratio. The experiments were
designed to reduce the oxides of Cu, Co and Ni completely, and reduce FeOx partially depending
on the amount of graphite addition while leaving the residual slag for further processing into
ferromanganese and/or silicomanganese alloys. Co, Cu and Ni concentrations in the alloy decreased
with increasing graphite addition. The optimal reduction condition was reached by adding 4 wt%
graphite at the MnO/SiO2 mass ratio of 1.6 in slag. The most effective metal-slag separation was
achieved at 1350 ◦C, which enables the smelting reduction to be carried out in various furnaces.
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1. Introduction

The manganese and iron concretions on the sea bottom formed of concentric layers around a
core are known as manganese nodules or polymetallic nodules. Polymetallic nodules contain many
valuable elements such as Cu, Ni and Co, besides Mn and Fe. Trace amounts of Mo, V, and rare earth
elements (REEs) are also present in the nodules. As the land-based resources for Mn, Cu, Ni and Co are
depleting very fast, the exploration and exploitation of manganese nodules are essential to meet the
future demands of Cu, Ni, Co and Mn in the world [1]. In recent years, the exploitation of manganese
nodules from the deep sea has once again become a political and economic topic [2,3]. One of the
biggest and economically most important areas, where polymetallic nodules can be found, is situated
between the Clarion and Clipperton Zones in the tropical northern Pacific Ocean. The nodules could
serve as an enormous reserve for these metals since they are found in relative abundance. The nodules
in the Clarion Clipperton Zone alone constitute an estimated reserve of up to 220 million tons of
copper, up to 260 million tons of nickel, up to 50 million tons of cobalt, and up to 5 billion tons of
manganese [2,3]. These estimated amounts currently surpass universal land-based reserves in mines
for Ni, Cu, Co and Mn. Recently, the increased interest in electrical energy storage and rapid growth in
the market for electric vehicles will make the polymetallic nodules promising resources to produce
component metals of batteries.

Polymetallic nodules are composed of complex Mn-oxides and Fe-oxyhydroxide minerals with
mineral particles smaller than one µm. Ni, Cu, Co and Mo are found in the manganese- or iron-oxide
matrix [4]. Therefore, beneficiation with classic techniques (density separation, floatation, etc.) to
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generate a metal-bearing concentrate, which could be directly used in existing industries, is not
effective [5]. Considerable research has focused on the extraction of valuable metals from ocean nodules.
The nodule processing techniques are broadly divided into three categories: (1) hydrometallurgical
processing (only); (2) pyrometallurgical treatment followed by hydrometallurgical processing;
(3) hydrometallurgical processing followed by pyrometallurgical treatment for recovery of Mn
from leaching residue [6–8]. Various hydrometallurgical approaches included reductive ammonia
leaching [9–14], reduction and sulphuric acid leaching [15–18], reduction and hydrochloric acid
leaching [19,20], and other integrated or synergistic solvent extractions [21–23]. Reductive ammonia
and sulphuric acid leaching cannot recover manganese, which makes up nearly half of the nodules’
value. Reductive hydrochloric acid leaching can recover manganese, however, the corrosive nature
of chloride is the main disadvantage [24]. With time, the environmental regulations are becoming
more and more stringent, it is mandatory to properly deal with the disposal of solid/liquid effluents
generated during the hydrometallurgical processes. Some researchers reported the pyrometallurgical
route to recover the Cu, Ni, Co, as well as Mn metals from polymetallic nodules at temperatures above
1400 ◦C [25–30]. Recently, the pyrometallurgical process with “zero-waste” has been proposed [28,30],
based on the “Inco-process” [7]. Valuable metals such as Cu, Co, Ni are recovered first by smelting
reduction at high temperature or sulfurizing into matte. The slag generated contains high manganese
can be used in the existing production plants for ferromanganese or silico-manganese alloys. Since the
(Cu + Ni + Co) grade of nodules is similar to nickel laterite, the pyrometallurgical treatment route of
nickel laterites [31], which is a well-established industrial method, namely, the rotary kiln-electric arc
furnace (RKEF) process, can be used to treat nodules to save a new capital investment to build a new
process for nodules. However, limited experimental data on the extraction of valuable metals have been
reported due to a limited supply of nodules. The operating parameters need to be optimized to prepare
industrial scale-up. Of particular significance is that the melting temperatures of slags over 1500 ◦C
were typically quoted significantly higher, which results in high consumption of energy and refractory.
Therefore, in this study, the pyrometallurgical process of extraction of useful minerals from deep-sea
nodules will be developed and optimized to produce Fe-Cu-Co-Ni master alloys and Mn-rich slag.

