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Abstract: The formation of hydrocarbons (HCs) upon interaction of metal and metal–carbon phases
(solid Fe, Fe3C, Fe7C3, Ni, and liquid Fe–Ni alloys) with or without additional sources of carbon
(graphite, diamond, carbonate, and H2O–CO2 fluids) was investigated in quenching experiments
at 6.3 GPa and 1000–1400 ◦C, wherein hydrogen fugacity (f H2) was controlled by the Fe–FeO +

H2O or Mo–MoO2 + H2O equilibria. The aim of the study was to investigate abiotic generation
of hydrocarbons and to characterize the diversity of HC species that form in the presence of Fe/Ni
metal phases at P–T–f H2 conditions typical of the upper mantle. The carbon donors were not fully
depleted at experimental conditions. The ratio of H2 ingress and consumption rates depended on
hydrogen permeability of the capsule material: runs with low-permeable Au capsules and/or high
hydrogenation rates (H2O–CO2 fluid) yielded fluids equilibrated with the final assemblage of solid
phases at f H2

sample
≤ f H2

buffer. The synthesized quenched fluids contained diverse HC species,
predominantly light alkanes. The relative percentages of light alkane species were greater in higher
temperature runs. At 1200 ◦C, light alkanes (C1 ≈C2 > C3 > C4) formed either by direct hydrogenation
of Fe3C or Fe7C3, or by hydrogenation of graphite/diamond in the presence of Fe3C, Fe7C3, and a
liquid Fe–Ni alloy. The CH4/C2H6 ratio in the fluids decreased from 5 to 0.5 with decreasing iron
activity and the C fraction increased in the series: Fe–Fe3C → Fe3C–Fe7C3 → Fe7C3–graphite →
graphite. Fe3C–magnesite and Fe3C–H2O–CO2 systems at 1200 ◦C yielded magnesiowüstite and
wüstite, respectively, and both produced C-enriched carbide Fe7C3 and mainly light alkanes (C1 ≈

C2 > C3 > C4). Thus, reactions of metal phases that simulate the composition of native iron with
various carbon donors (graphite, diamond, carbonate, or H2O–CO2 fluid) at the upper mantle P–T
conditions and enhanced f H2 can provide abiotic generation of complex hydrocarbon systems that
predominantly contain light alkanes. The conditions favorable for HC formation exist in mantle zones,
where slab-derived H2O-, CO2- and carbonate-bearing fluids interact with metal-saturated mantle.

Keywords: mantle; fluid; hydrocarbons; subduction; experiment; native iron; gas chromatography–
mass spectrometry

1. Introduction

Abiotic hydrocarbons (HCs) have been found in Earth’s seafloor hydrothermal systems [1,2],
crustal crystalline rocks [3], inclusions of mantle-derived diamonds [4–7], and meteorites [8], as well
as on other planets [9]. Abiotic hydrocarbon production on the global scale is minor compared to
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hydrocarbon production by microbial processes or thermogenic degradation of organic matter in
sedimentary rocks [10]. Yet, HCs that form in reduced mantle may play a key role in the deep cycles
of carbon and hydrogen, and facilitate the transport of volatiles to shallow oxidized mantle [11,12].
On the other hand, oxidation of HCs at depths ranging from 150 km to 200 km with the formation
of H2O, C0, and CO2 is favorable for magma generation [11–13] and crystallization of lithospheric
diamonds [14,15].

Hydrocarbon genesis in the mantle may potentially occur by hydrolysis or hydrogenation of iron
carbides and graphite or diamond, or by reduction of CO, CO2, and carbonates upon reactions with iron
compounds and H2O [10,16–25]. The formation of HCs in the presence of FeO-bearing carbonates and
H2O has received the most exhaustive experimental constraints [16,17,21–23]. The synthesis of HCs
under the mantle P–T conditions was inferred [21] to require a donor of carbon (of any type), a donor of
hydrogen, and a reducing environment. Specific P–T conditions in the pressure range of 1–11 GPa and
temperatures ≤1600 ◦C determine the predominant HC species: methane and ethane or natural gas-like
mixtures [16,21]. Only at pressures greater than 2.5 GPa, methane transforms into heavier alkanes,
and the transformation processes are enhanced at higher temperatures [16]. Heavy hydrocarbon
species commonly form in the C–H system at lower mantle pressures and temperatures [26]. Direct
hydrogenation of graphite at high f H2 yields larger amounts of methane than the reaction of FeO,
CaCO3, and H2O at low f H2 [18]. In a previous study [25], we reproduced the formation of HCs at
5.5–7.8 GPa and 1100–1400 ◦C by reacting hydrogen-bearing fluids with 13C soot-like carbon, graphite,
or diamond as carbon sources. 13C carbon reacted with hydrogen to yield isotopically pure 13C light
alkanes; the reaction with graphite at 6.3 GPa progressively accelerated and became avalanche-like in
runs longer than 1 h; and the use of diamond as a carbon source resulted in HC formation, but at the
slowest rate.

Currently, there is a wealth of evidence [11,12,27–31] on settings favorable for abiotic HC generation
in the mantle in the presence of carbon and hydrogen donors and a reducing environment. Large
amounts of C- and H-bearing species are delivered to the mantle by subducted slabs, which can
carry and release H2O, CO2, and carbonates as far as the lower mantle [29–32]. The redox conditions
in the slab are variable, but generally more oxidized than in the ambient mantle [11,33]. The total
amount of water transported to the mantle is estimated to be 8.7 × 1011 kg/year [29], and the subducted
mass of H2O in most slabs is much larger than that of CO2 [32,34]. At pressures greater than 5 GPa,
the carbonate-bearing sediments yield an H2O-bearing carbonated melt [35]. Carbonated melts are
expected to travel into the mantle due to their low viscosity and good wetting properties [35,36]. The
present-day annual subduction input of carbon reaches 5.4–8.8 × 1013 g [31]. Slab-derived fluids are
known to interact with the ambient mantle and cause its metasomatic alteration [37,38].

