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Abstract: This study investigates the time-dependent rheological behavior of cemented paste
backfill (CPB) that contains alkali-activated slag (AAS) as a binder. Rheological measurements
with the controlled shear strain method have been conducted on various AAS-CPB samples with
different binder contents, silicate modulus (Ms: SiO2/Na2O molar ratio), fineness of slag and curing
temperatures. The Bingham model afforded a good fit to all of the CPB mixtures. The results show
that AAS-CPB samples with high binder content demonstrate a more rapid rate of gain in yield
stress and plastic viscosity. AAS-CPB also shows better rheological behavior than CPB samples made
up of ordinary Portland cement (OPC) at identical binder contents. It is found that increasing Ms
yields lower yield stress and plastic viscosity and the rate of gain in these parameters. Increases in
the fineness of slag has an adverse effect on rheological behavior of AAS-CPB. The rheological
behavior of both OPC- and AAS-CPB samples is also strongly enhanced at higher temperatures.
AAS-CPB samples are found to be more sensitive to the variation in curing temperatures than
OPC-CPB samples with respect to the rate of gain in yield stress and plastic viscosity. As a result,
the findings of this study will contribute to well understand the flow and transport features of fresh
CPB mixtures under various conditions and their changes with time.
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1. Introduction

Mine backfill is often an integrated part of underground mining for several reasons as follows:
tailings disposal, ground stability and/or a working platform for operators [1]. To increase the strength
and durability of the backfill material placed in underground mined-out stopes or openings, binding
agents are considered as one of the most important ingredients in the mix [2]. There are three major
types of mine backfilling: hydraulic fill, rock fill and cemented paste backfill (CPB). CPB consists
usually of an engineered mix of processing tailings with a solid percentage of 70–85%, single or double
hydraulic binder (usually varies between 2 and 9 wt.%) for sufficient cohesion to prevent liquefaction
and to provide mechanical strengths, and finally mixing water (usually varies between 18 and 23 cm)
for the desired slump [3–7]. Each component of the produced CPB mixes plays a substantial role
during its transportation, placement, curing, and strength acquisition [8,9].

The most used binder within the backfill industry is ordinary Portland cement (OPC) due to
its availability and versatility [10]. However, OPC is prone to acid and sulphate attacks as a result
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of the relatively high percentages of calcium oxide (CaO) [11]. In addition to this fact, binder costs
can comprise up to 75% of the operating costs when OPC is used as a sole binder [12]. To reduce
the binder-induced costs, to increase the backfill strength/stability performance, and to develop
the resistance to acid and sulphate attacks, numerous efforts in utilizing pozzolanic materials such
as pulverized fly ash, silica fume and ground granulated blast furnace slag (slag) for the partially
replacement of OPC have been made by researchers [13–16]. However, these studies have indicated
that the use of natural and artificial pozzolans as a partial replacement of OPC yields lower early
mechanical strength and lower rate of gain in the early mechanical strength [17,18].

In recent years, alkali-activated binders (geopolymers) have gained a good reputation as alternative
or supplementary binders to cement because it is more effective than OPC in the reduction of greenhouse
emissions [19]. They mainly originate from a chemical reaction between solid aluminosilicate powders
(e.g., slag, fly ash, metakaolin, and alkali solution of alkali hydroxide, silicate, or sulphate) and
alkaline activators (e.g., a blend of sodium hydroxide SH and sodium silicate SS, generally agreed
to be the most effective alkali activator) [20,21]. Alkali-activated binders could be designed to have
superior properties compared to cement, namely the development of earlier and higher mechanical
strengths [22], better resistance to acids and sulphates [23], and lower heat of cement hydration [24].
Numerous studies [17,18,25–27] have been recently shown to better assess the mechanical, workability
and microstructural properties of CPB materials by using alkali-activated slag (AAS) as a binder.
These studies have shown that, compared to those made up of OPC, CPB samples containing AAS as
binder were found to produce remarkably higher early-age strength and stability.