2. Materials and Methods

2.1. Nodule Materials

The nodules employed in this study were dredged from the Clarion-Clipperton Zone of the Pacific
Ocean. The chemical composition of the nodule sample is shown in Table 1.

Table 1. Chemical composition of the nodules (wt%).

MnO SiO2 Fe2O3 Al2O3 MgO Na2O CaO NiO CuO CoO

40.25 13.48 8.28 4.67 3.48 3.01 2.16 1.71 1.65 0.30

K2O TiO2 P2O5 BaO ZnO SO3 PbO Cr2O3 LOI MnO/SiO2

1.24 0.52 0.32 0.22 0.20 0.17 0.03 0.01 17.28 3.0

The microstructure and elemental mapping of a local area of an example nodule were determined
by scanning electron microscopy (SEM) with energy dispersive X-ray spectrometry (EDS), which is
shown in Figure 1. The nodule consists of concentrically banded zones of micro-layers around a
nucleus. The microstructure of the shell is dense, while it is looser in the core of the nodule scanned.
The maps of the distribution of each element across the local area show the distribution of Mn and
Fe is in striation. Si is incorporated with Al, Na, K and Ca as impurity minerals, likely detrital
deep-sea ooze [1]. Valuable metal elements such as Cu, Co and Ni in low concentrations are uniformly
distributed in the nodule matrix. Ba is found to be associated with S, which is most likely considered
to be precipitated barite (BaSO4).
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Figure 1. Microstructure and element distribution measured by SEM-EDS.

2.2. Thermodynamic Consideration

2.2.1. Effect of Flux on the Liquidus Temperature of Resulted Slags

Thermodynamically, it is possible to reduce the oxides of nickel, copper, cobalt, and iron to metals
while leaving the manganese oxide over a wide range of temperatures. The selective reduction of NiO,
CuO, CoO and Fe2O3 over MnO by carbon reductant can be simplified in Reactions (1)–(4) with a
ratio of CO and CO2 gases between critical limits. The iron oxide can be fully or partially reduced
in the smelting process to adjust the slag composition and to control the alloy grade. For the sake of
convenience, the stoichiometric amount of carbon needed to reduce the oxides is 2.4 g per 100 g ore,
assuming only CO is generated during carbon gasification instead of a mixer of CO/CO2.

NiO + C→ Ni + CO/CO2, (1)

CuO + C→ Cu + CO/CO2, (2)

CoO + C→ Co + CO/CO2, (3)

Fe2O3 + C→ FeO/Fe + CO/CO2. (4)

In similar commercial scaled operations, some common oxides such as CaO, SiO2, and Al2O3 are
normally added as a flux to adjust the slag composition and keep the smelting slag in a fully molten
state at a suitable temperature. The thermodynamic software package FactSage 7.2 [32] with the
suitable optimized compounds and solution databases was used to predict the liquidus temperatures
of the MnO-SiO2-“FeO”-Al2O3-MgO-Na2O-CaO-K2O system at iron saturation condition based on the
normalization of major components of Table 1 and assumption of full reduction of NiO, CuO and CoO.
The composition of the slag used for the FactSage calculation is given in Table 2.

