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Abstract: Predictive modelling of mineral prospectivity, a critical, but challenging procedure for
delineation of undiscovered prospective targets in mineral exploration, has been spurred by recent
advancements of spatial modelling techniques and machine learning algorithms. In this study, a set
of machine learning methods, including random forest (RF), support vector machine (S§VM), artificial
neural network (ANN), and a deep learning convolutional neural network (CNN), were employed to
conduct a data-driven W prospectivity modelling of the southern Jiangxi Province, China. A total
of 118 known W occurrences derived from long-term exploration of this brownfield area and eight
evidential layers of multi-source geoscience information related to W mineralization constituted
the input datasets. This provided a data-rich foundation for training machine learning models.
The optimal configuration of model parameters was trained by a grid search procedure and validated
by 10-fold cross-validation. The resulting predictive models were comprehensively assessed by a
confusion matrix, receiver operating characteristic curve, and success-rate curve. The modelling
results indicate that the CNN model achieves the best classification performance with an accuracy
of 92.38%, followed by the RF model (87.62%). In contrast, the RF model outperforms the rest of
ML models in overall predictive performance and predictive efficiency. This is characterized by
the highest value of area under the curve and the steepest slope of success-rate curve. The RF
model was chosen as the optimal model for mineral prospectivity in this region as it is the best
predictor. The prospective zones delineated by the prospectivity map occupy 9% of the study area and
capture 66.95% of the known mineral occurrences. The geological interpretation of the model reveals
that previously neglected Mn anomalies are significant indicators. This implies that enrichment
of ore-forming material in the host rocks may play an important role in the formation process of
wolframite and can represent an innovative exploration criterion for further exploration in this area.

Keywords: mineral prospectivity modelling; machine learning; random forest; convolutional neural
network; southern Jiangxi Province; tungsten
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1. Introduction

Mineral prospectivity modelling (MPM), also known as mineral prospectivity mapping, aims to
outline and prioritize prospective areas for exploring undiscovered mineral deposits of a particular
type [1,2]. Essentially, prospectivity modelling is a process of establishing an integration function
relating a series of geological features (input variables) to the presence of the targeted mineral deposits
(output variables) [3]. This process involves two key steps: (i) Generation of reasonable evidential
maps that represent spatial proxies of the ore-forming processes based on the conceptual model of
the deposit-type sought and available multi-source exploration dataset (e.g., geological, geophysical,
geochemical, and remoting sensing data) [4], and (ii) integrating and weighting evidential maps using
diverse mathematical algorithms to create a function that approximate the occurrence of mineral
deposits. Two basic categories of MPM models are defined based on assigning evidential weights in
the second step: (i) Knowledge-driven models that weight evidential maps heuristically based on
experts” knowledge, and (ii) data-driven models which assign evidential weights empirically based
on the spatial relationship between the evidential maps and known mineral deposits [3,5,6]. Hybrid
models considering both experts” judgement and existing mineral deposits have also been proposed
and applied by some researchers [7,8]. In general, knowledge-driven MPM models are appropriate for
under-explored (or greenfield) areas, where MPM is conducted to delineate new exploration targets.
Whereas data-driven MPM models are suitable for well-explored (or brownfield) areas, where MPM is
implemented to outline further exploration targets [6].

