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Abstract: Late Mesozoic intermediate–felsic volcanics and hypabyssal intrusions are common
across the western slope of the Great Xing’an Range (GXAR). Spatiotemporally, these hypabyssal
intrusions are closely associated with epithermal Pb–Zn polymetallic deposits. However, few
studies have investigated the petrogenesis, contributions and constraints of these Pb–Zn polymetallic
mineralization-related intrusions. Therefore, we examine the representative Erdaohezi deposit and
show that these mineralization-related hypabyssal intrusions are composed of quartz porphyry
and andesite porphyry with concordant zircon U–Pb ages of 160.3 ± 1.4 Ma and 133.9 ± 0.9 Ma,
respectively. These intrusions are peraluminous and high-K calc-alkaline or shoshonitic with high
Na2O + K2O contents, enrichment in large ion lithophile elements (LILEs; e.g., Rb, Th, and U),
and depletion in high field strength elements (HFSEs; e.g., Nb, Ta, Zr, and Hf), similar to continental
arc intrusions. The zircon εHf(t) values range from 3.1 to 8.0, and the 176Hf/177Hf values range from
0.282780 to 0.282886, with Hf-based Mesoproterozoic TDM2 ages. No differences exist in the Pb
isotope ratios among the quartz porphyry, andesite porphyry and ore body sulfide minerals. Detailed
elemental and isotopic data imply that the quartz porphyry originated from a mixture of lower
crust and newly underplated basaltic crust, while the andesite porphyry formed from the partial
melting of Mesoproterozoic lower crust with the minor input of mantle materials. Furthermore,
a magmatic–hydrothermal origin is favored for the Pb–Zn polymetallic mineralization in the Erdaohezi
deposit. Integrating new and published tectonic evolution data, we suggest that the polymetallic
mineralization-related magmatism in the Erdaohezi deposit occurred in a back-arc extensional
environment at ~133 Ma in response to the rollback of the Paleo-Pacific Plate.

Keywords: zircon U–Pb dating; Hf and Pb isotopes; major and trace element geochemistry; erdaohezi
Pb–Zn polymetallic deposit; Great Xing’an Range

1. Introduction

The Great Xing’an Range (GXAR) in Northeast China is an important part of the Central Asian
Orogenic Belt (CAOB) and is characterized by numerous late Mesozoic volcanics and intrusions [1–6].
Furthermore, it is also one of the major global producers of polymetallic Pb and Zn resources; the Erguna
metallogenic belt in the (GXAR) is a world-famous Pb–Zn polymetallic metallogenic belt [7–11] that
hosts various types of metalliferous deposits (such as porphyries, hydrothermal veins, and epithermal
deposits). The mineralization began during the late Mesozoic and peaked during 145–128 Ma [12–14]
and occurred during intervals of volcanic activity or in the late stages of volcanic eruption, and is most
closely related to intermediate–felsic intrusions.
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The Erdaohezi deposit, which was discovered in 1980, is an epithermal Pb–Zn deposit in the
the Erguna metallogenic belt (Figure 1A,B) [15], it is spatially associated with subvolcanic intrusions.
Compared with other epithermal deposits in the study area, such as the Biliya, Derbur, Jiawula,
Chaganbulagen and Erentaolegai deposits [16–20], the Erdaohezi deposit has been the focus of only a few
studies. Moreover, few studies that have been performed on the petrogenesis, geochronology, major and
trace element geochemistry, and Pb and Hf isotopic characteristics of the intermediate–felsic intrusions.

Figure 1. (A) Regional geological structure map of Northeast China [21]. (B) Geologic map and Pb–Zn
deposits in the region [22]. (C) Regional geological map of the study area [23].

This study presents new geochronological age constraints from zircon U–Pb dating, Pb–Hf
isotopic compositions and petrogeochemical data from andesite porphyry and quartz porphyry in
the Erdaohezi deposit. Furthermore, we discuss the timing and petrogenesis of the quartz porphyry
and andesite porphyry and establish the origin and evolution of magmatism and their relationships
with Pb–Zn polymetallic mineralization in the region. Utilizing the regional geological evolution
and spatiotemporal distributions of volcanic–subvolcanic rocks and Pb–Zn polymetallic deposits in
the study area, we propose a possible geodynamic setting for the widespread intermediate–felsic
magmatism and mineralization in the region and adjacent areas during the late Mesozoic (167–130 Ma).
These results may provide a scientific basis for the regional prospecting and exploration of Pb–Zn
polymetallic minerals.
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2. Regional Geology

The Erdaohezi deposit is located on the western slope of the northern GXAR (Figure 1A) [24]
within the northern part of the Erguna massif and is situated to the northwest of the Derbugan fault
(Figure 2). Several northeast–southwest-striking faults divide this region into several blocks, including
the Erguna massif, the Xing’an terrane, the Songliao basin, the Halar basin, and the Songnen terrane
(Figure 1A) [25]. In this region, Early–Middle Jurassic magmatic events are correlated with the closure
of the Mongol-Okhotsk Ocean and the formation of the Xing’an Mongolia Orogenic Belt (XMOB).
Furthermore, the subduction of the oceanic Paleo-Pacific Plate may have been responsible for the
large-scale intermediate–felsic magmatism and associated Pb–Zn polymetallic mineralization in the
region [26–30].

Figure 2. (A) Geological section of the Erdaohezi deposit. (B) Geological map of the Erdaohezi mining
area [22]. 1. Rhyolitic crystal–lithic tuffs; 2. breccia; 3. volcanic rocks of the Tamulangou Formation;
4. rhyolitic tuffs; 5. quartz porphyry; 6. ore body; 7. andesite porphyry; 8. monzonite porphyry;
9. tectonic fracture zone; 10. fault; 11. sampling location; 12. cross section line; 13. borehole.