The FactSage databases including FactPS (for pure compounds), FToxide (for solid and liquid
oxide solutions), and FTmisc (for liquid alloys), were used. The effects of the MnO/SiO2 ratio and CaO,
Al2O3, and “FeO” on the liquidus temperatures of the slag are shown in Figure 2. It can be seen from
Figure 2a that the liquidus temperature increases with increasing CaO concentration in the monoxide
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primary phase field at different MnO/SiO2 ratios but decreases in the olivine primary phase field at
the MnO/SiO2 ratio of 1.0. Figure 2b shows the Al2O3 concentration has a little effect on the liquidus
temperature at the MnO/SiO2 ratio of 3.0. The liquidus temperature increases slightly with increasing
Al2O3 concentration at the MnO/SiO2 ratio of 2.0 in the monoxide primary phase field but decreases
slightly at the MnO/SiO2 ratio of 1.0 in the olivine primary phase field. It shows in Figure 2c that the
FeO concentration has little effect on the liquidus temperature at different MnO/SiO2 ratios, which
indicates the liquidus temperature of slag will not change significantly when FeO in slag is partially or
fully reduced.

It is clear from Figure 2 that the MnO/SiO2 ratio has a significant impact on the primary phase
field and liquidus temperature. SiO2 can be added as a flux to control the liquidus temperature of
the slag. The effect of SiO2 or MnO/SiO2 on the liquidus temperature is shown in Figure 3. It can
be seen that the autogenic residue without SiO2 flux has a liquidus temperature of around 1570 ◦C,
which requires an operation temperature of above 1600 ◦C to keep the slag fully liquid. By adding SiO2

flux, the primary phase field changes from mono-oxide to olivine 2(Ca, Mn)O·SiO2 and rhodonite (Ca,
Mn)O·SiO2. A large operating window with the liquidus temperature below 1300 ◦C can be obtained
with 10 to 50 wt% SiO2 addition.
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Figure 2. Effects of CaO, Al2O3, and “FeO” on liquidus temperatures at different MnO/SiO2 ratios in
equilibrium with iron calculated with FactSage 7.2, (a) CaO in the slag,(b) Al2O3 in the slag,(c) FeO in
the slag.
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temperature at a fixed ratio of other components.

Table 2. The composition of the slag used for FactSage calculation (wt%).

CaO MnO/SiO2 “FeO” Al2O3 MgO Na2O K2O

0–15 1.0 9.6 6.2 4.6 4.0 1.6

CaO MnO/SiO2 “FeO” Al2O3 MgO Na2O K2O

0–15 2.0 9.6 6.2 4.6 4.0 1.6

CaO MnO/SiO2 “FeO” Al2O3 MgO Na2O K2O

0–15 3.0 9.6 6.2 4.6 4.0 1.6

Al2O3 MnO/SiO2 “FeO” CaO MgO Na2O K2O

0–15 1.0 9.6 2.9 4.6 4.0 1.6

Al2O3 MnO/SiO2 “FeO” CaO MgO Na2O K2O

0–15 2.0 9.6 2.9 4.6 4.0 1.6

Al2O3 MnO/SiO2 “FeO” CaO MgO Na2O K2O

0–15 3.0 9.6 2.9 4.6 4.0 1.6

“FeO” MnO/SiO2 Al2O3 CaO MgO Na2O K2O

0–15 1.0 6.2 2.9 4.6 4.0 1.6

“FeO” MnO/SiO2 Al2O3 CaO MgO Na2O K2O

0–15 2.0 6.2 2.9 4.6 4.0 1.6

“FeO” MnO/SiO2 Al2O3 CaO MgO Na2O K2O

0–15 3.0 6.2 2.9 4.6 4.0 1.6

2.2.2. Effect of Carbon Addition on the Reduction Degree

The effect of carbon addition on the extension of the reduction was examined by FactSage 7.2 with
the SiO2 addition of 10 wt% of ore weight at 1350 ◦C. The recovery rate and alloy composition as a
function of carbon addition are shown in Figure 4. It can be seen from Figure 4 that the NiO and CuO
are first reduced and Ni and Cu concentrations in the alloy reached a maximum. With increasing carbon
addition, FeOx and CoO are reduced and their concentrations in the alloy gradually increase. At 1.2 wt%
carbon addition, all NiO, CuO and CoO are reduced and the alloy composition is 50Ni-12Cu-6Co-32Fe.
Further addition of carbon will continuously reduce FeOx and increase Fe in the alloy. Accordingly,
the concentrations of Ni, Co and Cu will decrease as the total alloy increases. At carbon 2.5 wt%, all
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FeOx is reduced and Fe in the alloy reaches maximum. MnO starts to be reduced and carbon starts to
dissolve into the alloy. Further addition of carbon will increase Mn and carbon concentrations in the
alloy, and decrease the concentrations of other components in the alloy. Over 6.5 wt% carbon addition,
the alloy composition will be constant, which is considered as the critical amount of graphite. Thus,
adding graphite greater than 6.5 wt% would not change the composition of alloy significantly.
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2.3. Experimental Procedure