The rheological properties of CPB mass is greatly affected by several parameters including
particle size distribution, chemical composition, liquor and solids density, pH, temperature, admixture,
mineralogy, mixing regime, and solids concentration [28–30]. There is an internal friction caused by
the interaction of water and solids, which may affect the flow rate of CPB material. At high solid
concentrations, the internal friction is great enough to prevent CPB material from flowing unless
a minimum pressure is applied [31]. This minimum pressure is called the yield stress. The yield
stress changes with a change in solid concentration. As solid concentration increases, the yield stress
increases and more particles become non-settling [32]. In general, CPB has a high solid concentration,
is extremely viscous, and characterized by an increase in viscosity with shear rate. As the solid
concentration increases, the viscosity (defined as a measure of the internal friction of a fluid) of CPB
increases evenly [33]. The pumpability of fresh CPB also depends on its rheological properties [34].
Pipeline failures such as blockages and ruptures can happen during pumping of CPB materials having
high solid concentration, thereby causing production delays [35]. In fact, blockages and ruptures in
the pipeline can be reduced and/or eliminated by adding some chemical admixtures to CPB materials.
Admixtures choice is a process of understanding interactions between CPB properties and costs in
terms of requirements and safety [36]. CPB’s rheological behavior can be also improved by increased
flow ability of CPB (the plasticizing effect), water reduction and cement optimization, reduced pumping
pressure, diminution of pipe blockage risk, and improved safety, providing ‘stop and go’ without risk
of any blockage in pipeline [30,31,35].

Despite the significant progress made by earlier scientific investigations in understanding the
mechanical, rheological and microstructural properties of fresh CPB samples made up of AAS, technical
data on time-dependent rheological characteristics of AAS-CPB is quite limited. Therefore, there is an
urgent need to substantially increase our knowledge about rheological properties of fresh AAS-CPB
samples, since the determination of the pipeline transportation system design as well as manufacturing,
operating and placement conditions of CPB materials require a thorough understanding of the
rheological behavior of CPB mixtures. In the light of this, this study reported herein aims to assess
the effect of the curing temperature, the fineness of slag, silicate modulus (Ms: SiO2/Na2O molar
ratio: [37,38]), and binder content on rheological properties of AAS-CPB.
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2. Experimental Program

2.1. Materials

The materials used in this study include tailings, hydraulic binders, alkaline activators (e.g., SH
and SS) and distilled water.

2.1.1. Tailings

In this study, a tailings sample produced from an operational gold mine was used to prepare
CPB samples. Particle size distribution of the tailings sample was determined using a Malvern laser
Mastersizer 2000 (Malvern Panalytical Ltd, Malvern, UK), as shown in Figure 1. The tailings material
has a fines content of 25.6%, which can be classified as a coarse size tailings material. The coefficient of
uniformity (Cu) and the coefficient of curvature (Cc) were determined to be 24.3 and 0.81, suggesting
that the tailings material was poorly graded.
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Figure 1. Grain-size distribution curves of tailings and binders.

The mineralogy of tailings was determined by X-ray diffraction (XRD) (Miniflex II, Rigaku
Corp., Tokyo, Japan) analysis. The main mineral phase was identified to be quartz, albite and mica.
X-ray fluorescence (XRF) analysis indicated that the major chemical composition is SiO2 (62.5%), Al2O3

(16.2%), K2O (8.11%), Na2O (3.07%) and CaO (2.98%), along with other trace components (see Figure 2).
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2.1.2. Binders and Water

A commercial ordinary Portland cement (OPC) type P·O 52.5R with a Blaine fineness of 415 m2/kg
and a specific gravity of 2650 kg/m3 was used as a reference binder. The starting material used to
produce the AAS binder is a ground granulated blast furnace slag (slag) from Wuhan iron and steel
plant in China. Its Blaine fineness and specific gravity are 346 m2/kg and 2980 kg/m3, respectively.
The slag was also ground in a laboratory ball mill until it reached the desired Blaine fineness levels,
namely 395, 457 and 573m2/kg. The chemical composition of slag and cement are given in Table 1.
The basicity coefficient (Kb = (CaO + MgO)/(SiO2 + Al2O3)) and the hydration modulus (HM: CaO +

MgO + Al2O3/SiO2) of slag based on chemical composition (Table 1) were 1.01 and 1.92, respectively.