The evolution of regional tectonism in the study area has involved a variety of processes, namely
the southward subduction of the Siberian Plate, the closure of the Okhotsk Ocean, and the long-range
effects of the subduction of the Pacific Plate beneath Northeast China [26,31–36]. Within the Erguna
region of the GXAR, the evolution of the geological structure can be briefly summarized as follows:
(1) the Paleo-Asian Ocean closed completely, and the Mongol-Okhotsk back-arc basin formed (~259 Ma);
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(2) the Paleo-Asian Ocean closed, and the Paleo-Pacific Plate began to subduct (~259–247 Ma); (3) the
westward advance of the Paleo-Pacific Plate dominated the geotectonic environment coincident with
the southward subduction of the Mongol-Okhotsk Ocean (~190–130 Ma); and (4) the Paleo-Pacific
Plate retreated eastward, resulting in an extensional setting (with regional thinning or delamination
of the lithosphere) in the Erguna massif (~130 Ma) [37–40]. Many different types of intrusions and
hydrothermal deposits formed during the above-mentioned tectonic events in the region [41].

The exposed Mesoproterozoic basement rocks are mainly metamorphic rocks, including
intermediate amphibolite, metamorphic gneiss [42,43], schist, quartzite and marble (1266 ± 3 Ma) [44].
The cap rocks are composed predominantly of Cambrian–Ordovician clastic rocks with shallow marine
facies [45] as well as felsic, intermediate, and mafic volcanic rocks (159.2–166 Ma; [46,47]. The intrusions
include primarily granodiorite–monzogranite (320–305 Ma) and diorite–granodiorite–granite
(205–200 Ma) (Figure 1B,C). Late Paleozoic mafic–ultramafic rocks are developed mostly along
the faults separating adjacent blocks [48–51]. The late Mesozoic magmatic rocks in the Erguna belt
show a close spatiotemporal relationship with Ag–Pb–Zn–Cu mineralization, and the intrusions were
emplaced in a shallow crustal setting as mid-hypabyssal, hypabyssal and ultrahypabyssal facies with
felsic to intermediate compositions. The main rock assemblages include andesite porphyry [52], dacite
porphyry, granite porphyry and quartz porphyry.

3. Geology of the Erdaohezi Deposit

The Erdaohezi deposit, located southwest of Genhe city, is a large epithermal Pb–Zn polymetallic
deposit. Geological surveying of the mining area has revealed that the stratigraphy is dominated by
Middle Jurassic felsic volcanics (rhyolitic lithic–crystal tuffs) of the Manketou Obo Formation (164 Ma)
and basic–intermediate volcanic rocks (basaltic andesite) of the Tamulangou Formation (167 Ma).
The ore bodies occur in the Tamulangou Formation volcanics, Manketou Obo Formation volcanics
and quartz porphyry. Northwest and north-northwest-trending faults diverge to the northwest
and converge to the southeast, sharing a genetic relationship with the volcanic edifice [53], and the
spatial distribution of the Pb–Zn polymetallic bodies in the mining area is controlled by these faults.
The hypabyssal intrusions in the Erdaohezi deposit are composed of Late Jurassic quartz porphyry and
of Early Cretaceous andesite porphyry and monzonite porphyry. The monzonite porphyry formed after
mineralization and thus cuts through the ore body, indicating the existence of multistage magmatic
activity within the ore district. The mineralization of the Erdaohezi Pb–Zn polymetallic deposit is
related to the quartz porphyry and andesite porphyry (Figure 2A,B; Figure 3A).

More than three mineralization belts are present in the Erdaohezi mining area; among them,
the No. III ore belt is the main mineralization belt. The No. III ore belt contains 38 ore bodies, most of
which occur as veins with dips of approximately 60–85◦ to the northeast and strikes of approximately
280–320◦ (Figure 2A). Veins of these ore bodies occur in the quartz porphyry intrusions in fracture zones
or along the formation boundaries, and the occurrence of these ore bodies, which present primarily as
veins, vein networks, and breccia structures, is consistent with that of the andesite porphyry. The main
ore minerals are pyrite, sphalerite, galena, chalcopyrite, argentite and tetrahedrite, and small amounts
of supergene oxides composed of limonite and covellite are present. Gangue minerals are quartz,
fluorite, calcite, opal, sericite and chlorite, and rare adularia is observed.

The alteration zone of the surrounding rock can be divided into quartz–sericite ± illite–adularia
(core), quartz–opal–calcite (middle) and fluorite–chlorite (margin). Three hydrothermal mineralization
stages can be recognized: (I) gray quartz–pyrite–tawny sphalerite; (II) grayish white quartz–polymetallic
sulfides; and (III) white quartz–pyrite.
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Figure 3. (A) Quartz porphyry cut by an ore vein and quartz porphyry cut by andesite porphyry;
(B) hand specimen of quartz porphyry; (C) gray white quartz porphyry exposed in the field; (D) quartz
porphyry showing mainly quartz phenocrysts and very few orthoclase and plagioclase phenocrysts;
(E) andesite porphyry showing mainly plagioclase phenocrysts and very few orthoclase phenocrysts.
Or–orthoclase; Pl– plagioclase; Qz–quartz.

4. Sampling and Analytical Techniques

4.1. Sample Descriptions

The metallogenesis-related intrusions in the Erdaohezi deposit include andesite porphyry and
quartz porphyry. Representative samples (see Figure 2 for the sample localities, 120◦45’11”–120◦45’05”,
50◦48’12”–50◦48’08”) were selected for zircon dating (two samples, 28 zircon measurement points) and
for whole-rock (two samples, 13 measurement points) and Pb–Hf isotope (two Pb samples and 29 Hf
measurement points) geochemical analyses. The geological and petrographic characteristics of these
rocks are described below and are shown in Table S1.