In the past few decades, a variety of data-driven modelling methods have led to advancements in
the field of MPM [9-15]. Probabilistic methods such as weights of evidence and logistic regression have
gained great popularity and remain widely used algorithms due to their lucid expression of models
and simplicity of interpretation [3,11,16,17]. Over the past decade, machine learning (ML) methods,
which are developed mostly by a computer scientist for solving multi-field issues of classification
and pattern recognition [18-21], have emerged as promising tools for generating predictive models
of mineral prospectivity [1,3-5,22-25]. Some of the most commonly used machine learning methods
include artificial neural network (ANN), support vector machine (SVM), and random forest (RF).
Many previous studies demonstrate that these ML methods outperform the traditional statistical
techniques and empirical explorative models in predictive performance, especially when the input
evidential features are complexly distributed and their associations with mineralization are expected to
be nonlinear [5,26-28]. More recently, deep learning methods, an important branch of machine learning
algorithms, have achieved great success in many domains of science [29-31]. Deep learning allows
models to learn hierarchical representations of input data with multiple levels of abstracting. Thus, it
can discover an intricate structure in targeted datasets and power the capability of pattern recognition
and classification [29]. Many researchers have introduced this advantageous tool to the geoscience field
for tackling various modelling problems, such as landslide susceptibility mapping [32,33], geochemical
mapping [34], and meteorological modeling [35]. However, few applications of this method can be
found in the domain of MPM [36]. It is worth noting that although numerous innovative and robust
algorithms have been proposed for MPM, no single model proves to be superior in all situations [3].
A comparative study of multiple predictive models is necessarily needed in an effective data-driven
MPM [37].

The southern Jiangxi Province is one of the most important global W production bases. Dozens of
W occurrences, including eight large-scale (> 50,000 t), 18 medium-scale deposits (10,000-50,000 t),
as well as numerous small-scale deposits (< 10,000 t) and prospects, have been discovered in this
area, with an accumulative proved W reserve of 1.7 Mt [38]. This region is a good example of the
browntfield area that provides sufficient geological data to train prospectivity models. Two primary
contributions of this work can be summarized below: First, to the best of our knowledge, this paper
reports regional prospectivity modelling in this important ore district for the first time, with application
and comparison of various machine learning and deep learning algorithms based on integration of
multi-source explorative information. In particular, the deep learning CNN model has seldom been
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used in MPM and its predictive performance has been evaluated in this study. Second, some innovative
exploration criteria are revealed by the modelling results, which can facilitate future W prospecting
and provide insights into the genetic model of tungsten mineralization in this area.

2. Regional Geology and Tungsten Mineralization

The southern Jiangxi Province, located in the central part of the Cathaysia block, pertains to
the eastern segment of the giant Nanling metallogenic belt (Figure 2). The exposed sedimentary
successions in this region include Neoproterozoic lower-greenschist facies clastic rocks, Paleozoic
shallow marine carbonate and siliclastic rocks, Mesozoic strata consisting of volcaniclastics and
terrigenous red-bed sandstone, and Cenozoic cover [39] (Figure 2). The tectonic framework of the study
area is mainly controlled by three fault systems, trending approximately NE, EW, and NW, respectively
(Figure 2). The study area has experienced four episodes of granitic magmatism, including Caledonian
(Early to Middle Paleozoic), Hercynian (Late Paleozoic), Indosinian (Early Mesozoic), and Yanshanian
(Late Mesozoic) [40], resulting in numerous intrusions with an outcropped area of approximately
14,000 km? (Figure 2). The granites exposed in this area are mainly biotite monzogranite, monzonite,
and porphyritic monzogranite [38].