The decrease in oxygen fugacity with depth is maintained by progressive disproportionation
by the reaction 3Fe2+

→ 2Fe3+ + Fe0 resulting from a pressure-dependent increase of Fe3+ stability
in silicate phases [28,39], whereby the mantle becomes saturated with native iron [27,28,39,40]. The
presence of a metal phase in the upper mantle is evident from inclusions in diamonds that store iron,
widespread cogenite (Fe3C), and Fe–Ni or Fe–Ni–S alloys [7,41–44]. The metal phase of inclusions in
eclogitic diamond commonly contains 0.1–0.5% Ni [42–44], and that in equilibrium with peridotite can
contain up to XNi > 0.5 [28,39,40,45]. Specifically, at 10 GPa, the contents of Fe-based alloys in peridotite
can vary from 50 to 700 ppm, with XNi between 0.34 and 0.58 [40]. Judging by phase relations in the
Fe–Ni–C and Fe–Fe3C–Fe3N systems at 7.8–10 GPa and 1350–1475 ◦C, the dissolution of C and N in
amounts typical of the upper mantle can produce assemblages of Fe3C or Fe7C3 carbides (with Ni
impurity) ±metal melt ± diamond [40,46]. At greater depths of 600 km, the metal concentration may
reach 5000 ppm [39] and carbide Fe7C3 may gain more importance [40,47].

The penetration of slab-derived fluids or melts into the metal-saturated mantle can induce the Fe +

H2O→ FeO + H2 reaction [29,48,49] which buffers f H2 at the IW + H2O (Fe–FeO + H2O) equilibrium.
This provides a constant source of hydrogen and controls strongly reduced conditions, while the melting
of silicates is impeded by “redox freezing” [11,40]. Carbon may come from iron carbides, graphite, or
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diamond produced by reactions of Fe-based alloys with carbonate or CO2 [40,50,51]. Thus, necessary
and sufficient conditions for HC generation may arise in the zones of interaction between slab-derived
H2O–CO2 fluids or H2O-bearing carbonated melts and reduced iron-saturated mantle. The process of
abiotic generation of HCs at the mantle P–T–f H2 conditions upon interaction of iron carbides and an
Fe–Ni melt with graphite, diamond, carbonate, and fluids, as well as the speciation of the resulting
hydrocarbons, can be investigated in laboratory experiments. For this, we have performed quenching
experiments at 6.3 GPa and 1000–1400 ◦C, which generally reproduce the conditions that typically
occur in zones of mantle–slab interaction. Iron carbides, graphite, diamond, magnesite, and CO2 in
fluids were used as carbon donors, while the presence of metal phases maintained strongly reduced
conditions in the samples. Hydrogen fugacity was buffered using the double-capsule technique [52] by
the IW + H2O or MMO + H2O (Mo–MoO2 + H2O) equilibria [53]. Thus, more insights were gained into
the formation mechanism and speciation of HCs which may originate abiotically upon mantle–slab
interaction, and into their fate in the lithospheric mantle.

2. Materials and Methods

2.1. Materials

Some experiments were prepared by mixing Fe, Ni, or Fe3C with graphite (all >99.99% pure;
Table 1). The starting iron and nickel powders (10–50 µm) were cleaned from oxygen by annealing for 1
h in a stream of hydrogen at 600 ◦C. Some amounts of oxides may have formed on metal particles even
after cleaning. Graphite pre-dried at 110 ◦C for at least 30 days contained 700 ppm of CO2 and 700 ppm
of H2O. In other experiments, the starting materials included Fe3C, natural magnesite (Mg0.9Ca0.1)
CO3 (Satka, Ural region), chemical-grade oxalic acid (C2H2O4), and synthetic diamond (ACM-20/14,
14–20 µm). Initial Fe3C (X-ray tested) was synthesized at 6.3 GPa and 1400 ◦C from iron and graphite
(both >99.99% pure). Samples with low carbon contents were placed in an Al2O3 container with a
0.5 mm inner diameter, which prevented Pt or Au capsules from fusion with iron and/or carbides
and thus kept them tight. The use of a graphite container (0.5 mm inner diameter) in the runs with
graphite-saturated samples impeded reactions of the capsule material with the metal phases. The
Al2O3 and graphite containers, in turn, were placed in Pt or Au capsules with a 2 mm outer diameter
and a wall thickness of 0.2 mm and then were arc-welded using a PUK-4U impulse micro welding
device (Lampert Werktechnik GmbH, Germany).

Unlike Pt, Au does not show obvious catalytic activity with respect to the HC fluid, but Pt is more
permeable to hydrogen than Au and thus can provide the required rate of f H2 equilibration during
buffering. Therefore, Pt capsules were used preferably in most of the runs.

2.2. High-Pressure Apparatus

Experiments at 6.3 GPa were carried out in a split-sphere multi-anvil high-pressure apparatus [54].
The size of pressure cells was 21.1 × 21.1 × 25.4 mm; graphite heaters in the high pressure runs had
an inner diameter of 12 mm and a height of 18.5 mm. Pressure was calibrated by recording the
change in the resistance of Bi at 2.55 GPa and PbSe at 4.0 and 6.8 GPa at room temperature and at
1350 ◦C by bracketing the graphite–diamond equilibrium in the Ni0.7–Fe0.3–C system. Temperature
was monitored in each experiment with a PtRh6/PtRh30 thermocouple calibrated at 6.3 GPa using
the melting points of Al and Ag [55]. See Supplementary Figure S1a,b for the cell layout and the
temperature pattern. Pressure and temperature were measured to an accuracy of ±0.1 GPa and ±20 ◦C,
respectively [54,55]; no significant pressure gradients were observed. The run duration of 10–15 h was
chosen from our earlier experimental studies [56], in which a system consisting mainly of light alkanes
(formed by thermal destruction of docosane and stearic acid) reached equilibrium in 2 h at 6.3 GPa and
1200–1400 ◦C. The obtained fluids were quenched at 200 deg/s.
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Table 1. Starting compositions and conditions of 6.3 GPa runs and phase compositions of run products
(according to X-ray diffraction analysis and EDS microanalysis).