The quartz porphyry features a grayish white color and a porphyritic texture in the hand specimen
(Figure 3A,B). The phenocrysts in the quartz porphyry (1.0 × 1.5 mm2 to 1.0 × 2.0 mm2) are composed
mainly of quartz (40–45 vol %), orthoclase (0–5 vol %) and plagioclase (10–15 vol %). Some plagioclase
grains are variably sericitized. Quartz, orthoclase and plagioclase (<0.1 mm) can be identified in the
matrix (30–35 vol %) (Figure 3D), and accessory minerals predominantly include zircon and altered
mineral sericite.

The andesite porphyry occurs in the form of veins and features a light-gray color and porphyritic
texture in the hand specimen (Figure 3A,C). The phenocrysts in the andesite porphyry (0.6 × 1.0 mm2

to 1.0 × 1.2 mm2) are composed primarily of plagioclase (35–40 vol %), orthoclase (20–25 vol %),
hornblende (5–10 vol %), and biotite (0–5 vol %). Orthoclase and plagioclase (<0.1 mm) can be identified
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in the matrix (15–20 vol %) (Figure 3E). The mineral phenocrysts are euhedral to subhedral, and the
accessory minerals include zircon, titanite, and others.

4.2. LA-ICP-MS Zircon U–Pb Dating

Zircons were selected from the quartz porphyry (ED10, 120◦45’11”, 50◦48’12”) and the andesite
porphyry (ED4, 120◦45’07”, 50◦48’12”). First, using conventional heavy liquid and magnetic separation
techniques, zircons were separated from the samples. Second, the samples were handpicked under a
binocular microscope. Third, clear and euhedral zircon grains were mounted in epoxy resin. Fourth,
the samples were polished to expose the zircon centers. The above work was completed at the mineral
separation laboratory of Nanjing Hong Chuang Geological Exploration Technology Service Company
Limited. All zircons were documented as reflected and transmitted light photomicrographs to reveal
their internal structures and to select spots for in situ U–Pb dating and Lu–Hf analysis (Figure 4).

Figure 4. (A) Cathodoluminescence (CL) images of zircons from the quartz porphyry; (B) CL images of
zircons from the andesite porphyry. The yellow circle represents the U–Pb age analytical spot, and the
blue circle represents the Hf isotope analytical spot.

The zircon U–Pb isotopic compositions were analyzed at the State Key Laboratory for Mineral
Deposits Research, Nanjing University (NJU). The samples were cleaned with water and weighed and
then crushed, and the resulting powder was passed through 100–120 mesh equipment. Moreover, pure
zircon crystals were selected under a binocular microscope. The above work was completed at the
laboratory of the Regional Geological and Mineral Research Institute of Hebei Province. The zircon
target and CL images were taken by Beijing Geoscience and Technology Company Limited and
the Institute of Physics, Peking University, respectively. Laser ablation inductively coupled plasma
mass spectrometry (LA-ICP-MS) U–Pb isotopic analyses were conducted using an Agilent 7500 mass
spectrometer connected to a 193 nm ArF excimer laser ablation system [54,55]. First, a synthetic
silicate glass standard reference material (NIST SMR610) was used to calibrate the instrument. Second,
an international reference standard zircon (91500) was used as the external age calibration standard.
The diameter of the laser spot was 32 µm, and the laser frequency was 10 Hz. Isotope ratios and
element concentrations were calculated by Glitter software (ver. 4.4, Macquarie University). The age
calculations and concordia plots by Isoplot (ver. 3.0) U–Pb fractionation were corrected using the
GJ–1 [54], 91500 [56] and Mud Tank [57] zircon standards. The U–Pb ages were also calculated by
Glitter software (ver. 4.4). The LA-ICP-MS U–Pb isotopic data are listed in Table S2. The U–Th–Pb age
calculations were performed and the concordia diagrams were plotted using Isoplot/Ex ver. 3.0 [58].
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4.3. Major and Trace Element Determinations

The geochemical sample analyses were performed at the Beijing Research Institute of Uranium
Geology (BRIUG). The major element oxides were analyzed by a Panalytical PW4400 X-ray fluorescence
spectrometer (analytical accuracy: 0.01 wt.%). Before the experiment, the GB/T14506.28 standard
was used for Na2O, MgO, Al2O3, SiO2, P2O5, K2O, CaO, TiO2, MnO, and Fe2O3. The GB/T14506.28
standard was used for FeO, and the LY/T1253–1999 loss on ignition (LOI) standard was applied. Trace
elements, including rare earth elements (REEs), were analyzed by an X-series plasma mass spectrometer
(DZ/T0223–2001, analytical accuracy: 0.1 ppm). The major and trace element compositions of the
quartz porphyry (ED10, ED3a–b, and ED1a–c) and andesite porphyry (ED4, ED9, ED9a, and ED2a–d)
associated with the Erdaohezi mining area are given in Table S3.

4.4. Zircon Lu–Hf Isotopic Analyses

Zircon Lu–Hf isotopic analyses were conducted at the State Key Laboratory for Mineral Deposits
Research, NJU, using a New Wave UP193FX laser ablation microprobe attached to a Neptune
multi-collector ICP-MS [59,60]. In situ Lu–Hf isotopic analyses were performed predominantly with
a beam diameter of 35 µm (repetition rate of 8 Hz). The 91500 standard zircon was used to monitor
the performance conditions and analytical accuracy. The εHf values were calculated using a decay
constant of 1.865 × 10–11 per year [61,62]. Depleted mantle Hf model ages (TDM2) were calculated using
the measured 176Lu/177Hf ratios of zircon in reference to a depleted mantle model with a present-day
176Hf/177Hf ratio of 0.28325 [63], a 176Lu/177Hf ratio of 0.0384 [64] and an average continental crust
ratio (fCC) of −0.55 [64]. All Lu–Hf isotopic analysis results are reported with uncertainties of one
standard deviation, and the results of the zircon Hf isotopic analyses performed in this study are given
in Table S4.