A vertical tube furnace with lanthanum chromate heating elements was used for the experiments.
For each experimental run, 10 g of nodules were crushed into powder, and well mixed with flux and
reductant in an agate mortar then pressed into briquette. Pure graphite powder (99.99 wt%) was used
as the reductant. The flux SiO2 and reductant graphite were added as per ore weight. The addition of
SiO2 was adjusted based on the MnO/SiO2 ratios and the liquidus temperatures showing in Figure 3.
The experimental conditions are shown in Table 3. The pelletized sample was then placed into an
alumina crucible (ID: 18 mm, H: 25 mm). The sample was heated and pre-reduced under an Ar
atmosphere at 1000 ◦C for 60 min. Then, each pre-reduced sample was heated immediately to the
smelting temperature and held there for 60 min. A Pt-30% Rh/Pt-6% Rh thermocouple placed in an
alumina sheath was located adjacent to the sample to monitor the temperature. The temperature
was controlled to an accuracy of ±2 K. The samples were directly quenched into the water after
the smelting reduction. After drying, they were mounted in resin and polished for metallographic
analysis. The microstructures were examined by scanning electron microscopy coupled with X-ray
energy-dispersive spectroscopy analysis (SEM-EDS). Compositions of the liquid and solid phases were
measured by electron probe X-ray microanalysis (EPMA). The EPMA operation was conducted at
an accelerating voltage of 15 kV and a probe current of 15 nA. The standards used for analysis were
spinel (MgAl2O4) for Al and Mg, wollastonite (CaSiO3) for Ca and Si, chalcopyrite (FeCuS2) for Cu,
rutile (TiO2) for Ti, chromite (FeCrO4) for Cr, albite (NaAlSi3O8) for Na, orthoclase (KAlSi3O8) for K,
olivine (Ni2SiO4) for Ni, spessartine (Mn3Al2Si3O12) for Mn, hematite (Fe2O3) for Fe, and pure Co
for Co. The ZAF correction procedure, which is a series of multiplicative factors that account for the
effects of atomic number (Z–stopping power, back-scattering factor and X-ray production power),
absorption (A) and fluorescence (F), built-in the electron-probe software was applied automatically to
the matrix correction. The average accuracy of the EPMA measurements is within ±1 wt%. The alloy
droplets were collected to be measured by Inductively Coupled Plasma Optical Emission Spectrometer
(ICP-OES).
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Table 3. Experimental conditions for nodule reduction.

Exp.
No.

Nodules
(G)

Flux Reductant
Crucible

Pre-Reduction Reduction Smelting

SiO2 Graphite Temp. (◦C) Time (Min) Temp. (◦C) Time (Min)

ND1 10 9% 0.8% Al2O3 1000 60 1420 60
ND2 10 9% 1.2% Al2O3 1000 60 1420 60
ND3 10 9% 12% Al2O3 1000 60 1420 60
ND4 10 17.5% 4% Al2O3 1000 60 1350 60
ND5 10 17.5% 8% Al2O3 1000 60 1350 60
ND6 10 35% 4% Al2O3 1000 60 1300 60
ND7 10 35% 8% Al2O3 1000 60 1300 60
ND8 10 15% 2% Al2O3 1000 60 1350 60
ND9 10 15% 4% Al2O3 1000 60 1350 60

ND10 10 15% 6% Al2O3 1000 60 1350 60
ND11 10 15% 8% Al2O3 1000 60 1350 60
ND12 10 10% 4% Al2O3 1000 60 1350 60
ND13 10 5% 4% Al2O3 1000 60 1350 60

Note: Exp., experienmnet; Temp., temperature.