Run #
Starting Composition (mg) C

(wt.%)
T

(◦C) t (hrs)
fH2

Buffer Capsule
Phase

Composition
(XRD + EDS)

TIC
(Arbitrary

Units)Gr Dm Fe Ni Fe3C Mgs OA

Samples unsaturated with graphite
2095_2_2 * 0.3 - 4 - - - - 7 1200 10 IW Pt Fe + Fe3C 1.23 × 1010

2095_2_4 * 0.3 - - - 4.2 - - 13 1200 10 IW Pt Fe3C + Fe7C3 1.16 × 1010

688_6_2 * - - - - 3.6 1.0 - 11 1200 10 IW Au Fe7C3 + Mws
+ MwsL

3.39 × 109

688_6_3 * - - - - 2.4 - 0.4 10 1200 10 IW Au Fe7C3 + FeO 3.93 × 1010

Samples saturated with graphite
1079_5_1 7.3 - - - - - - 100 800 10 MMO Pt Gr 5.65 × 108

1079_5_2 10 - 2.4 - - - 81 800 10 MMO Pt Gr + Fe3C 6.28 × 108

1001_4_3 10 - - 2.3 - - - 81 1000 10 MMO Pt Gr + Ni 4.79 × 1010

1001_4_4 10 - 2.1 - - - - 83 1000 10 MMO Pt Gr + Fe3C 5.24 × 1010

2095_2_3 * 1.6 - - - 4.2 - - 67 1200 10 IW Pt Gr + Fe7C3 -
600_8_2 10 - 3.3 1.7 - - - 67 1200 15 IW Pt Gr + L 6.63 × 1010

600_8_4 6.9 - - 4.5 - - - 61 1200 15 IW Pt Gr + Ni 4.43 × 1010

2100_2_2 8.5 - - 8.8 - - 53 1200 10 IW Pt Gr + Fe7C3 7.52 × 1010

2100_2_3 10.4 - - 1.5 9.4 - - 52 1200 10 IW Pt Gr + L 3.95 × 1010

2100_2_4 * 3 - - - 7 - - 35 1200 10 IW Pt Gr + Fe7C3 3.39 × 109

688_6_1 * - 0.3 - - 4.0 - - 13 1200 10 IW Au Dm + Fe3C +
Fe7C3 ** 3.69 × 109

605_8_5 6.8 - 4.6 - - - - 60 1400 15 IW Pt Gr + L 1.4 × 109

605_8_7 6.6 - 1.6 3.3 - - - 57 1400 15 IW Pt Gr + L 2.09 × 108

605_8_8 6.8 - - 4.5 - - - 60 1400 15 IW Pt Gr + L 1.08 × 109

* Samples placed in Al2O3 container; other samples were placed in graphite containers; ** unequilibrated
assemblage. Gr = graphite; Dm = diamond; Mgs = magnesite; OA = oxalic acid (C2H2O4); L = quenched
liquid; Mws = magnesiowüstite; MwsL = quenched magnesiowüstite. TIC = total ion count obtained by GC-MS,
which semi-quantitatively characterizes the amount of fluid in the capsule after the run.

The presence of Fe and iron carbides buffered f O2 in the samples within IW (∆log f O2 FMQ-5).
Hydrogen fugacity was controlled by the IW + H2O (Fe–FeO + H2O) and slightly more oxidized
MMO + H2O (Mo–MoO2 + H2O) buffers (MMO = ∆log f O2 IW + 1 [53]). A double-capsule technique
was used: inner Pt capsules were placed inside thick-walled Fe or Mo outer capsules with talc as a
source of water and low-melting CsCl insulation which maintained quasi-hydrostatic pressure transfer
(Supplementary Figure S1). The precipitation of FeO and MoO2 on the inner walls of the outer capsules
after the experiments was confirmed by X-ray analysis. The procedure was previously described in
detail in [25,53,56].

2.3. Analytical Methods

After retrieval from the high-pressure cells, the Pt and Au capsules were placed into a crush
cell connected on-line to a gas chromatograph before the analytical column. They were heated at
120–130 ◦C in a stream of carrier gas (99.9999% pure He) for 90 min to clean the surface from adsorbed
gases and to evaporate water for further analysis of the released gases. The duration of pre-heating
depended on the rate of gas desorption and was analyzed on-line. The blank pre-heating runs showed
neither speciation nor concentration changes of volatiles in the capsules at 120–130 ◦C. The capsules
that did not sustain heating were excluded from the analysis. The gas mixture extracted from the
capsules by piercing was analyzed by gas chromatography and mass spectrometry using a Focus
GS/DSQ II Series Single Quadrupole MS analyzer (Thermo Fischer Scientific, Waltham, MA, USA) [56].
Gas samples were not pyrolized and the analysis was thus applied to an almost in situ gas mixture.
Trace amounts of poorly volatile components of the quenched fluids, especially heavy hydrocarbons
(>C18), remained in the capsules.

According to our estimates [25], HC formation by hydrogenation of graphite and diamond in
the 5.5–7.8 GPa and 1100–1400 ◦C runs increased the fluid in the capsules by 3 to 100 times relative to
the amount prior to experiments. In this study, total ion count (TIC) was used to semi-quantitatively
characterize the amount of fluid in the capsule after the run. The relative concentrations (rel.%) of
volatile components in the studied mixture were obtained by normalization: the total area of all
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chromatographic peaks was normalized to 100% and the area of an individual component defined its
proportion in the mixture (Supplementary Figures S2 and S3). The normalization quality was checked
against external standards [56]. The concentration ranges of alkanes during the calibration were the
same as in the run products. Analytical uncertainty was below 5% for C1–C4 alkanes and less than
10% for H2O, NH3, and CO2 (determined in the range from 12.5 pptv to 12.5 ppbv and expressed as
precision), or even less than 5% in most cases.

The samples retrieved from the capsules were mounted in an epoxy resin by vacuum impregnation.
After resin polymerization, the samples were polished under kerosene, without the use of water (final
stage: 1 µm Al2O3) and examined on a MIRA 3 LMU scanning electron microscope (SEM) (Tescan, Brno,
Czech Republic). For quantitative determination, metal phases were analyzed on the Tescan MIRA
3 LMU scanning electron microscope coupled with an INCA EDS 450 microanalysis system with a
liquid nitrogen-free large area EDS X-Max-80 Silicon Drift Detector (Oxford Instruments Nanoanalysis
Ltd., Oxford, UK). The instruments were operated at an accelerating voltage of 20 kV, a beam current
of 1 nA, and a spot diameter of −10 nm; and the counting time was 20 s.