The densely distributed W deposits in this area are dominated by a quartz vein-type, with
lesser amounts of skarn- and greisen-types [41]. The thickness of the mineralized veins ranges from
millimeter-width veinlets to meter-width lodes [42] (Figure 1). The W mineralization of various
types is spatially, temporally, and genetically related to Yanshanian granitic intrusions. All of the W
deposits occur at the contacts between the intrusions and sedimentary wall rocks [42,43] (Figure 1).
The detailed chronological studies show that the W deposits in this area formed in the late Jurassic
(mainly 170-150 Ma), and there is no significant time difference (1-6 Ma) between the W orebodies and
their proximal granitic intrusions [38,44]. The genetic models for W deposits in this area emphasize the
close relationship of W mineralization and the evolution of Yanshanian granites [42,45,46]. The granitic
magmas were derived from partial melting of the crust with the input of mafic materials, and then
underwent significant differentiation and enrichment in W with abundant volatiles in the apical parts of
magma chambers. The metalliferous fluids were exsolved from the melts as the magma was emplaced
at a shallow level [42]. The greisen-, quartz vein-, and skarn-type mineralization were likely to form
when the fluids successively encountered the granitic intrusions, clastic, and carbonate country rocks
(Figure 1). These types of W mineralization belong to an integrated hydrothermal mineral system, and
thus share the ore-forming components such as metal source and fluids pathways. W mineralization
of these types can be predicted by the similar combination of evidential maps representing the above
components. The regional fault systems are believed to exert a significant control on the Yanshanian
tectono-magmatic activity and associated W mineralization. The emplacement of ore-related granitic
magma was controlled by deep faults, especially those faults pertaining to the NE-NNE trending
tectonic system which is interpreted to be formed in Yanshanian epoch. These provided pathways for
the ascent of ore-related magma [47]. Secondary faults in the caprocks formed the transport networks
for the metalliferous fluids, and intersections of these faults provided permeable space for trapping
and focusing the fluids [47].
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Granitoids Silica-rich wall rocks @ Carbonate-rich wall rocks
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Figure 1. Sketch showing positions of different types of W mineralization relative to Yanshanian
intrusions, modified from [42].
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Figure 2. Simplified geological map of the study area, modified from [39,48,49].
3. Methods

3.1. Random Forest (RF)

Random forest is an ensemble learning algorithm. This aggregates multiple decision trees to
perform repeated predictions of the phenomenon represented by the training dataset [50]. Decision
trees are used as base classifiers that constitute the “forest”. These trees are generated based on diverse
training subsets. A sampling procedure known as “bootstrap aggregating” (also called “bagging” for
short) is employed to generate training subsets by randomly sampling the original training dataset
with a replacement (i.e., the chosen samples used for creating a tree are not deleted from the input
dataset and can be selected again for the generation of the next tree) [5,51].

The trees grow by iteratively splitting the root nodes into binary leaf nodes. Such data splitting
process in each internal node is repeated until a pre-specified stop condition is reached [28,51]. Unlike a
standard decision tree, a subset of variables randomly selected from the input predictor variables are
utilized as discriminative conditions at each node of the tree in the forest. The RF algorithm then
searches through all the splits to find the optimal node which maximizes the purity of the resulting
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trees. The purity is a measurement of how often a randomly chosen sample from the input dataset
would be correctly labelled if it was randomly labelled according to the distribution of labels in the
subsets. The widely used Gini index (I) is employed in this study to calculate the information purity
of leaf nodes when compared with that of their root nodes, which can be formulized as [52]:

n
Io(f) =) fi1-f) (1)
i=1
where f; is the probability of class i at node n. This is defined as:

mj
fi=—- 2

where m; is the number of samples belonging to class j, and m denotes the total number of samples in a
specific node. The final predictive output of RF depends on the majority-voting of all the predictions
of the decision trees.

The random scenarios of both sample selection and variable selection reduce the correlation
among the individual trees and increase the diversity of the forest, which can effectively enhance the
algorithm robustness and avoid overfitting [5,50].

3.2. Support Vector Machine (SVM)

The support vector machine was developed based on statistical learning and structural risk
minimization [53]. This algorithm seeks to create a classifier that separates different classes using the
widest decision boundaries, which was achieved by the generation of a hyperplane with maximum
margins [54,55]. As this study focuses on binary classification (mineral occurrence or non-occurrence)
based on integrated geological features that have complex nonlinear relationships, the nonlinear SVM
algorithm used for binary classification is employed. This algorithm is described below.