Table 1. Physical and chemical properties of cement and slag.

Chemical Composition (wt.%) OPC Slag

CaO 62.89 42.66
SiO2 19.96 33.39

Al2O3 4.35 15.14
Fe2O3 3.50 0.64
MgO 2.90 6.26
Na2O 0.48 0.04
K2O 0.80 0.81
SO3 3.30 0.16
LOI 1.30 0.72

Blaine fineness (m2/kg) 415 346
Specific gravity (kg/m3) 2650 2980

The X-ray diffraction pattern (XRD) shown in Figure 3 indicates that slag is a predominantly
amorphous material. The alkaline solution used to activate the slag was a combination of reagent
grade sodium hydroxide (NaOH; SH) and water glass (liquid sodium silicate; SS). The sodium silicate
used is composed of 29.3% SiO2, 12.7% Na2O, and 58.0% H2O.

2.2. Specimen Preparation and Mix Proportions

A total of 20 AAS-CPB mixtures were prepared by mixing tailings, binders and water.
Liquid activators were prepared 24 h before preparation of CPB specimens and allowed to cool
down to room temperature (20 ± 2 ◦C). The required amounts of tailings, binder and water were mixed
and homogenized for about 10 min by using a double spiral mixer in order to produce the desired
CPB mixtures. The produced backfill mixtures were poured into beakers (500 mL). Specimens were
then sealed and cured at room temperature. CPB samples made up of OPC were also prepared as
control sample.
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After specific curing times, rheological tests were performed, as described below. The parameters
investigated were the binder content, the activator dosage, Ms, and the fineness of slag. The activator
dosage was kept constant for all the mixes at 16%. The detailed mix proportions are summarized in
Table 2.

Table 2. Summary of the mix compositions of the specimens prepared.

CPB trial
Mixtures

Used Binder
Types

Binder
Content (%)

Activator
Dosage (%) Ms (-) Slag Fineness

(m2/kg)
Water

Content (%)

Effect of binder content

BC-4% AAS 4 16 0.26 395 24.2
BC-6% AAS 6 16 0.26 395 24.3
BC-8% AAS 8 16 0.26 395 24.4

BC-10% AAS 10 16 0.26 395 24.5
OPC-6% OPC 6 - - -

Effect of silicate modulus

Ms-0.18 AAS 6 16 0.18 395 24.2
Ms-0.26 AAS 6 16 0.26 395 24.3
Ms-0.34 AAS 6 16 0.34 395 24.4
Ms-0.41 AAS 6 16 0.41 395 24.4

Effect of the fineness of slag

SF-346m2/kg AAS 6 16 0.26 346 24.3
SF-395m2/kg AAS 6 16 0.26 395 24.3
SF-457m2/kg AAS 6 16 0.26 457 24.3
SF-573m2/kg AAS 6 16 0.26 573 24.3

Effect of curing temperature

T-10◦C AAS 6 16 0.26 395 24.3
T-20◦C AAS 6 16 0.26 395 24.3
T-30◦C AAS 6 16 0.26 395 24.3
T-40◦C AAS 6 16 0.26 395 24.3

BC: binder content, (Mslag + Mactivator) × 100/(Mtailings + Mwater + Mslag + Mactivator); SF: fineness of slag; T: curing
temperature (M: weight).
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2.3. Rheological Testing