The phases were identified by X-ray powder diffraction on an IPDS-2T diffractometer (Stoe &
Cie GmbH, Darmstadt, Germany) in the Gandolfi mode (MoKα radiation, graphite monochromator).
Two-dimensional X-ray patterns were radially integrated using the XArea software package. The
diffraction profiles were processed in WinXPow (Stoe & Cie GmbH, Darmstadt, Germany). The
database of PDF-4 Minerals (Powder Diffraction File PDF-4+, 2006) was used for phase analysis.

3. Results

3.1. Phase Relations

The phase composition of run products was reconstructed using scanning electron microscopy
coupled with EDS microanalysis and X-ray powder diffraction (Tables 1 and 2; Figure 1; Supplementary
Figure S4). In the course of the experiment, the samples became either saturated or unsaturated with
respect to graphite/diamond (Table 1). The C-unsaturated samples contained ≤13 wt % C, while
graphite from the starting mixture disappeared, as it was confirmed by X-ray and SEM data. Most likely
it was dissolved in metal phases early during the runs and formed iron carbides which underwent
hydrogenation to produce HCs. At 1200 ◦C, the carbon-deficient run (2095_2_2) yielded Fe3C (93.0 wt %
Fe) and Fe (Tables 1 and 2; Figure 1a; Supplementary Figure S4c), but the carbides Fe3C (92.4 wt % Fe)
and Fe7C3 (90.4 wt % Fe) formed at higher C contents in runs 2095_2_4 (Tables 1 and 2; Figure 1b). The
run 688_6_1 was likely unequilibrated, judging by the association of diamond with two carbides, Fe3C
and Fe7C3.
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Table 2. Chemistry of metal phases according to EDS microanalysis (wt %).

Run # n Phase Fe 1σ Ni 1σ O 1σ Mg 1σ Pt 1σ Total

2095_2_2 5 Fe 99.0 0.4 - - - - - - - - 99.0
2095_2_2 5 Fe3C 93.0 0.4 - - - - - - - - 93.0
2095_2_4 15 Fe3C 92.4 0.4 - - - - - - - - 92.4
2095_2_4 6 Fe7C3 90.4 0.4 - - - - - - - - 90.4
688_6_2 8 Fe7C3 90.3 0.4 - - 90.3
688_6_2 8 Mws 62.6 0.6 - - 24.7 0.5 11.7 0.3 - - 99.0
688_6_2 9 MwsL 63.8 2.7 - - 26.0 1.5 11.2 1.1 - - 101.0
1079_5_2 7 Fe3C 92.5 0.4 - - - - - - - - 92.5
1001_4_3 7 Ni - - 99.7 0.2 - - - - - - 99.7
1001_4_4 8 Fe3C 92.7 0.5 - - - - - - - - 92.7
1001_4_4 6 FeO 78.9 0.6 - - 22.1 0.5 - - - - 100.9
2095_2_3 6 Fe7C3 90.6 0.4 - - - - - - - - 90.6
600_8_2 7 L 65.8 0.8 29.1 0.6 - - - - 1.8 0.5 96.7
600_8_4 5 Ni - - 99.3 0.7 - - - - - - 99.3
2100_2_2 8 Fe3C 91.1 0.1 - - - - - - - - 91.1
2100_2_3 6 L 73.1 0.2 15.4 0.5 - - - - 7.2 0.4 95.7
2100_2_4 6 Fe7C3 90.6 0.4 - - - - - - - - 90.6
688_6_1 8 Fe3C 92.7 0.3 - - - - - - - - 92.7
688_6_1 7 Fe7C3 90.2 0.4 - - - - - - - - 90.2
688_6_3 7 Fe7C3 90.3 0.3 - - - - - - 90.3
688_6_3 9 FeO 77.8 0.3 - - 23.2 0.3 - - - - 101.0
605_8_5 7 L 79.4 0.2 - - - - - - 16.3 0.8 95.6
605_8_5 8 FeO 76.6 0.2 - - 21.9 0.5 - - - - 98.5
605_8_7 6 L 26.2 0.5 47.8 1.1 - - - - 25.9 1.6 99.9
605_8_8 9 L - - 49.8 0.1 0.6 0.1 - - 50.1 0.7 100.5

n = Number of analyses averaged to obtain the reported composition; 1σ = standard deviation; L = quenched liquid;
Mws = magnesiowüstite; MwsL = quenched magnesiowüstite.Minerals 2020, 10, 88 6 of 18 
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In other 1200 ◦C runs with graphite/diamond-unsaturated samples (688_6_2 and 688_6_3),
reactions of Fe3C with magnesite or oxalic acid yielded assemblages of Fe7C3 (90.3 wt % Fe) with
magnesiowüstite (18–20 wt % MgO) or wüstite (Figure 1c,d). As indicated by the sample texture, a large
part of magnesiowüstite was molten, but the EDS microanalysis showed almost identical compositions
of solid and quenched magnesiowüstite (Table 2). The carbon-saturated systems produced graphite
and Fe3C with 91.1–92.7 wt % Fe at 800 ◦C and 1000 ◦C (Tables 1 and 2; Supplementary Figure S4b),
but a higher-C carbide Fe7C3 with 90.4–90.6 wt % Fe at 1200 ◦C (Supplementary Figure S4d). The
1000 ◦C and 1200 ◦C runs with Ni-bearing and C-saturated samples yielded nickel and graphite
(Supplementary Figure S4a).

The metal phases (some obtained at 1200 ◦C and all from 1400 ◦C runs; Table 1) had particular
textures due to dendritic crystals. These crystals may be produced by melt quenching, as evidenced by
published experimental results for Fe–Ni–C–N systems at mantle P–T conditions [40,47,57]. Melting
was observed in a 1200 ◦C run with the graphite–Fe–Ni system (Fe/(Fe + Ni) weight ratios of 0.5 and
0.75) and in 1400 ◦C runs with the graphite–Fe, graphite–Ni, and graphite–Fe–Ni (Fe/(Fe + Ni) = 0.2)
systems (Table 1). The EDS microanalysis revealed Pt contamination of the molten metal, which
increased with temperature (1.8–7 wt % Pt at 1200 ◦C and 16–50 wt % Pt at 1400 ◦C). The graphite–Fe,
graphite–Fe3C, and graphite–Ni samples were free from Pt in the 800 ◦C to 1200 ◦C runs, when no
melting occurred.