4.5. Pb Isotopic Analyses

Whole-rock Pb isotopic measurements were conducted by a MAT–261 thermal ionization mass
spectrometer. First, to remove surface contamination, approximately 50–80 mg of powder for each
whole-rock sample was first leached in acetone. Second, the samples were washed with distilled
water and dried at 60 ◦C in an oven. Third, each whole-rock sample was dissolved in distilled HF +

HNO3 (150 ◦C, 168 h). Fourth, the Pb was separated on Teflon columns using a HBr-HCl wash with
an elution procedure and then loaded with a mixture of Sigel and H3PO4 onto a single Re filament
(1300 ◦C). The measured Pb isotope ratios were corrected by repeated analyses of the NBS–981 Pb
standard. The Pb isotopic measurements were better than two standard deviations, and the results of
the whole-rock Pb isotopic analyses are given in Table S5.

5. Results

5.1. Whole-Rock Geochemistry

The quartz porphyry samples contain 74.87–76.36 wt.% SiO2, 12.08–13.44 wt.% Al2O3,
3.56–3.93 wt.% K2O, and 3.61–4.02 wt.% Na2O + K2O. In the Na2 + K2O vs. SiO2 (TAS) diagram,
the three samples plot in the rhyolite field and are classified as subalkaline (Figure 5A) [65,66].
The Rittmann Index (δ) is 0.39–0.49, and the saturation index of aluminum (A/CNK) is 2.43–3.14,
categorizing these rocks as high-potassium calc-alkaline and peraluminous rocks (Figure 5B) [67].
These values are similar to the major element compositions of the felsic rocks in the study area.

Compared with the quartz porphyry samples, the andesite porphyry samples have lower
concentrations of SiO2 (58.72–61.88 wt.%) and higher concentrations of K2O (3.89–4.56 wt.%) and
Al2O3 (13.86–19.85 wt.%). In the TAS diagram (Figure 5A), the three samples plot in the andesite field
and are classified as subalkaline. The δ and A/CNK values are 0.80–1.39 and 2.35–3.61, respectively,
categorizing these samples as shoshonitic and peraluminous rocks (Figure 5B).
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Figure 5. (A) SiO2 versus (Na2O + K2O) diagram [66]. (B) Si2O versus K2O diagram [67]. B: basalt; O1:
basaltic andesite; O2: andesite; O3: dacite; R: rhyolite; T: trachyte or trachydacite; S1: trachybasalt; S2:
basaltic trachyandesite; S3: trachyandesite; Pc: picrobasalt; U1: basanite or tephrite; U2: phonotephrite;
U3: tephriphonolite; F: foidite. Other data are quoted from the literature [68–71].

In Figure 6A (primitive mantle-normalized trace element spider diagram, [72]), the quartz
porphyry samples are enriched in Th, U, and large ion lithophile elements (LILEs; e.g., Rb and K)
and depleted in high field strength elements (HFSEs; e.g., Nb, Ta and Ti). Furthermore, the andesite
porphyry samples feature lower contents of Th and U but higher contents of Ba, K, Ta and Nb than the
host quartz porphyry samples (Figure 6C).

All the rocks have relatively low total REE contents (
∑

REE = 99.35–190.12 ppm; Table S3).
These patterns are characterized by light REE (LREE) enrichment and heavy REE (HREE) depletion
(Figure 6B,D). The quartz porphyry samples are highly fractionated (LREE/HREE ratios ranging
from 17.03 to 17.98 and (La/Yb)N values varying from 23.91 to 28.24 [73,74], with weakly negative Eu
anomalies (0.47–0.68). In addition, the quartz porphyry is similar to the rhyolitic crystal–lithic tuffs in
terms of the geochemical patterns of trace elements and REEs. In contrast, the andesite porphyry has a
lower degree of fractionation (LREE/HREE values of 6.95–9.88 and (La/Yb)N values of 7.39–12.12) with
smaller negative Eu anomalies (0.79–0.96). The Late Jurassic quartz porphyries and Early Cretaceous
andesite porphyries in the study area (on the western slope of the GXAR) [75] are high-K calc-alkaline
or shoshonitic rocks with similar contents of trace elements and REEs as the hypabyssal intrusions in
the Erdaohezi deposit (Figure 6).

5.2. Zircon U–Pb Dating

The Erdaohezi quartz porphyry (ED10) and andesite porphyry (ED4) were selected for LA-ICP-MS
zircon U–Pb dating (Table S2). Their zircon grains are euhedral–subhedral or prismatic (50–150 µm
long) with aspect ratios of 1:1 to 4:1. Additionally, the zircons exhibit clear oscillatory zoning (Figure 4)
and reveal U concentrations of 144–3054 ppm, Th concentrations of 152–3582 ppm, and Th/U ratios of
0.40–2.14, indicating that these zircons have a magmatic origin [76]. All of the analytical results plot
near the concordia line (Figure 7).

Zircon grains collected from the quartz porphyry (ED10) yielded 206Pb/238U ages of 160–161 Ma
with a weighted mean 206Pb/238U age of 160.3 ± 1.4 Ma (n = 12) (Figure 7A). Zircon grains collected
from the andesite porphyry (ED4) yielded 206Pb/238U ages of 132–135 Ma with a weighted mean
206Pb/238U age of 133.9 ± 0.9 Ma (n = 15) (Figure 6B). Zircon ages of 159 Ma (Group I) correspond
to zircons trapped in the quartz porphyry, which is consistent with geological observations made in
the field.
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Figure 6. (A) Primitive mantle-normalized trace element spider diagrams of the quartz porphyry
samples in the Erdaohezi deposit. (B) The chondrite-normalized rare earth element (REE) pattern of
the quartz porphyry. (C) Primitive mantle-normalized trace element spider diagrams of the andesite
porphyry samples in the Erdaohezi deposit. (D) The chondrite-normalized rare earth element (REE)
pattern of the andesite porphyry. Other data are quoted from the literature [22,53,70,71,75].