The rheological behavior of fresh CPB mixtures was measured using Brookfield RSR-SST rheometer
with a four-bladed vane with a diameter of 20 mm and length of 40 mm. The test procedure typically
consists of a constant 100 s−1 pre-shear for 30 s and a subsequent downramp where the applied shear
strain rate was decreased from 100 to 0.001 s−1 in 60 s. The specimens were tested at 0, 0.5, 1 and 2 h
after mixing. All the samples were mixed every 10 min with a spatula to ensure the homogeneity of
the system. Prior to each measurement, the sample was agitated by hand for 1 min with a spatula to
avoid settling of particles and to obtain a homogeneous mixture. The rheological parameters (yield
stress and plastic viscosity) were determined by fitting the down-ramp data using the Bingham model,
as shown in Equation (1). The Bingham model accurately represented all the CPB mixtures studied,
as the coefficients of determination found for all the curves denoted good correlations.

In the equation below, τ is the shear stress (Pa), τ0 is the yield stress (Pa), η is the plastic viscosity
(Pa·s), and γ is the shear rate (s−1).

τ = τ0 + ηγ (1)

3. Results and Discussions

3.1. Effect of Binder Content

The variations in yield stress and plastic viscosity for CPB samples with different binder contents
as a function of time is presented in Figure 4. A set of CPB specimens made up of OPC with a binder
content of 6% was also prepared as a control sample. Note that Ms was kept constant at 0.26 for all the
AAS-CPB mixtures. It can be observed from Figure 4 that irrespective of binder content, all AAS-CPB
samples exhibit similar behavior, i.e., a gradual increase in both yield stress and plastic viscosity
with increasing curing time. This can be well related to the consumption of water and formation
of hydration products (primarily sodium and/or calcium aluminosilicate hydrates; C-A-S-H and/or
N-A-S-H), which increases the interfrictional resistance of the particle assembly [39–41].

Minerals 2020, 10, x FOR PEER REVIEW 6 of 14 

 

The rheological behavior of fresh CPB mixtures was measured using Brookfield RSR-SST 
rheometer with a four-bladed vane with a diameter of 20 mm and length of 40 mm. The test 
procedure typically consists of a constant 100 s–1 pre-shear for 30 s and a subsequent downramp 
where the applied shear strain rate was decreased from 100 to 0.001 s–1 in 60 seconds. The specimens 
were tested at 0, 0.5, 1 and 2 h after mixing. All the samples were mixed every 10 min with a spatula 
to ensure the homogeneity of the system. Prior to each measurement, the sample was agitated by 
hand for 1 min with a spatula to avoid settling of particles and to obtain a homogeneous mixture. 
The rheological parameters (yield stress and plastic viscosity) were determined by fitting the 
down-ramp data using the Bingham model, as shown in Equation (1). The Bingham model 
accurately represented all the CPB mixtures studied, as the coefficients of determination found for 
all the curves denoted good correlations. 

In the equation below, τ is the shear stress (Pa), τ0 is the yield stress (Pa), η is the plastic viscosity 
(Pa·s), and γ is the shear rate (s-1). 

τ = τ0 + ηγ (1) 

3. Results and Discussions 

3.1. Effect of Binder Content 

The variations in yield stress and plastic viscosity for CPB samples with different binder 
contents as a function of time is presented in Figure 4. A set of CPB specimens made up of OPC with 
a binder content of 6% was also prepared as a control sample. Note that Ms was kept constant at 0.26 
for all the AAS-CPB mixtures. It can be observed from Figure 4 that irrespective of binder content, all 
AAS-CPB samples exhibit similar behavior, i.e., a gradual increase in both yield stress and plastic 
viscosity with increasing curing time. This can be well related to the consumption of water and 
formation of hydration products (primarily sodium and/or calcium aluminosilicate hydrates; 
C-A-S-H and/or N-A-S-H), which increases the interfrictional resistance of the particle assembly [39–
41]. 