3. Results and Discussion

3.1. Pre-Reduction

Pre-reduction was conducted to calcinate nodules and enable nickel, copper, cobalt and iron
oxides to be partly reduced. The microstructures of samples ND2 and ND9 after pre-reduction
at 1000 ◦C for 60 min are shown in Figure 5. In Figure 5a, the sample ND2 contains pyroxene
((Si, Ti, Mn)O2·(Al, Fe)2O3·(Mn, Fe, Mg, Ca, Ni)O), rhodonite ((Mn, Ca, Mg)O·SiO2), spinel ((Al,
Fe)2O3·(Mn, Fe, Mg, Ca, Ni)O),), olivine 2(Mn, Mg, Ca, Ni, Fe)O·SiO2, and glass phases. At 1000 ◦C,
the mineral SiO2-Al2O3 incorporated with low melting point oxides K2O and Na2O may diffuse
and react with MnO-FeO phases. Some reactions occurred in the local area near the pore, where
olivine and liquid together with rhodonite were formed. Metals were not observed in the samples
after pre-reduction due to the insufficient reductant addition. In Figure 5b, alloy droplets were
observed by the reduction with more reductant addition. Olivine and liquid phases were formed
in the sample ND9. The alloy and liquid compositions are 38.4Ni-36.1Fe-19.7Cu-3.4Co-2.3Mn and
49.7SiO2-13.4MnO-11.8Al2O3-12.9Na2O-5.5K2O-2.5FeO-2.8CaO-0.7MgO-0.6TiO2, respectively.

3.2. Reduction Smelting

3.2.1. Effect of Reductant Addition on the Alloys and Slags

The smelting process was conducted at high temperatures to further reduce nickel, copper, cobalt,
and iron oxides to form the required alloys and slags. Figure 6 shows the pictures and microstructures
of samples ND8, ND9, and ND10 after smelting at 1350 ◦C with a carbon addition of 2, 4, and 6 wt%,
respectively. It can be seen from Figure 6a that in sample ND8, the slag contains spinel crystals and the
alloy is not observed. In samples ND9 and ND10, the slag is fully liquid and alloy sphere (around
5 mm in diameter) settled at the bottom of the crucible can be easily separated from the slag, and small
alloy droplets are also present in the slag. A small amount of graphite was left after smelting reduction
in sample ND10, which indicates the addition of graphite was in excess. Comparing Figure 6a–c, when
the addition of the reductant was insufficient, the liquidus temperature of slag was much higher due to
the presence of Fe3+. Consider the results that no alloy was observed with 2 wt% graphite addition
and excess graphite was observed with 6 wt% graphite addition. Therefore, an optimal addition of
graphite is around 4 wt% per residues in terms of alloy morphology and full-liquid slag. The effect of
the addition of graphite on the reduction extent of copper, nickel, cobalt, iron and manganese oxides
will be discussed in the following section.
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Figure 6. Pictures and microstructures of quenched samples after smelting at 1350 ◦C. (a) Sample ND8
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addition).

3.2.2. Effect of Flux Addition

SiO2 as a flux was added to decrease the liquidus temperature of slag, which enables the slag to
be a fully-liquid at the smelting temperature. FactSage calculations shown in Figure 3 demonstrated
that the liquidus temperature of the slag decreases rapidly with the addition of up to 50 wt% SiO2.
Different amounts of SiO2 were added to verify the predictions at a given temperature of 1350 ◦C.
The dependence of SiO2 addition on the formation of slags with the same amount of graphite additive
is shown in Figure 7. It is evident from Figure 7a–c that the slags were fully liquid at the experimental
temperature with SiO2 addition over 10 wt%. However, as shown in Figure 7d, with the SiO2 addition
down to 5 wt%, the liquidus temperature of the slag was above the experimental temperature resulting
in the presence of solid. The primary monoxide phase precipitated in the slag, and tiny reduced alloy
blebs are distributed in the periphery of the monoxide solids. In addition to the liquidus temperature,
the viscosity of slag can influence the settlement of alloys and tapping of slags. The viscosity of slags in
the full-liquid state at 1350 ◦C with the addition of different amounts of SiO2 was calculated by FactSage
7.2. Figure 8 shows the viscosity of slag increases with increasing SiO2. The addition of SiO2 needs
to be minimized to keep the slags in a full liquid state with a relatively low viscosity. Overall, SiO2

addition can be optimized by several factors including the liquidus temperature of slag for operational
temperature, the viscosity of slag for separation of alloy and slag tapping, and MnO-grade of the
residue slag for further production of ferromanganese or silicomanganese alloys.
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3.3. Effect of Graphite Addition on the Alloy Grade