Given a training dataset of {x;}] ; with n predictor vectors, each vector is assigned with a label
y;. In this case, y; = 1 represents mineral occurrence and y; = —1 denotes non-occurrence. The input
data are firstly mapped into a higher-dimensional space H through a mapping function ®, where a
hyperplane for separating two classes can be generated by the following equation [56]:

wd(x;)+b>1-&  fory;=1
w®(x;) +b<-1+¢& fory; =-1 3)
& >0, i=1,2,...,n

where w and b are the weight vector and the bias term of the hyperplane; and ¢; is the positive slack
variable. According to the optimization theory, the problem of finding the optimal hyperplane is
transformed into the problem of solving the following convex quadratic equation [26,56]:

Minimize : %Ilwll2 @
Subjected to : y;(Ww®(x;) +b)>1, i=1,2,...,n
This optimization problem can be solved by the construction of a Lagrange function [26,57]:
1 n n
L(w, e, b) = SlwlP - Z Qi (w®(x;) +b) + Z & ®)

=1 i=1
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wherea; (i=1,2,...,n)is the Lagrange multiplier that is obtained by an optimization function [26,56,58]:

n non

Maximize : Z g —% Z Z oziajyiyjq)(xi)d)(xj)

i=1 i=1j=1 (6)

n

Subjected to: ), a;y; =0, 0<a;<C, i=1,2,...,n
i=0

where C is the penalty factor for misclassification error. A kernel function K can be defined here [57]:
K(Xi, X]) = CI)(XI)CI)(X]) (7)

Some commonly used kernel functions include radial basis, linear, polynomial, and sigmoid.
The radial basis function was employed in this study due to its low errors and simplicity of parameters
in the practical application [58]:

K(xi,xj) = exp(—)/lei - xj||2), y>0 (8)
where y is the width of radial basis function.

3.3. Artificial Neural Network (ANN)

ANN is a modelling method that is inspired by biological neural systems and simulates the
pattern recognition ability of the human brain [59,60]. An artificial neuron is the functional unit that
processes the received information. This is performed by using an activation function [61]. The sigmoid
activation function employed in this study can be expressed as follows [62]:

1

flx) = 1+ Exp(—x)

©)
where x is the input data. The neurons are parallelly arranged in a group called “layer”. ANN have a
typical multi-layered configuration consisting of an input layer, one or more hidden layers, and an
output layer. The most commonly used neural network is feed-forward network and is employed
in this paper. In this neural network, the neurons of different layers are fully interconnected to each
other, but the information is unidirectional starting from the input layer through hidden layers to the
output layer [5,60]. The information propagation is performed by assigning initialized weights to the
connections of different neurons, which can be formulized as [5]:

yj = f(Z wjixi +bj) (10)

where wj; is the weight that connects neuron i in the previous layer to neuron j, and b; is the bias term
of neuron j, while f is the activation function.

The back-propagation procedure is utilized to enhance the learning capability of ANN.
This procedure computes the output error between the predicted value and real target value,
then feeds it back to the ANN, and then the ANN tunes the weights and biases in the network
to minimize the output error [60]. The extent of weight update is controlled by a learning rate.
Such back-propagation processes are repeated until a pre-specified accuracy or the maximum number
of iterations is reached.

3.4. Convolutional Neural Network (CNN)

CNN is a class of deep learning neural network that basically consists of an input layer, one or
more convolutional layers, pooling layers and fully connected layers, and an output layer. The input
data, denoted as X = (x, x, ..., xy), are firstly given to a convolutional layer. The convolutional
layer employs a randomly initialized filter (also called kernel) to perform a convolutional operation.
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Figure 3a shows an example of a convolution, where a convolutional filter is moved across the whole
input dataset, and the dot products between the entries of the filter and the input data are calculated,
resulting in a new feature dataset (referred to as a feature map). The use of different kernels (denoted
as ;) produces multiple convolutional results, based on which set of new feature maps is generated to
provide different representations of the input vectors in a hierarchical manner, which can be expressed
as [63]:

Fi=(fu for---0 fn) = §(XE) (11)

where g is an activation function used for nonlinear amplification of convolutional results [64]. The
rectified linear unit (ReLU) function is the most commonly used in CNN, which can be formulized as:

g(x) = max(0,x) (12)

Input data nput data

" Qutput feature " Output feature

Figure 3. Examples illustrating the operations of convolution (a) and max pooling (b).