 

30

50

70

90

110

130

0 20 40 60 80 100 120

Yi
el

d 
st

re
ss

 (P
a)

Time (minute)

BC-4% BC-6%
BC-8% BC-10%
OPC-6%

(a)

Figure 4. Cont.



Minerals 2020, 10, 288 7 of 14
Minerals 2020, 10, x FOR PEER REVIEW 7 of 14 

 

 

Figure 4. Yield stress (a) and plastic viscosity (b) of CPBs with different binder contents. 

Figure 4 also shows that regardless of curing time, both yield stress and plastic viscosity of 
AAS-CPB increases with increasing binder content up to 8%. This is mainly because an increase in 
binder dosage results in more amount of hydration products, which, in turn, enhances the 
rheological behavior of CPB during shearing. However, it is interesting to notice that a further 
increase in binder content from 6% to 8% yields lower yield stresses and plastic viscosities during 
the first 1 h. The possible explanation is that higher replacement of mine tailings and with liquid 
activator and higher negative zeta potential slag results in lower number of direct particle-particle 
contacts and stronger particle dispersion and, thus leading to better flowability. These observations 
indicate that there is a competition between the rheology-increasing factor (higher amount of 
hydration products with increasing binder) and rheology (yield stress and plastic 
viscosity)-decreasing factor (stronger repulsive particle-particle force and larger distance between 
particles). The results presented in Figure 4 also show that the AAS-CPB with higher binder content 
experiences a higher rate of gain in both yield strength and plastic viscosity. 

From Figure 4a, it can be well observed that the time-dependent rheological behavior of 
AAS-CPB samples is significantly different than that of CPB made up of OPC. AAS-CPB samples 
show consistently lower yield stress and plastic viscosity values (by 19–29%) than OPC-CPB 
samples. The results shown in Figure 4a also indicate that the rate of gain in rheological parameters 
of AAS-CPB samples appear to be much higher than that for OPC-CPB samples. For instance, the 
BC-6% sample experiences a 29% increase in yield stress during the 2h curing while yield stress 
increases by 14% for OPC-6% sample. This observation can be mainly attributed to the fact that the 
hydration reaction of AAS is more intense than that of OPC. 

3.2. Effect of Silicate Modulus 

AAS-CPB samples with various Ms ratios (0.18, 0.26, 0.34 and 0.41) were prepared at a fixed 
binder content of 6% and an activator dosage of 16%. An activator dosage of 16% was chosen 
deliberately since it gives the highest compressive strength. The influence of Ms on the yield stress 
and plastic viscosity of the AAS-CPB samples as a function of time is illustrated in Figure 5. From 
this figure, it is evident that both yield stress and plastic viscosity increase with an increase in the 
curing time. As explained previously, this can be well attributed to the ongoing hydration of AAS 
binder. 

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120

Pl
as

tic
 v

is
co

si
ty

 (P
a·

s)

Time (minute)

BC-4% BC-6%
BC-8% BC-10%
OPC-6%

(b)

Figure 4. Yield stress (a) and plastic viscosity (b) of CPBs with different binder contents.

Figure 4 also shows that regardless of curing time, both yield stress and plastic viscosity of
AAS-CPB increases with increasing binder content up to 8%. This is mainly because an increase in
binder dosage results in more amount of hydration products, which, in turn, enhances the rheological
behavior of CPB during shearing. However, it is interesting to notice that a further increase in binder
content from 6% to 8% yields lower yield stresses and plastic viscosities during the first 1 h. The possible
explanation is that higher replacement of mine tailings and with liquid activator and higher negative
zeta potential slag results in lower number of direct particle-particle contacts and stronger particle
dispersion and, thus leading to better flowability. These observations indicate that there is a competition
between the rheology-increasing factor (higher amount of hydration products with increasing binder)
and rheology (yield stress and plastic viscosity)-decreasing factor (stronger repulsive particle-particle
force and larger distance between particles). The results presented in Figure 4 also show that the
AAS-CPB with higher binder content experiences a higher rate of gain in both yield strength and
plastic viscosity.