The liquidus temperature of slags has been predicted by FactSage, and verified by the experiments
with a variation of SiO2 flux and carbon addition in the above sections. The liquidus temperature of
slags decreases with the SiO2 addition and reduction of Fe3+ to Fe2+ in the slag by carbon. The reduction
degree of FeO in the slag and reduced Fe in the alloy as a function of carbon are shown in Figure 9,
where experimental results of samples ND8 to ND11 with 15 wt% SiO2 addition at 1350 ◦C are
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compared with FactSage calculation. The compositions of alloys and phases present in the quenched
samples are listed in Table 4. Figure 9 shows FeO concentration in the slag decreases along with carbon
addition, while Fe concentration in the alloy increases for experimental results. A significant difference
was found between experimental results and FactSage calculation for the FeO reduction. FactSage
calculation indicates FeO in the slag is fully reduced by 3 wt% carbon, while more carbon is needed in
the experiments, in which approximately 8 wt% carbon can fully reduce the FeO in the slag. One of the
reasons is that a small fraction of MnO was reduced during the carbothermic reduction, which resulted
in carbon more than theoretical is needed. Moreover, the metallic oxides could present in multivalent
forms (e.g., MeOx) rather than bivalent form (e.g., MeO) that require additional carbon to reduce them.
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Figure 9. A comparison between experimental results and FactSage calculation on the FeO and Fe
concentration in the slag and alloy with the addition of carbon.

Full reduction of CuO, NiO, and CoO are desired to allow for high recovery rates, while the iron
oxide can be partly/sufficiently reduced depending on the amount of reductant. Recovery of Cu, Ni,
and Co is taken as a whole, and the alloy grade is defined as the weight percentage of the sum of Cu,
Ni, and Co, (Cu + Ni + Co). The effect of graphite addition on the alloy grade is shown in Figure 10,
where the data is plotted from Table 4. The alloy grade decreases with increasing graphite addition.
The sequential ease of reduction of metal oxides is (Cu, Ni, Co) > Fe > (Mn, Si). The (Cu + Ni + Co)
concentration gradually decreases in the alloy along with the reduction of Fe and Mn oxides. Figure 10
can be divided into three areas, where “Area I” represents the insufficient addition of reductant and no
alloys are reduced, “Area III” means excess addition of reductant, beyond that, MnO (or even SiO2) in
the slag will be significantly reduced into the alloys. SiO2 and MnO are not required to be reduced
at the smelting reduction stage to produce high-grade Fe-Ni-Cu-Co alloy. “Area II” in Figure 10 is
thus the working area to optimize the addition of reductant to control the alloy grade and recovery of
valuable metals. Within “Area II”, iron oxide is gradually reduced into the alloy along with graphite
additive. Iron oxide is almost fully reduced with 8 wt% graphite addition.
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Table 4. The compositions of the phases present in the quenched samples (wt%).

Sample No. Slag MnO SiO2 Al2O3 “FeO” MgO CaO Na2O K2O TiO2 Cu2O NiO CoO

ND1
Glass 36.4 29.8 8.2 5.6 3.8 3.0 7.6 1.7 0.6 1.9 1.2 0.2
Spinel 62.2 0.5 8.2 19.7 3.3 0.1 0.0 0.0 0.8 0.7 4.1 0.4

ND2
Glass 36.0 30.4 9.4 4.4 3.7 3.1 7.9 1.6 0.5 1.9 0.8 0.2
Spinel 63.1 0.4 6.8 20.9 3.0 0.0 0.0 0.0 0.8 0.5 4.0 0.4