3.2. Species in Quenched Fluids

Fluids equilibrated with solid or liquid metal phases were present in the run products at all
T–f H2 conditions, and their compositions were analyzed by the GC-MS method. The fluid phase
was distributed along grain boundaries within the crystalline matrix. The fluids appeared quenched
upon capsule opening and consisted of species that are gaseous or liquid under normal conditions.
Our previous results [56,58,59], along with published data [16,21,48], confirmed that the applied
200 deg/s quenching rate prevents any inverse reaction and ensures preservation of species till the
GC-MS analysis.

As we showed previously [25], the fluid with high contents of N2, CO2, and H2O formed a few
minutes after the graphite-rich system had achieved the target pressure and temperature, on account
of species adsorbed on graphite or air entrapped in the welded capsules. The fluid composition did
not change in long runs in the absence of external f H2 buffering [25]. The quenched fluid that formed
in 10-h 800 ◦C runs was rich in nitrogen and carbon dioxide despite the MMO + H2O buffering of f H2:
32–63 rel.% N2, 15–20 rel.% CO2, and 14–16 rel.% H2O (Supplementary Table S1; Figure 2). Therefore,
the double-capsule technique for f H2 buffering failed at 6.3 GPa and 800 ◦C. Judging by the high N2

in quenched fluid after the run at 6.3 GPa and 800 ◦C with the graphite + Fe system, the nitrogen
entrapped from air dissolved neither in the Fe0 phase nor in graphite.
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Figure 2. Concentrations of (a) N2 and (b) CO2 in quenched fluids obtained in 800–1400 ◦C runs.

The quenched fluids obtained at a higher temperature of 1000 ◦C had markedly different
compositions (Supplementary Table S1; Figures 2–6), with N2 and CO2 < 5 rel.%. This could be
attributed to the almost complete reduction of CO2 adsorbed on graphite by hydrogen at buffered f H2,
N2 dilution with newly formed HCs, and the formation of other N-bearing species [25,56,59]. Thus, the
f H2 buffering technique worked well at 1000 ◦C; at higher temperatures, the contents of N2 and CO2

increased slightly and exceeded 5 rel.% only at 1400 ◦C (Figure 2). The CO2 increase was due to the
temperature-dependent decrease in the oxygen affinity of Mo and Fe and the corresponding decrease
of buffered f H2. As calculated previously [25], the MMO + H2O-buffered f H2 became 0.4 log unit
lower at 6.3 GPa as the temperature increased from 1100 ◦C to 1400 ◦C. To balance the f H2 decrease,
a slightly more reduced IW + H2O buffer was used instead of MMO + H2O. The fluids obtained in
the 800 ◦C runs appeared to be equilibrated under unbuffered conditions because the buffer did not
work properly at this temperature. The quenched fluids that formed in C-saturated systems at 1000 ◦C
consisted mainly of light alkanes (C2 > C3 > C4 > C1), predominantly those heavier than methane
(Supplementary Table S1; Figure 4); C5H12 was no more than a few percent, while heavier alkanes were
vanishing. The graphite–Fe3C and graphite–Ni systems produced almost identical species at 1000 ◦C.
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Figure 5. (a) Contents of light alkanes C1–C4 and CH4/C2H6 ratio in quenched fluids obtained at
1200 ◦C in samples with buffered Fe and C activity in Pt capsules. Data on run 1905_2_3 are from [25].
CH4 and C2H6 contents calculated with GFluid [60] on the right are shown for comparison. (b) TIC
(total ion count) values obtained by GC-MS on the right characterize semi-quantitatively the amount of
fluid in the capsule after the run.
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phases at 1200 ◦C. (a) Pt capsules; (b) Au capsules.

The quenched fluids obtained at 1200 ◦C in Pt capsules consisted mainly of C1–C4 alkanes, but
their relative contents differed from the respective values of lower temperature runs (Figures 3–6;
Supplementary Table S1; Supplementary Figure S2). The systems including an Fe–Fe3C mixture or
an Fe–Ni melt yielded fluids with up to 80 rel.% CH4, <20 rel.% C2H6, less than a few percent of
other alkanes, and up to 0.1 rel.% of O-bearing species (runs 2095_2_2 and 2100_2_3, respectively;
Figures 5 and 6). Similar alkane species, but with 35–50 rel.% CH4 and 20–40 rel.% C2H6, formed from
the systems with graphite plus Fe3C, Fe3C, and Fe7C3 or only Fe7C3. The fluid synthesized from the
graphite–Ni system predominantly contained C2H6 (C2 > C1 > C3 > C4) and was compositionally
similar to that obtained earlier by hydrogenation of metal-free graphite at the same P–T conditions [25].

The quenched fluids from the non-equilibrium assemblage Dm + Fe3C + Fe7C3 obtained at
1200 ◦C in Au capsules predominantly contained C2H6 (C2 > C1 > C3 ≈ C4) and, especially, quite a
large amount (0.1–1.0 rel.%) of O-bearing species (run 688_8_1; Figure 6). A similar fluid composition
containing predominantly C2H6 and high contents of O-bearing species resulted from Fe3C interaction
with magnesite in an Au capsule (run 688_8_2; Figure 6). The reaction of Fe3C with an H2O–CO2

fluid in an Au capsule (run 688_8_3; Figure 6) yielded quite a different composition: predominantly
H2O, no more than 10 rel.% of alkanes, and CH4 exceeding C2H6. The quenched fluids produced by
reactions with oxidized magnesite and a H2O–CO2 fluid contained 1.3 and 0.01 rel.% CO2, respectively
(Supplementary Table S1).