Figure 7. (A) Concordia diagrams of the zircon U–Pb ages for the quartz porphyry; (B) concordia
diagrams of the zircon U–Pb ages for the andesite porphyry.
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5.3. Zircon Lu–Hf Isotopic Data

The results of the Lu–Hf isotopic analyses of zircons from the quartz porphyry (ED10) and andesite
porphyry (ED4) samples are shown in Table S4. The zircons from the quartz porphyry (160.3 ± 1.4 Ma)
show a narrow range of Hf isotopic compositions, with 176Hf/177Hf ratios ranging from 0.282847 to
0.282886. The εHf(t) values range from +5.7 to +8.0, and the TDM2 ages range from 920 to 1130 Ma.
The magmatic zircons from the andesite porphyry (133.9 ± 0.9 Ma) have 176Hf/177Hf ratios ranging
from 0.282854 to 0.282780 and εHf(t) values ranging from +3.1 to +5.8. The TDM2 ages of the andesite
porphyry range from 1106 to 1343 Ma, which are older than those of the quartz porphyry.

The analyzed zircons have Hf isotopic compositions that are similar to those of zircons from
Phanerozoic intrusions elsewhere in the CAOB (Figure 8A) [77–80]. In addition, the analyzed zircons
generally have relatively high 176Hf/177Hf values, and all the sampled points fall between the fields of
depleted mantle and young lower crust (above the 1.0 Ga line) (Figure 8B).

Figure 8. εHf(t) versus age plot of zircons (A) and 176Hf/177Hf versus age plot of zircons (B) [81,82].
(87Sr/86Sr)i–εNd(t) diagrams (C) and (D) of the andesite porphyry, andesite and rhyolitic volcanics on
the western slope of the Great Xing’an Range (GXAR) [83]. Data for the andesite and rhyolitic rocks on
the western slope of the GXAR are quoted from the literature [84–89].

5.4. Pb Isotopic Compositions

The Pb isotopic compositions of four samples measured in the Erdaohezi deposit and previous
studies are listed in Table S5. The Pb isotopic compositions of the andesite porphyry and quartz
porphyry in the study area [22] are characterized by minor variations in 206Pb/204Pb, 207Pb/204Pb and
208Pb/204Pb (Figure 9A,B), with values ranging from 18.438 to 18.476 (2σ: 0.0004 to 0.0020), 15.571 to
15.622 (2σ: 0.0008 to 0.0020), and 38.224 to 38.263 (2σ: 0.0010 to 0.0040), respectively.
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Figure 9. (A) 207Pb/204Pb versus 206Pb/204Pb diagram for the andesite porphyry, and (B) 208Pb/204Pb
versus 206Pb/204Pb for the quartz porphyry in the Erdaohezi deposit (the base diagrams are from [88]).

6. Discussion

6.1. Timing of Magmatism and Mineralization

Previous studies on regional magmatism and metallogenesis in the study region concentrated
mostly on particular epithermal Pb–Zn polymetallic deposits on the western slope of the GXAR, such as
the Derbur [89], Dongjun [90], Jiawula, Chaganbulagen [91], Weilasituo and Bianjiadayuan deposits.
As a result, large quantities of geochronological data have been obtained (Table S7); for example,
from the Derbur, Dongjun, Jiawula, Chaganbulagen, Weilasituo, Bianjiadayuan, Baiyinnuo and
Haobugao epithermal Pb–Zn polymetallic deposits, which formed primarily in the Early Cretaceous
(Figure 1, Table S6) [92–100].

In this paper, we present new ages for the quartz porphyry and andesite porphyry of 160.3 ± 1.4 Ma
and 133.9 ± 0.9 Ma, respectively. Moreover, on the basis of the ages of the felsic and intermediate
intrusions related to Pb–Zn polymetallic mineralization in the Erguna metallogenic belt, we postulate
that both types of intrusions formed primarily in the Late Jurassic or Early Cretaceous, with the felsic
intrusions forming at 140–160 Ma and the intermediate intrusions forming at 133–148 Ma [101]. Thus,
the ages of the quartz porphyry and andesite porphyry in the study area are similar to the ages of
these intrusions.

Finally, considering the Rb–Sr isochron age (130.5 ± 3.6 Ma, n = 5; personal communication)
obtained from ore body sulfides in the main metallogenic stage from the Erdaohezi deposit, the timing
of emplacement of the andesite porphyry is consistent with the timing of mineralization, indicating
a temporal relationship between these processes. Thus, the magmatism and mineralization of the
Erdaohezi deposit occurred in the Early Cretaceous.