The feature maps generated by one or more convolutional layers are then sent to a pooling layer.
Pooling is also a filter-based operation that uses a moving filter to extract the maximum (max-pooling)
or average (average-pooling) value of the data overlapped by the filter, as shown in Figure 3b.
The max-pooling is employed in this study. The pooling layers are used for a down-sampling process
to reduce the dimensions of the network that assist in reducing computational cost and controlling
overfitting problems [63]. In this way, the input data are propagated through successive convolutional
and pooling layers to extract features [63]. The extracted feature maps are sent to several fully connected
layers, which can be considered as the dependent ANN described above. The output of the fully
connected layers is sent to the last layer which utilizes a softmax activation function to calculate the
predictive probability of all classes by the following formula [63]:

exp(w;x + b))

P(y = jlx) = (13)

Y exp(wix + by)
where y denotes the predicted class, and w and b are weight and bias terms for the corresponding
class, respectively.

In MPM, the input data of machine learning can be considered as a picture where each pixel
represents a measurement of a specific feature. Therefore, each grid cell is represented by a column
vector with a length determined by the number of evidential features. In this regard, the CNN with
one-dimensional data representation that has a typical architecture illustrated in Figure 4, was employed
in this study. Assuming that there are n evidential features in the input dataset, a convolutional layer
employing N filter with a size of (n X 1) results in N new feature vectors with a length of (m — n + 1).
The output of the convolutional layer is then set a pooling layer using a filter of (a X 1), resulting in N
feature maps with a size of [(m — n — a + 2) X 1]. After one or more convolution-pooling operations,
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the output feature maps are input into a fully connected neural network with x neurons. Finally, the
last fully connected layer uses a softmax function to yield the predictive probability and outputs a
binary prediction.

Inputdata  Convolutional filter Outputof Convolution Poolingfilter Outputofpooling Moreconvolution  Fully connected Output class
mx1 nx1 N@(m-n+1)x1 ax1 N@(m-n-a+2)x1 and pooling neural network 2
X

Figure 4. Typical architecture of one-dimensional CNNmodel.
4. Datasets and Application

Preparation of input data (including predictor and target variables) is the first and an important
step of MPM. The integration of multi-source predictor variables and generation of input datasets
were implemented by using ESRI’s ArcGIS software (Version 10.2, Environmental Systems Research
Institute, Redlands, CA, USA). The application of ML-based modelling, including model training and
assessment, was carried out in a RapidMiner Studio (Version 9.3, RapidMiner, Inc., Boston, MA, USA).
This software provides numerous practical modelling toolkits and embeds an abundant source of
machine learning algorithms.

4.1. Predictor Variables

Predictor variables are used as decisive conditions for predicting mineral potential. The reliable
variables should be guided by the understanding of W mineral system. According to the genetic model
and controlling factors of W mineralization described in Section 2, and based on the collection of
publicly accessible data, we utilized eight evidential maps as predictor variables involving geological,
geophysical, and geochemical information.

Geological data originated from an online database of the China Geological Survey based on
decades of regional investigations [49]. Proximity to outcropped Yanshanian intrusions was employed
as an evidential map representing the source component of the ore-forming system (Figure 5a).
According to a spatial analysis conducted in this area [65], NE- and EW- trending regional faults
exhibit a positive relationship with W occurrences, whereas NW-trending faults were likely formed
post-mineralization, and, show no obvious spatial association with mineral occurrences. Therefore,
density maps of NE- and EW- trending faults and their intersections were used as evidences to represent
structural controls on mineralization (Figure 5b,c). Geophysical anomalies can provide information
about subsurface bodies, such as the intrusive rocks in the area. Thus, geophysical data, including
gravity and magnetic [66], were utilized to recognize the occurrence of ore-related intrusive rocks at
depth (Figure 5d,e). Geochemical anomalies of mineralized elements are direction indications for the
targeted deposits. As W, Mn, and Fe are the most important constituents of wolframite ((Fe, Mn)WO;,)
that dominates the ores in this area, geochemical anomalies in these elements, extracted from stream
sediment geochemical data of Nanling Range [67], were employed as evidential maps (Figure 5f-h).
The data were derived from China’s National Geochemical Mapping Project with sampling density of
one sample per km? [68]. W was analyzed by the polarography method, and Mn and Fe were analyzed
by the X-ray fluorescence method [69].