From Figure 4a, it can be well observed that the time-dependent rheological behavior of AAS-CPB
samples is significantly different than that of CPB made up of OPC. AAS-CPB samples show consistently
lower yield stress and plastic viscosity values (by 19–29%) than OPC-CPB samples. The results shown
in Figure 4a also indicate that the rate of gain in rheological parameters of AAS-CPB samples appear to
be much higher than that for OPC-CPB samples. For instance, the BC-6% sample experiences a 29%
increase in yield stress during the 2h curing while yield stress increases by 14% for OPC-6% sample.
This observation can be mainly attributed to the fact that the hydration reaction of AAS is more intense
than that of OPC.

3.2. Effect of Silicate Modulus

AAS-CPB samples with various Ms ratios (0.18, 0.26, 0.34 and 0.41) were prepared at a fixed binder
content of 6% and an activator dosage of 16%. An activator dosage of 16% was chosen deliberately
since it gives the highest compressive strength. The influence of Ms on the yield stress and plastic
viscosity of the AAS-CPB samples as a function of time is illustrated in Figure 5. From this figure,
it is evident that both yield stress and plastic viscosity increase with an increase in the curing time.
As explained previously, this can be well attributed to the ongoing hydration of AAS binder.
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Figure 5. Effect of Ms on the yield stress (a) and plastic viscosity (b) of CPB.

Figure 5 also shows that the AAS-CPB sample with lower Ms has consistently greater yield stress
and plastic viscosity, especially at later age. Moreover, the rate of gain in yield stress and plastic
viscosity appears to increase with decreasing Ms. For instance, within 2 h after mixing, the yield
stress of the AAS-CPB samples with Ms of 0.41, 0.34, 0.26 and 0.18 increases by 15%, 19%, 30% and
43%, respectively, while the corresponding plastic viscosity increases by 16%, 22%, 27% and 32%,
respectively. These observations can be mainly explained by the fact that at the same activator dosage,
alkali activator with lower Ms has greater pH value, thus resulting in higher rate of hydration reaction
of the AAS binder and subsequent more amount of hydration products. An additional factor should
also be considered as a contributor to the lower yield stress and plastic viscosity of AAS-CPB with
higher Ms. This factor is an increase in silicate species in activator can result in more negative zeta
potential, as negatively charged silicate species from the activator can absorb or precipitate on the
slag particle surfaces [41]. This contributes to increasing the repulsive particle-particle force and thus
decreasing the yield stress and plastic viscosity.
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3.3. Effect of the Fineness of Slag

Previous studies [18,42,43] argue that increasing the fineness of slag within a certain range
improves the compressive strength of the AAS-based materials. In tests, the effect of the fineness of
slag on the evolution of the rheological properties was evaluated (Figure 6). AAS-CPB samples made of
slags with a fineness of 346, 395, 457 and 573 m2/kg are prepared at a fixed binder content of 6% and Ms
of 0.26. From Figure 6, it is obvious that the increase in the slag-specific surface from 346 to 573 m2/kg
produces an increase in the yield stress and plastic viscosity and this effect is more pronounced at later
age. These observations can be explained by the fact that the increase in the fineness of the slag favors
the reactivity of slag, thus leading to the formation of higher amount of hydration products and the
consumption of more free water.
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Figure 6. Effect of the fineness of slag on yield stress (a) and plastic viscosity (b) of CPB.

In addition, slag with a higher specific surface means there is more surface area to be wetted [44],
which in turn reduces the effectiveness of the lubrication of free water during shearing and thus
the flowability of the system. The results presented above indicate that aside from the strength,
the rheological properties of AAS-CPB should also be carefully examined in the determination of the
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optimum fineness of slag. Moreover, AAS-CPB sample made of higher specific surface slag shows a
higher rate of gain in both yield stress and plastic viscosity. For instance, the yield stress increases by
17%, 29%, 38% and 48% for slags with fineness of 346, 395, 457 and 573 m2/kg within the same timeframe
(2 h), while the corresponding increment in plastic viscosity is 20%, 27%, 31% and 41%, respectively.