6.2. Petrogenesis and Nature of Magma Source

6.2.1. Quartz Porphyry

Currently, from research conducted on the global scale, three main hypotheses have been proposed
to explain the source of rhyolitic magma in this region: (1) the partial melting of crustal rocks [102–105],
(2) the separation and crystallization of basaltic or andesitic magma [106–113], and (3) bimodal
volcanism [108,109]. Furthermore, the late Mesozoic basaltic rocks on the western slope of the GXAR
are less widespread than the rhyolitic rocks in the study area, and the basaltic rocks in the study area
are either fine-grained or cryptocrystalline with no phenocrysts, indicating that a basaltic magma
was rapidly erupted and quenched. Therefore, it is unlikely that a large volume of rhyolitic magma
separated from the basaltic magma. Furthermore, the Rb–Sr age of the basalts in the Tamulangou
Formation is approximately 155 Ma [114], which is later than the age of the rhyolitic volcanics in the
Manketou Obo Formation (164 Ma).
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In terms of the REE content, the rhyolitic rocks contain REEs in less abundance than the basaltic
andesite and basalt; moreover, the Eu anomalies of the rhyolitic rocks are stronger, and their LREE/HREE
values are higher. With regard to trace elements, the rhyolitic lithic–crystal tuffs are generally enriched
in LILEs, depleted in HFSEs (Table S3), and especially depleted in Sr. The distribution of elements
in these tuffs is different from that in the mafic-intermediate volcanics, but the REE characteristics of
the rhyolitic lithic–crystal tuffs are similar to those of the felsic volcanics in the region (Figure 8A,B).
Moreover, the (87Sr/86Sr)i and εNd(t) values of the rhyolitic volcanics in the study area are quite
different from those of the basaltic andesite and basalt on the western slope of the GXAR, suggesting
that there is no evolutionary relationship between them (Figure 8C).

The rhyolitic lithic–crystal tuffs in the Erdaohezi deposit have high SiO2 and low MgO contents
and are categorized as high-K calc-alkaline rocks (Figure 5B); their Nb/Ta and Zr/Hf ratios are close
to those of the crust, with a crust-derived parent magma [115,116]. Therefore, the rhyolitic rocks
in the Manketou Obo Formation are probably the product of the partial melting of the lower crust.
Furthermore, the diagenetic age of the rhyolitic rocks is similar to that of the basaltic andesite (167 Ma).
Combined with the geochronological data obtained in this study, the timing of andesitic magmatism in
the region was obviously later than that of the rhyolitic magmatism. We further postulate that the
rhyolitic magma was not sourced from a basaltic magma or an andesitic magma. These characteristics
of the mafic-intermediate and felsic volcanics are similar to those of the bimodal volcanics on the
western slope of the GXAR, and the rhyolitic rocks and basaltic andesite in the Erdaohezi deposit can
be classified as bimodal volcanics (Figure 11A).

In terms of the petrogeochemistry, the K2O/SiO2 ratio of the quartz porphyry (0.05) is similar to that
of the rhyolitic rocks, and both rock types are classified as calc-alkaline rocks (Figure 5B). These rocks
have similar major element ratios, such as Al2O3/SiO2, TiO2/SiO2, and Na2O/K2O, and similar δ values
(Table S3). They feature high Ce/Al2O3 ratios (110.18–1355.56) and low TiO2/Al2O3 ratios (0.01–0.06),
which are characteristic of subvolcanic rocks in a continental arc setting (Figure 10A). Their normalized
REE patterns are generally similar and feature high LREE enrichment. The LREE/HREE and δEu values
of both rock types are similar to those of the rhyolitic rocks and are characterized by high differentiation
and negative δEu values. Additionally, the trace elements of the quartz porphyry are similar to those
of the felsic volcanics (Figure 6A). Indeed, the Th vs. Th/Nd and εNd(t) vs. (87Sr/86Sr)i diagrams
(Figure 11C; Figure 8C,D) further indicate that a depleted mantle-derived magma partially melted the
lower crust and became contaminated with crustal materials [117]. The Zr/Hf and Nb/Ta values of
the quartz porphyry are similar to those of the rhyolitic lithic–crystal tuffs (Table S3), suggesting that
their parent magmas were similar. These geochemical characteristics are similar to those of rhyolitic
intrusions on the western slope of the GXAR and suggest that they may have been sourced from the
partial melting of the crust (Figure 10B) and from subsequent mixing with a small amount of depleted
mantle material or newly underplated basaltic crust.

The zircon Hf isotopic data from the Erdaohezi deposit are similar to the Hf isotope values of the
quartz porphyry in the study region (Figure 8A). The quartz porphyry is characterized by positive
εHf(t) values (+5.7 to +8.0), and the TDM2 model ages range from 920 Ma to 1130 Ma, indicating that
the primary magmas may have originated from a depleted mantle or newly underplated basaltic
crust (Figure 8B). Moreover, the ranges of the (87Sr/87Sr)i and εNd(t) values in the rhyolitic rocks
in the region are 0.70485–0.70619 and −0.1–1.4, respectively. These values indicate a mixed source
region consisting of 85–88% newly underplated basalt and 12–15% lower crust in the Mesoproterozoic
(Figure 8C,D). Similarly, the Pb–Pb isotopic data (Figure 9A,B) from the quartz porphyry in the
Erdaohezi deposit support a mixed source consisting of newly underplated basaltic crust and lower
crust in the Mesoproterozoic.
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Figure 10. (A) Ce/P2O5 vs. Zr/TiO2 diagram [118]. (B) Th vs. Th/Nd diagram [119,120]. (C) SiO2 vs. Ni
diagram [74]. (D) SiO2 vs. TiO2 diagram [74]. (E) Rb vs. Nb + Yb diagram. (F) Nb vs. Y plot [121,122].
Other data are from [22,53,70,71,75].
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Figure 11. Genetic model and tectonic setting for the Late Jurassic quartz porphyry (A), and Early
Cretaceous andesite porphyry (B) in the GXAR.
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6.2.2. Andesite Porphyry