The fluids that resulted from 1400 ◦C runs were in equilibrium with Pt-bearing melts and showed
the same speciation trends as revealed in the 1200 ◦C runs. The HC species included predominant light
alkanes (Supplementary Table S1; Figure 4), with CH4 decreasing as C2H6 increased, while the melt
composition changed successively as Fe(–Pt)→ Ni–Fe(–Pt)→ Ni(–Pt). The quenched fluids obtained
at 1000–1400 ◦C contained from tenth fractions of percent to 2 rel.% CH3N and NH3 as main nitrogen
species (Supplementary Table S1). In our previous study [25], the amounts of HCs in quenched fluids
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were inferred from the degree of atmospheric N dilution with newly formed species. Yet, the approach
is inapplicable to this study as nitrogen in Fe-bearing systems can bind efficiently with both Fe0 and
iron carbides by the reaction Fe3C + NFl→ Fe3N + CGr,Dm, at the applied P–T conditions [58].

4. Discussion

4.1. Formation of Hydrocarbons in the Presence of a Metal Phase

The results of experiments at 6.3 GPa and 1000–1400 ◦C with buffered f H2 highlighted the
speciation of HCs produced by hydrogenation of Fe + Fe3C and Fe3C + Fe7C3 in systems unsaturated
with respect to graphite/diamond and in C-saturated systems of graphite with Fe3C, Fe7C3, and an
Fe–Ni alloy.

Hydrogen fugacity in Pt and Au capsules was controlled by the reactions:

Fe + H2O→ FeO + H2 (1)

Mo + 2H2O→MoO2 + 2H2 (2)

The obtained data have implications for the mechanism of HC generation in the mantle upon
interaction between native iron and carbon-bearing phases (graphite, diamond, carbonate, and fluids)
at buffered f H2. With the diverse samples used in the experiments, it was possible to reproduce the
initial HC formation via hydrogenation:

CGr + H2→ HCs (3)

Fe3C + H2→ Fe + HCs (4)

Fe3C + CGr,Dm + H2→ Fe7C3 + HCs (5)

Fe3C + MgCO3 + H2→ Fe7C3 + (Fe,Mg)O + HCs (6)

Fe3C + H2O + CO2 + H2→ Fe7C3 + FeO + HCs (7)

At the applied P–T conditions, the fluid compositions in the capsules became readily equilibrated
due to high rates of the reactions [24]. Several non-catalytic [25] and catalytic processes led to
redistribution of the HCs, vide infra.

Note that, according to the TIC values obtained by GC-MS (Supplementary Table S1), the amount
of fluid synthesized in Pt capsules from graphite was greater than in the case of Au capsules and C-poor
systems like Fe–carbide, due to lower hydrogen permeability of gold and lower activity of carbon in
C-poor systems (e.g., 2095_2_2). Low contents of light hydrocarbons <C5 in the gas mixture allowed
the detection of all minor species with higher relative abundances (Figure 6). The gold capsules, which
are less permeable for hydrogen than the platinum ones, may keep f H2 below the buffered value at
high rates of H2 consumption. Therefore, the Au capsule runs typically yielded fluids equilibrated
with f H2

sample < f H2
buffer, and their amount was substantially smaller than that in the Pt capsules.

The systems producing little fluid (Au capsules, Fe + Fe3C) contained the background composition of
minor organic compounds (Figure 6).

In all runs, HCs formed from the available carbon sources: graphite/diamond, carbides, CO2,
carbonate, or any combination thereof. As Fe3C converted to C-enriched Fe7C3, most of carbon came
from magnesite, which reduced to magnesiowüstite either by H2 or by partial Fe3C oxidation, while
Fe3C oxidation provided additional C inputs to the system. The run products obtained with the Fe3C
and MgCO3 proportion used in the study were free from graphite/diamond, possibly, because all
excess carbon was reduced at buffered f H2. The formation of graphite and diamond by Fe3C oxidation
and by Fe3C reactions with carbonate was reproduced in previous experiments [50,61,62]. Excess
carbon required for HC formation and Fe3C-to-Fe7C3 conversion appeared in reaction 7 on account of
Fe3C oxidation and CO2 reduction by hydrogen. The hydrogenation of Fe3C–Fe7C3 or Fe3C–graphite
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systems at 6.3 GPa and 1200 ◦C in Pt capsules (reactions 4 and 5) produced fluids with the C1 > C2 > C3

> C4 distribution of alkanes. The CH4/C2H6 ratio in the fluids decreased from 5 to 0.5 as the iron activity
decreased and the C fraction increased in the series: Fe–Fe3C→ Fe3C–Fe7C3 → Fe7C3–graphite→
graphite (Figure 5). In the presence of iron and carbides, f O2 was about the IW buffer and thus caused
no influence on speciation of HCs in the fluid. The fluid obtained by hydrogenation of graphite in the
presence of solid Ni had strongly predominant C2H6 (C2 > C1 > C3 > C4), but the one synthesized in
the presence of an Fe–Ni melt (reaction 3) was rich in CH4, while the fraction of Ni was minor. The
fluid that formed at 1200 ◦C in an Au capsule in the system with diamond, Fe3C, and Fe7C3 (reaction 5)
contained commensurate amounts of CH4 and C2H6 (Figure 6). A similar fluid composition was
obtained in an Au capsule by the interaction of Fe3C with magnesite (reaction 6). The interaction of
Fe3C with a H2O–CO2 fluid (reaction 7) in an Au capsule produced an aqueous fluid predominantly
containing CH4. The relative amounts of alkane species from lower temperature 1000 ◦C runs with
Fe3C and Ni were different from those at 1200 ◦C: C2 > C3 > C4 > C1. In general, as the temperature
increased from 1000 ◦C to 1400 ◦C, the overall alkane composition became lighter (Figure 3).

Previously, we reported that HC fluids obtained by hydrogenation of graphite at high pressures
and temperatures in Pt capsules had low methane/ethane ratios [25]; a similar observation was also
reported for HC fluids synthesized from graphite with docosane and/or stearic acid [56]. We tentatively
attributed the shift toward lower CH4/C2H6 ratios to Pt-promoted radical methane condensation [62].
Similar processes may occur in the presence of supported metal Pt catalysts of alkane homologization,
which was described in detail in [63]. The 6.3 GPa and 1200 ◦C runs in Pt capsules in the presence of
Fe3C and/or Fe7C3 produced lighter alkanes (C1 > C2 > C3 > C4), while a methane-enriched alkane
mixture (up to 80 rel.% CH4) was obtained in the C-unsaturated Fe–Fe3C system, with iron carbide
being the only carbon source. The hydrogenation of graphite in the presence of an Ni-poor Fe–Ni melt
also yielded a lighter HC composition. At the same time, alkanes formed by hydrogenation of graphite
were similar, despite the presence of solid Ni, and showed typical Pt-related distribution (C2 > C1 >

C3 > C4), i.e., solid Ni appeared not to influence the speciation of alkanes. Similar distribution was
obtained in the presence of an Ni-poor Fe–Ni melt.