Minerals 2020, 10, 102

27°N

26°N

25°N

10 of 28

F(a)

(b)

1
27°N

26°N
T

1
25°N

Yanshanian
intrusion

Density of
regional faults

. High

I Low

— Regional fault

A W occurrence

1
116°E

27°N

26°N

25°N

A W occurrence
1 1 1 1
114°E 115°E 116°E 114°E
Z R T
Zfd)

26°N

Density of fault
intersections

25°N

e Fault intersection
A W occurrence
I

Gravit{
anomaly (mgal)
-30
. -40 E
-50
. -60

A W occurrence

1
114°E

1
TI6°E 114°E

Figure 5. Cont.

1
116°E



Minerals 2020, 10, 102 11 of 28

Z T T T Z
o M o
&l (e) 1§ ]
0
I e —
Z Z
o r o
S e s 3 J
- ' A
T ‘w 4 ‘A
* a M ti
A :;i‘ = 4 . anao%laelyc(y)
# 150
100
fE | . 50 i ‘5 |
B v 50 «
-100
- -150
A W occurrence A W occurrence
1 1 1 1 1 1
114°E 115°E 116°E 114°E 115°E 116°E
Z T T T z
o o
5 (g) v 1 & N

26°N
T
26°N

f

Mn anomaly
ppm)

l 848
674
525
431
367 7
307

266
244

x A W occurrence|
1

114°E 115°E 116°E 114°E 115°E 116°E

Fe anomaly (%)

5.20
4.54
3.89
341
3.06 B
2.74
249
234

25°N
T
25°N

A W occurrence

Figure 5. Evidential features used as predictor variables for prospectivity modelling: (a) Proximity to
Yanshanian intrusions; (b) density of NE-EW trending faults; (c) density of intersections of NE-EW
trending faults; (d) gravity anomaly; (e) magnetic anomaly; (f) W anomaly; (g) Fe anomaly; and (h)
Mn anomaly.

After preparation of the evidential maps, they were transformed into raster maps where each cell
has a numerical representation of the evidential features. The cell size was determined based on an
objective scenario proposed by Carranza [70]. Considering the scarcity of mineral occurrences, the cell
grid should ensure that any single cell contains only one mineral occurrence. The neighboring distance
analysis can help provide a reference range of cell size. The distances between each known occurrence
and its nearest neighboring occurrence were calculated and statistically plotted (Figure 6). It can be
observed that the minimum distance of any two nearest occurrences is 490 m. This sets an upper limit
of the cell size. The lower limit of cell size Rs can be calculated by an empirical formula [71]:

Ry = M, x 0.00025 (14)
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where M; denotes the map scale. The largest scale of the evidential maps employed in this study is
1:300,000. This indicates that the lower limit of the cell size should be 75 m. A cell size of 450 m was
selected to generate a raster gird containing 195,174 cells. Each cell has a combination of eight feature
values indicative of geological, geophysical, and geochemical evidence.

100% —
(9]
2 90%
B
2 80%
9
3
= 70% —
(")
<
g 60% —
(4}
%‘0 50% —
<
& 40% 4
(e
B a0
> 30% <
T 20%
<
-Q 0,
S 10%
=]
0% —
490 : 271 : : : : 6,302
0 5,000 10,000 15,000 20,000 25,000 30,000

Distance between each occurrence and its nearest occurrence (m)

Figure 6. Plot of distances and corresponding probabilities that one W occurrence is situated next to
another known W occurrence.