3.4. Effect of Curing Temperature

Every single underground mine is unique with regards to its temperature conditions [45]. The effect
of curing temperature on the development of the yield stress and plastic viscosity of CPBs over a
curing period of 2 h is clearly illustrated in Figure 7. The binder content, Ms and fineness of slag were
kept constant for all AAS-CPB samples at 6%, 0.26 and 395 m2/kg, respectively. OPC-CPBs with the
binder content of 6% were prepared as reference. From Figure 7, it is obvious that regardless of binder
type and curing age, CPBs exposed to an elevated curing temperature produce higher yield stress
and plastic viscosity and faster rate of gain in these rheological parameters. The cogent reason for
this is that a higher temperature accelerates the hydration of binders, thus resulting higher amount of
hydration products [45–47].
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Figure 7. Time-dependent evolution of yield stress (a) and plastic viscosity (b) of CPB.



Minerals 2020, 10, 288 11 of 14

From Figure 7, it can be also noticed that the significance of the influence on AAS-CPB and
OPC-CPB is quite different. To better illustrate this difference, the percent increases in both yield stress
and plastic viscosity within the same timeframe (2 h) are plotted versus the corresponding curing
temperature, as shown in Figure 8. It can be clearly seen that as the curing temperature increases,
the percent increase in both yield stress and plastic viscosity of AAS-CPBs within 2 h increases at a
higher rate than those of OPC-CPBs. This finding indicates that the yield stress and plastic viscosity of
AAS-CPB is more sensitive than that of OPC-CPB to curing temperature.
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4. Conclusions

This paper investigates experimentally the effect of binder content, Ms, the fineness of slag and
curing temperature on the rheological properties of AAS-CPB mixtures prepared with an activator
dosage of 16 wt.%. Based on the experimental results obtained, the following conclusions are made:

• Both yield stress and plastic viscosity of AAS-CPB samples gradually increases with the curing
time due to the consumption of water and formation of hydration products that introduce new
inter-particle forces.

• The yield stress and plastic viscosity of AAS-CPBs increases with increasing binder content up to
8%, while a further increase in binder content results in a decrease in the initial yield stress and
plastic viscosity. An increase in binder content accelerates the rate of gain in both yield stress and
plastic viscosity. Both yield stress and plastic viscosity of AAS-CPB are consistently lower than
those of OPC-CPB with the same binder content.

• AAS-CPB sample with lower Ms has consistently greater yield stress and plastic viscosity and
the rate of gain in these parameters. This can be well attributed to the lower pH value of pore
solution and higher negative zeta potential of solid particles at higher Ms.

• Increasing in the slag-specific surface from 346 to 573 m2/kg produces a consistent increase in
both yield stress and plastic viscosity. The AAS-CPB sample made of higher specific surface slag
shows a higher rate of gain in both yield stress and plastic viscosity.

• Both OPC- and AAS-CPBs exposed to an elevated curing temperature produce higher yield stress
and plastic viscosity and faster rate of gain in these rheological parameters. AAS-CPBs are found
to be more sensitive to the variation in curing temperature than OPC-CPBs with respect to the
rate of gain in yield stress and plastic viscosity.
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In the present study, only the laboratory-scale rheological test was considered. However, it was
known that the field conditions should be reflected by CPB-surrounding rock interactions. In the future
research, the placement and curing conditions (e.g., stress application) of CPB–rock interactions will be
investigated thoroughly. As a result, the findings of this study can provide critical technical data and
information to mine backfill operators or engineers for the handling, delivery, and placement of the
AAS-CPB materials.
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