Previously, we reported that HC fluids obtained by hydrogenation of graphite at high pressures
and temperatures in Pt capsules had low methane/ethane ratios [25]; a similar observation was also
reported for HC fluids synthesized from graphite with docosane and/or stearic acid [56]. We tentatively
attributed the shift toward lower CH4/C2H6 ratios to Pt-promoted radical methane condensation [62].
Similar processes may occur in the presence of supported metal Pt catalysts of alkane homologization,
which was described in detail in [63]. The 6.3 GPa and 1200 ◦C runs in Pt capsules in the presence of
Fe3C and/or Fe7C3 produced lighter alkanes (C1 > C2 > C3 > C4), while a methane-enriched alkane
mixture (up to 80 rel.% CH4) was obtained in the C-unsaturated Fe–Fe3C system, with iron carbide
being the only carbon source. The hydrogenation of graphite in the presence of an Ni-poor Fe–Ni melt
also yielded a lighter HC composition. At the same time, alkanes formed by hydrogenation of graphite
were similar, despite the presence of solid Ni, and showed typical Pt-related distribution (C2 > C1 >

C3 > C4), i.e., solid Ni appeared not to influence the speciation of alkanes. Similar distribution was
obtained in the presence of an Ni-poor Fe–Ni melt.

The CH4/C2H6 ratios in the experimental Fe-rich systems approached those in C–O–H fluids
estimated using the GFluid model [60] for 6.3 GPa and 1200 ◦C (Figure 5): CH4 in the latter was either
close to or slightly higher than the experimental values, while C2H6 was most often lower. Some
other models, e.g., Deep Earth Water (DEW) [64], may be applicable to further research as they allow
calculating the compositions of fluids equilibrated with solid phases.

Right after the H2 buffer starts working, the Pt surface rapidly saturates with adsorbed hydrogen.
Methane generated by carbon hydrogenation adsorbs dissociatively onto the inner surface of the Pt
capsule, with the formation of methyl species. As their surface concentration increases, the methyl
species recombines to produce ethane that desorbs to the fluid. Since the capsule surface is covered
with adsorbed hydrogen at the applied run conditions, methane adsorption may require quite a
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high methane fugacity to compete with the hydrogen. An increase in Fe loading decreased the
available amount of carbon and, hence, the volume of fluid generated by carbon hydrogenation
(Figure 5). Low methane fugacity may lead to a shift in the methane adsorption equilibrium and a
lower surface concentration of methyl species and related ethane production. The methane/ethane
ratio was substantially high at low amounts of fluid produced in runs 2095_2_2 and 2095_2_4, due
to a pronounced effect of metallic Fe. It was also relatively high in run 600_8_2, which yielded a
high-methane fluid and an Fe–Ni melt, while the amount of fluid was greater than that in 2095_2_4
(6.6 × 1010 against 1.23 × 1010, according to TIC). Thus, metal phases having high Fe contents increase
the methane/ethane ratio of equilibrated fluids. The mechanism may be similar to that reported by
Cimino et al. [65] and involves catalytic hydrogenation-cracking. While the distribution of CH4/C2H6

shifted from that predicted by GFluid toward ethane in the absence of Fe-rich metal phases, fluids
contained light hydrocarbons in a ratio close to thermodynamically predicted in the presence of Fe-rich
metal phases.

4.2. Interaction of Slab-Derived Fluids with Metal-Saturated Mantle

The most advanced of the existing models explains the origin of hydrocarbons in the upper mantle
by interaction between FeO-bearing carbonates and H2O under moderately reduced conditions of f O2

near the WM (FeO–Fe3O4) equilibrium [16,17,21–23]. We suggest a new model which provides insights
into the formation of HCs during the interaction of slab-derived fluids with metal-saturated mantle and
into their fate in the shallow mantle. With this model, it became possible, for the first time, to evaluate
the volume and duration of mantle HC generation in the context of global geodynamic evolution.

The available geochemical, petrological, and experimental data provide solid proof that downgoing
slabs transport aqueous fluids with variable amounts of CO2 and carbonate into the transition zone and
lower mantle [29,31,32,34]. Therefore, slab-derived fluids may penetrate into reduced metal-saturated
mantle regions and induce reaction 1 which buffers f H2 at the IW + H2O equilibrium in the zones of
mantle–slab interaction [29,48,49]. C0 in these zones may result from the reaction of Fe-based alloys
with carbonate or CO2 [40,50] or reactions 6 and 7 of our study. Thus, slab-derived fluids interact with
the mantle under conditions that are necessary and sufficient for HC generation as reproduced in our
experiments: the presence of iron (Fe, Fe3C, Fe7C3, and Fe–Ni alloy) and carbon donors (iron carbides,
graphite, diamond, carbonate, or H2O–CO2 fluids), as well as enhanced hydrogen fugacity (Figure 7).
Heat flux in subcratonic mantle ranges commonly from 35 to 40 mW/m2 [66,67] and corresponds to
temperatures of −1200 to −1450 ◦C at a depth of 300 km, while the slab temperatures about this depth
may be below 1000 ◦C [67]. Thus, the temperatures in the mantle–slab interaction zones may range
from −1000 to −1400 ◦C.
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If all Fe0 becomes consumed, the input of the following H2O and CO2 batches from the 
subduction zone can provide fO2 increase in the zone of mantle–slab interaction. Wüstite or 
magnesiwüstite resulting from this interaction may become dissolved in silicate minerals. In a short
time, fO2 may reach values within the so-called water maximum (carbon-saturated maximum H2O 
content for C–O–H fluids, CW) at an oxidation degree of IW + 2.5 to IW + 4 log units (the limit of C0 
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Thus, the suggested scenario of large-scale HC generation during mantle–slab interaction 
obviously could work in the very beginning of subduction, when oceanic crust and lithosphere 
reached the depths of metal-saturated mantle and could be brief on the scale of geological processes. 
Irreversible binding of oxygen associated with fO2 increase in the interaction zone could lead to a 
brief oxygen decrease in the Earth’s atmosphere of that time.