The age of the andesite porphyry obtained in this paper is 133.9 Ma, which is slightly younger than
the age of the andesitic volcanics in the Manitu Formation within the study region (135–145 Ma) [123].
The following hypotheses have been proposed for the petrogenesis of the andesitic volcanics in the
Manitu Formation on the western slope of the GXAR: (1) the partial melting of mafic rocks in the
lower crust [124,125]; (2) the mixing and differentiation of mafic magma and felsic magma to varying
degrees [126,127]; and (3) independent magma origins, including asthenospheric upwelling and partial
melting of the lower crust or a subducted oceanic plate [128,129]. Previous studies have shown that the
andesitic volcanics in the Manitu Formation are widespread across the western slope of the GXAR and
that they include mainly andesite and a small amount of andesitic tuff. Moreover, there is no large-scale
distribution of Early Cretaceous basaltic rocks on the western slope of the GXAR (Figure 1B,C), and the
andesitic rocks in the Manitu Formation have a weak Eu anomaly. All of these results indicate that the
andesitic rocks in the study area may not be related to the separation and crystallization of a basaltic
magma, nor are they likely the product of the mixing of basaltic and rhyolitic magmas. In terms of their
petrogeochemistry, the andesitic volcanics in the Manitu Formation are peraluminous, calc-alkaline
shoshonites enriched in Rb, Th and U and depleted in Ta, Nb and Zr, without obvious Sr depletion
(Figure 6C,D). Thus, their magma source may have been affected by mantle material or a subducted
plate. Furthermore, their Rb/Sr, Th/U, Hf/Sm, Ta/Hf, Nb/Ta, Sm/Nd, and LaN/YbN ratios are similar to
those of continental arc andesites, and their 176Hf/177Hf and εHf (t) values suggest that their diagenetic
magma may have originated from the partial melting of the lower crust, following which the magma
was contaminated with material from the lower crust (Figure 8A,B; Figure 11B).

Concerning the petrogeochemistry of the andesite porphyry in the study area, the K2O/SiO2

ratio (0.06–0.08) is similar to that in other andesites. All the andesite porphyry samples belong to
the calc-alkaline or shoshonitic series (Figure 5B) and have similar ratios of major elements (such as
Al2O3/SiO2, TiO2/SiO2, and Na2O/K2O) and δ values (Table S3). Furthermore, the andesite porphyry
has a high Ce/Al2O3 ratio (110.18–1355.56) and a low TiO2/Al2O3 ratio (0.01–0.06), showing the same
characteristics of continental arc rocks as the other andesites (Figure 10A). The normalized REE patterns
are generally similar; the LREE/HREE and δEu values are similar and are characterized by weak
differentiation and weakly negative δEu values [130]. The trace element compositions are enriched
in Rb and K and depleted in Ba, Ta, Nb, Sr and Ti (Figure 6A,C), and the Th and Th/Nd values in
the andesite porphyry in the Erdaohezi deposit are similar to those of the andesites on the western
slope of the GXAR. The Th vs. Th/Nd and εNd(t) vs. (87Sr/86Sr)i diagrams (Figure 10A; Figure 8C,D)
further indicate that the depleted mantle-derived parent magma partially melted the lower crust and
subsequently became contaminated by crustal materials. The Zr/Hf and Nb/Ta values of the andesite
porphyry (40.60–46.18 and 15.33–21.79, respectively) are similar to those of other andesites, further
suggesting that the parent magma was characterized by crust–mantle mixing. Therefore, these rocks
may have been sourced from the partial melting of the lower crust and from mixing with a small
amount of mantle material. In summary, these rocks in the study region are similar to intrusions
related to continental arcs.

The above geochemical characteristics are also supported by the zircon Hf isotopic data
(Figure 8A,B). The εHf(t) values of the andesite porphyry range from +3.1 to +5.8, and the corresponding
TDM2 ages range from 1106 to 1343 Ma, indicating that a mixture of depleted mantle and lower crustal
materials was involved in the petrogenesis of the andesite porphyry. Moreover, the ranges of the
(87Sr/87Sr)i and εNd(t) values in the andesite porphyry are 0.70455–0.70496 and +1.9–+2.8, respectively;
these values plot near the depleted mantle evolution line (Figure 8C) and suggest that the mixed
source was composed of 82–88% depleted mantle and 8–12% lower crust in the Mesoproterozoic
(Figure 8D). Compared with the rhyolitic magma, the andesitic magma may have contained more
mantle-derived materials.

In addition, the Pb isotopic data from the andesite porphyry plot in a broadly similar field
(Figure 9A,B); these results also support a mixed crust–mantle source. The Pb isotopic compositions
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of the intrusions and sulfide minerals in the Erdaohezi deposit show broadly similar 206Pb/204Pb,
207Pb/204Pb, and 208Pb/204Pb ratios ranging from 18.308 to 18.475, 15.528 to 15.622, and 38.078 to 38.319,
respectively. These values suggest that these rocks originated from a source composed of young lower
crust with a small amount of depleted mantle material. Furthermore, the Pb isotopic compositions of
the intrusions and sulfides clearly plot in the field between those of orogenic belts and mid-ocean ridge
mantle (Figure 9A,B), possibly indicating some affinity to orogenesis related to the tectonic activity of
the Paleo-Pacific Plate.

6.3. Geodynamic Setting of Diagenesis and Metallization

Numerous studies on the magmatic–hydrothermal deposits on the western slope of the GXAR
have shown that most of the ore systems therein are related to local late Mesozoic magmatism [131–135].
In addition, available geochronological results illustrate that the majority of the magmatic–hydrothermal
deposits formed between 160 and 130 Ma [136–142] (Table S6). Four models have been proposed
for the magmatic–tectonic history in the study region: (1) the Rodinia supercontinental extensional
faulting model [143–146]; (2) the continental margin model related to the tectonic activity of the
Mongol-Okhotsk Ocean [147]; (3) the continental margin model related to the activity of the Pacific
Plate [39]; and (4) the mantle plume underplating model [108].