4.2. Target Variable

The target variables, including mineral occurrences and non-occurrence locations, are used as
training and validation samples for a supervised predictive modelling. The mineral occurrences were
derived from the online database of China Geological Survey [49]. The non-occurrence locations
were selected according to the scenario proposed by Carranza and Zuo [58,72]: (i) The quantity of
non-occurrence samples should be equal to that of mineral occurrences, so that the ratio of positive and
negative samples in the training and validation datasets would be balanced. (ii) The non-occurrence
locations should be distal enough to any known occurrence. Regions proximal to the existing mineral
occurrences are likely to have similar ore-forming conditions. The neighboring distance analysis of
mineral occurrences can be used to define the distance beyond which the non-occurrence locations
should be selected (Figure 6). It can be observed that the maximum distance between any two
occurrences is 26,302 m. There is 100% probability to find another occurrence within 26,302 m of
any occurrence. Non-occurrence locations should be selected beyond the 26,302 m buffered range
of mineral occurrences. However, few locations can be selected in this range. Instead, 7271 m was
selected as a buffered range where there is 85% probability to find a neighboring occurrence next to
any existing occurrence, and the non-occurrence samples should be selected outside the buffered areas
(Figure 7). (iii) Mineral occurrences in a specific area generally have a spatially clustered distribution
(Figure 7), because they are products of rare events and non-random ore-forming processes. In contrary,
non-occurrence locations should be spatially randomly distributed as they resulted from common
geological processes.
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Figure 7. Locations of known mineral occurrences and selected non-occurrences.

Although the above criteria used for selecting non-occurrence locations are objective based
on statistical data and distribution of mineral occurrences, manual selection may still result in
some uncertainty in non-occurrence datasets with respect to the mixture of some concealed mineral
occurrences. This would greatly influence the reliability of modelling results [58]. To reduce the
effect of falsely negative samples, three non-occurrence datasets were generated. Each consists of
118 non-occurrence samples that were selected according to the random scenario mentioned above
(Figure 7), resulting in three datasets of target variables. The three labelled datasets were then randomly
divided into two parts, including 70% of labelled samples serving as training dataset and the other
labelled samples then used as validation dataset.

4.3. Model Training

After the preparation of input data, ML models were generated by training processes. These mainly
involved the determination of key parameters used for the ML models. It is difficult to specify a
priori suitable configuration of parameters in data-driven modelling. The optimal parameters for
individual ML models vary with specific input datasets and different application backgrounds. There is
no universally empirical rule for determining these parameters. In this regard, a highly objective
trial-and-error procedure is invariably needed to obtain the optimal parameters. A grid search method
was employed to conduct this procedure. Table 1 lists the key ML parameters and their reference
ranges of values suggested by previous studies [5,28,32,55,62,73,74]. The possible combinations of
parameters used for training individual ML models were obtained by searching the reference ranges
of values with a specified step length. A 10-fold cross-validation procedure was then implemented
to assess the classification performance of the trained ML models using the possible combinations
of parameters. In this procedure, the input training datasets were randomly divided into 10 subsets
with equal size of these, nine subsets were utilized to train predictive models and the remaining one
was employed as a test dataset to calculate the classification errors. This procedure was repeated 10
times until each subset had been used once as the test dataset (c.f., [75]). The mean square error (MSE)
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was utilized to assess the classification performance of trained models. This can be calculated by the
following formula:

N
— 1 A. . 2
MSE = N;(%_yz) (15)

where N is the number of samples in the test dataset; 1j; denotes the predicted result of each sample
(i.e., 1 for mineral occurrence and 0 for non-occurrence); y; denotes the true value of each sample.
The combination of parameters that trains the best model with the lowest MSE was determined as the
optimum model configuration.