ND3 Glass 36.1 32.1 15.2 0.1 4.8 3.3 6.2 1.4 0.8 0.0 0.0 0.0
ND4 Glass 41.4 31.7 10.5 3.8 4.1 2.4 4.1 1.1 0.7 0.1 0.0 0.0
ND5 Glass 44.0 34.3 6.8 1.2 4.3 2.6 4.8 1.3 0.7 0.0 0.1 0.0
ND6 Glass 36.1 41.7 5.0 6.2 3.3 2.0 3.7 1.1 0.5 0.1 0.1 0.0
ND7 Glass 38.0 44.7 4.8 0.7 3.6 2.2 4.1 1.2 0.5 0.0 0.0 0.0

ND8
Glass 40.3 32.2 6.3 6.3 3.9 2.5 3.1 1.7 0.5 1.4 1.5 0.3
Spinel 47.1 0.4 9.8 31.2 2.8 0.0 0.0 0.0 1.5 0.2 6.7 0.4

ND9 Glass 42.0 31.4 11.6 3.5 3.9 2.4 3.0 1.5 0.6 0.1 0.0 0.0
ND10 Glass 42.9 32.8 7.6 2.7 4.2 2.5 5.5 1.1 0.6 0.0 0.0 0.0
ND11 Glass 43.1 33.0 8.9 0.4 4.2 2.5 5.8 1.1 0.6 0.1 0.0 0.0
ND12 Glass 44.5 28.1 11.2 2.1 4.2 2.5 5.5 1.0 0.6 0.0 0.0 0.0

ND13
Glass 47.1 22.9 10.5 3.4 4.2 2.8 6.7 1.1 0.7 0.0 0.0 0.0

Monoxide 86.5 0.0 0.3 6.8 5.9 0.1 0.1 0.0 0.1 0.1 0.1 0.1

Sample No. Alloy Mn Si Al Fe Mg Ca Na K Ti Cu Ni Co

ND3 Alloy 60.7 1.0 0.0 25.9 0.0 0.0 0.0 0.0 0.1 5.6 5.9 0.8
ND4 Alloy 0.3 0.0 0.0 53.2 0.0 0.0 0.0 0.0 0.0 20.2 23.1 3.2
ND5 Alloy 1.1 0.0 0.0 67.9 0.0 0.0 0.0 0.0 0.0 12.8 15.5 2.6
ND6 Alloy 0.1 0.0 0.0 36.1 0.0 0.0 0.0 0.0 0.0 24.8 34.5 4.4
ND7 Alloy 0.3 0.0 0.0 68.6 0.0 0.0 0.0 0.0 0.0 10.6 17.6 2.8
ND9 Alloy 0.2 0.0 0.0 57.7 0.0 0.0 0.0 0.0 0.0 18.3 20.7 3.1
ND10 Alloy 0.4 0.0 0.0 64.4 0.0 0.0 0.0 0.0 0.0 14.4 17.7 2.8
ND11 Alloy 0.9 0.0 0.0 66.2 0.0 0.0 0.0 0.0 0.0 13.8 16.5 2.5
ND12 Alloy 0.5 0.0 0.0 57.3 0.0 0.0 0.0 0.0 0.0 13.5 25.1 3.6
ND13 Alloy 0.5 0.0 0.0 59.2 0.0 0.0 0.0 0.0 0.0 25.1 12.6 2.5

4. Conclusions

An efficient process for the smelting reduction of polymetallic nodules at a lower temperature was
investigated by the optimization of both slag and alloy systems. Essential findings are summarized
as follows:
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(1) The as-received nodules mainly contain Mn and Fe oxides in striation. Si is incorporated with
Al, Na, K and Ca as impurity minerals. Valuable metal elements such as Cu, Co and Ni in low
concentrations are uniformly distributed in the nodule matrix. Ba is found to be associated with
S, most likely as barite.

(2) FactSage software was used to simulate/predict the liquidus temperature of the slag system, which
is not sensitive to FeO, CaO and Al2O3, but decreases most significantly with decreasing MnO/SiO2

mass ratio. The SiO2 flux to decrease the liquidus temperature of slag was experimentally verified.
(3) The alloy grade was found to decrease with increasing graphite addition. The optimal reduction

was achieved by adding a 4 wt% graphite at the MnO/SiO2 mass ratio of 1.6 in slag. The most
effective metal-slag separation was achieved at 1350 ◦C. This relatively low-temperature smelting
process for the utilization of polymetallic nodules is promising for industrial applications.
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