4.3. Fate of HCs in Shallow Mantle 

Hydrocarbons, being poorly soluble in silicates, can ascend to shallow mantle with other fluid 
components, including Mg-, Si-, and Na-bearing organic species [30]. While ascending, such fluids 
can interact with the ambient peridotite, a typical mantle rock at these depths. The available data on 
xenoliths indicate a gradual fO2 increase from −220 km to the crustal base [11,13,28]. According to 
experimental results and thermodynamic calculations, rapid oxidation of HCs should occur at <200
km where fO2 is near the CW level, and the forming water-rich fluids can bear some HC species

Figure 7. Formation of light alkanes in the zone of interaction between slab-derived oxidized volatiles
and Fe0-bearing mantle. Black arrows show paths and relative magnitudes of volatile fluxes [29,31]. IW
(Fe–FeO buffer), IW + 2.5 log units, and IW + 4.5 log units are f O2 values according to [13]. Metasomatic
vein network is according to [68]. Blue rhombs are mark diamonds.
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Summing up the experimentally reproduced reactions 1 and 3–7, we infer that HCs can form in
the zones of mantle–slab interaction by the simplified reaction:

4Fe + 2H2O + CO2→ 4FeO + CH4 (8)

If all Fe0 becomes consumed, the input of the following H2O and CO2 batches from the subduction
zone can provide f O2 increase in the zone of mantle–slab interaction. Wüstite or magnesiwüstite
resulting from this interaction may become dissolved in silicate minerals. In a short time, f O2 may reach
values within the so-called water maximum (carbon-saturated maximum H2O content for C–O–H
fluids, CW) at an oxidation degree of IW + 2.5 to IW + 4 log units (the limit of C0 stability) [11]. Rapid
f O2 increase and f H2 decrease under the effect of slab-derived fluids in this zone can reduce the yield
of HCs, but their generation will hardly stop completely [16,17,21,23].

Thus, the suggested scenario of large-scale HC generation during mantle–slab interaction obviously
could work in the very beginning of subduction, when oceanic crust and lithosphere reached the
depths of metal-saturated mantle and could be brief on the scale of geological processes. Irreversible
binding of oxygen associated with f O2 increase in the interaction zone could lead to a brief oxygen
decrease in the Earth’s atmosphere of that time.

4.3. Fate of HCs in Shallow Mantle

Hydrocarbons, being poorly soluble in silicates, can ascend to shallow mantle with other fluid
components, including Mg-, Si-, and Na-bearing organic species [30]. While ascending, such fluids
can interact with the ambient peridotite, a typical mantle rock at these depths. The available data
on xenoliths indicate a gradual f O2 increase from −220 km to the crustal base [11,13,28]. According
to experimental results and thermodynamic calculations, rapid oxidation of HCs should occur at
<200 km where f O2 is near the CW level, and the forming water-rich fluids can bear some HC
species [11,14,56,69,70]. The effect of H2O- and HC-bearing fluids on subcratonic lithosphere can
induce its metasomatism with the liberation of quite abundant C0 as diamond or graphite [71–73].
For instance, the effect of H2O–CH4 fluids may be responsible for the formation of MARID-type
veins within the lower reaches of the North Atlantic cratonic lithosphere before approximately 1400
Ma (presumably during the Paleoproterozoic era) [68]. A later redox change, shortly prior and
subsequently to approximately 610 Ma, may have led to the injection of oxidized low-degree CO2-rich
convective mantle-derived melts into the pre-existing, more reduced, cratonic vein network. The isotope
fractionation factor of carbon (∆Cdiamond-fluid) indicates that partial oxidation of methane-bearing
fluids and release of C0 can maintain the crystallization of diamond [14,71].

The reactions of fluids with lithospheric peridotite at depths of 150–200 km at f O2 corresponding
to the EMOD (enstatite-magnesite-olivine-diamond) equilibrium produce CO2-rich fluids/melts [13],
which can contain minor amounts of alkanes, alkenes, and O-bearing organic species [70]. Thus,
migration of deep HCs should mainly lead to their complete oxidation within the lithospheric mantle.
The amount of HCs that the lithospheric mantle can oxidize remains unknown. According to the
estimates of Stachel and Luth [14], depleted lithospheric peridotites have quite low buffer capacity,
and the f O2 change from IW to EMOD on account of bulk Fe3+/ΣFe would require fluid transport of
<5 mg O2 per 100 g of rock.

5. Conclusions

Thus, we have demonstrated that HCs, predominantly light alkanes (C1 ≈ C2 > C3 > C4), can form
upon interaction of metal and metal–carbon phases (solid Fe, Fe3C, Fe7C3, Ni, and liquid Fe–Ni alloys)
with or without additional sources of carbon (graphite, diamond, carbonate, and H2O–CO2 fluids) at
6.3 GPa and 1000–1400 ◦C and relatively high f H2. This is experimental proof that the HC generation
mechanism can work in the zones of interaction between metal-saturated mantle and slab-derived
fluids/melts. The amount of metal phases available for the reaction with volatiles in these zones is small
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relative to those of water and carbon subducted annually to the mantle. The oxidation of all Fe0 to
FeO by slab-derived fluids and cessation of large-scale HC generation may occur within a geologically
short time span. The existence of a highly oxidized mantle at depths of 150–200 km indicates that HCs
generated in reduced mantle can be oxidized completely in the lithosphere.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-163X/10/2/88/s1,
Table S1: Compositions of quenched fluid. Figure S1: (a) The high-pressure cell; (b) temperature patterns in
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constrain the f H2 conditions by the assemblage Fe + FeO + H2O buffer. Figure S2: Results of GC-MS analysis
of quenched fluid extracted by mechanical shock destruction from run 2095_2_4. Figure S3: Results of GC-MS
analysis of of quenched fluid extracted by mechanical shock destruction from run 2095_2_4. Figure S4: Phases
identified by X-ray powder diffraction in the Gandolfi mode.
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