The Late Jurassic to Early Cretaceous quartz porphyry (164–140 Ma) and Late Jurassic rhyolitic
lithic–crystal tuffs have geochemical compositions that range from high-K calc-alkaline to shoshonite,
whereas the andesite porphyry (148–133 Ma) exhibits an opposite trend (Figure 5B; Table S3). All these
rocks show the petrogenetic characteristics of continental arc rocks [148]. In addition, the REE
fractionation patterns are consistent (Figure 6B,D): the LREE/HREE and LaN/YbN values of the
quartz porphyry indicate strong differentiation, while those of the andesite porphyry indicate weak
differentiation. Additionally, the Th/Yb, Ta/Yb and Nb/Yb ratios are indicative of continental arc rocks.
In the plots of Rb versus Yb + Y and Nb versus Y, the sample points of the studied rocks plot within
the postcollisional granite, collisional granite and volcanic arc granite fields, which are associated
with suitable extensional environments related to the subduction and compression of the oceanic
lithosphere beneath the Asian continental plate (Figure 10E,F). Moreover, the SiO2/Ni (2.53–7.11),
SiO2/TiO2 (45.07–60.56), and SiO2/Cr (0.62–2.03) ratios of the andesite porphyry further suggest that
the parent magma was related to delamination of the lower continental crust (Figure 10C,D).

Nevertheless, the petrogenesis and tectonic affiliation of the Late Jurassic volcanics and intrusions
in the Erguna metallogenic belt on the western slope of the GXAR remain controversial. However, it is
widely accepted that the activity of the Pacific Plate played a dominant role in the evolution of the
late Mesozoic magma [149,150], the Late Jurassic magmatic episode, and the transition of the tectonic
setting from compressional to extensional. Furthermore, a number of geochemical and geophysical
studies have indicated that the late Mesozoic magmatism on the western slope of the GXAR occurred
within different tectonic settings [151,152]. The Late Jurassic volcanics and intrusions likely formed
within a continental arc, with a setting transitioning from compressional to extensional. In the Late
Jurassic, the subduction of the Paleo-Pacific Plate reached its maximum extent with a low angle, where
the slab extended more than 1300 km west to the Erguna massif on the western slope of the GXAR [153].
It has been suggested that the tectonic transformation in this region caused significant lithospheric
thickening as a consequence of the subduction of the Pacific Plate [154–157]. Based on the timing of
magmatism and polymetallic mineralization in the region, during 167–160 Ma, the subduction of the
Paleo-Pacific Plate resulted in lithospheric thickening of the Erguna massif and formed a continental
arc [158–162]. With the complete subduction of the Paleo-Pacific Plate and the weakening of the
compressive stress, an extensional environment gradually formed subsequent to subduction, followed
by the upwelling of asthenospheric material, resulting in the partial melting of the accreted basaltic
lower crust and the formation of the rhyolitic magma. This process resulted in the emplacement of
the magma associated with the quartz porphyry (160 Ma) in the study area. The regional rhyolitic
and basaltic volcanics in the Tamulangou Formation constitute bimodal volcanic rocks. Based on
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the Sr–Nd–Pb–Hf isotopic compositions of these rocks (Figure 8), we consider these volcanics to
be the product of the partial melting of the Mesoproterozoic lower crust caused by asthenospheric
mantle upwelling in the extensional environment that formed following the subduction of the oceanic
Paleo-Pacific Plate. Moreover, the quartz porphyry exhibits the same geochemical characteristics as the
rhyolitic lithic–crystal tuffs, although the emplacement timing of the former was slightly later than
that of the latter, which indicates that the Late Jurassic quartz porphyry occurred late in the eruption
process of the rhyolitic lithic–crystal tuffs (Figure 11A).

The Early Cretaceous (145–120 Ma) was an important time for intracontinental extension after the
subduction of the Paleo-Pacific Plate [163,164]. Regional geophysical data [165,166] and the spatial
distribution of Mesozoic magmatic rocks [167–169] suggest that the late Early Cretaceous magmatism
that occurred throughout the western slope of the GXAR can be attributed to the aftereffects of the
subduction of the Paleo-Pacific Plate. Additionally, this period also represents the peak of large-scale
lithospheric thinning in Northeast China [170–173]. During this period, the thickened lower crust and
lithospheric mantle in the study area began to delaminate due to gravitational instability, and this
delamination caused the position of the oceanic plate to migrate gradually with respect to the position
of the continental margin [174–177]. This delamination also caused the large-scale upwelling of
asthenospheric mantle, which further promoted the change in the subduction angle of the oceanic
plate from low to high. The upwelling of the asthenosphere increased the thermal gradient, caused
the partial melting of the thickened lower crust and potentially provided the heat source responsible
for the widespread intermediate–felsic magmatism in the study area. The Paleo-Pacific slab likely
continued to experience rollback due to thermal upwelling, resulting in the upwelling of asthenospheric
mantle, lithospheric thinning, delamination, and the formation of large-scale Pb–Zn polymetallic
mineralization and the emplacement of the high-alumina shoshonitic andesite porphyry during the
Early Cretaceous (Figure 11B). The diagenetic tectonic setting of these intrusions exhibits postorogenic
extensional characteristics (Table S7), and this setting is further evidenced by the existence both of
voluminous Early Cretaceous volcanics and intrusions and of the extensional basins in the GXAR.

7. Conclusions

The zircons from the quartz porphyry and andesite porphyry yielded U–Pb ages of 160.3 ± 1.4 Ma
and 133.9 ± 0.9 Ma, respectively, indicating that the magmatism related to the mineralization in the
Erdaohezi deposit possibly occurred in the Early Cretaceous. The quartz porphyry formed from a
mixed source composed of Mesoproterozoic lower crust and newly underplated basaltic crust, and the
andesite porphyry formed from the partial melting of Mesoproterozoic lower crust with the minor
input of depleted mantle. Both porphyries formed in an extensional environment related to the
Paleo-Pacific Plate at 133 Ma.
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