Table 1. Parameters used for training machine learning models.

Model Parameter Description Reference Range

RE Number of trees Number of trees in the random forest 10-500

Number of features Number of features used for developing each tree 1-8

Gamma A width parameter of RBF that determines the 01-1

SVM influencing range of each support vector ’

Cost Penalty factor for misclassification error 0.1-50

ANN Number of neurons Number of neurons in the hidden layer 2-15
Learning rate Change rate of weight in the training process 0.1-0.5

Number of feature maps Number of convolutional filters used for generating 864

CNN new feature maps
Number of neurons Number of neurons used in the fully 864

connected layers

4.4. Model Assessment

The comprehensive performance of trained ML models, including classification
accuracy, predictive capability, and geological interpretability, was assessed by a series of
quantitative measurements.

The classification accuracy of a predictive model can be evaluated by the confusion matrix, in
which the classification result of a sample can be categorized into the following four situations: (i) A
mineral occurrence is correctly classified as an occurrence, referred to as true positive sample or TP; (ii)
a mineral occurrence is incorrectly classified as a non-occurrence, referred to as false negative sample
or FNj (iii) a non-occurrence sample is correctly classified into non-occurrence class, referred to as
true negative sample or TN; and (iv) a non-occurrence sample is incorrectly classified as a mineral
occurrence, referred to as false positive sample or FP. Based on the confusion matrix, a set of statistical
indices can be calculated to assess the classification performance of the ML models, which can be

formulized as [76,77]:
TP

Sensitivity = TP LN (16)
s TN
Specificity = TN £ FP (17)
Positive predictive value = L (18)
P ~ TP+FP

) - TN

Negative predictive value = TN + EN (19)
TP+ TN

Aceuracy = 4o TN T FP T EN (20)

The overall predictive performance of ML models was assessed by the receiver operating
characteristic (ROC) curve and success-rate curve. These curves are graphical representations of model
precision with respect to the variation of discrimination thresholds that define the predictive results of
a binary classification system [78,79]. More specifically, a cell with a probability value greater or lower
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than the discrimination threshold was predicted as “mineral occurrence” or “non-occurrence”, based
on which the sensitivity and specificity were calculated. The prospective regions were delimited by
those cells classified as mineral occurrence. By gradually decreasing the discrimination thresholds, the
ROC curve was generated by plotting the corresponding true positive rate (also known as sensitivity
that denotes the ratio of correctly classified positive samples) on the y-axis against false positive rate
(the ratio of incorrectly classified negative samples, given by (1-specificity)) on the x-axis, while the
success-rate curve was created by plotting the percentage of mineral occurrences included in the
prospective regions against the area percentage of prospective regions. In addition, the area under
the ROC curve (AUC) was utilized as a quantitative measurement of the predictive performance of
ML models.

Information gain (IG) was used in this contribution to estimate the influence of input predictor
variables on the predictive models. This helps to interpret the relative importance of the related
geological features and thus can validate the reliability of the predictions. The information gain for a
specific predictor variable corresponding to the output classification result Y can be obtained by [80]:

IG(Y, F;) = H(Y) - H(YIF;) (21)

where H(Y) is the entropy value of Y that used to describe unpredictability of being classified into Y,
and H(Y|F;) is the modified entropy value of Y after being associated with a given evidential feature F;
(see [80] for detail).

5. Results and Discussion

5.1. Model Configulartion and Its Influence on Classification Precision

For a data-driven predictive modelling, model configuration greatly influences the accuracy of
predictions. MSE obtained from the 10-fold cross-validation is employed in this study to assess the
classification precision in the training process. Figure 8 shows the variations of MSE with varying
combinations of ML parameters and different datasets. Although individual ML models trained by the
three datasets achieve different levels of classification precision, they exhibit similar variation patterns
of MSE with respect to changes of the specific parameter. In general, RF and CNN models present
a more accurate and stable performance than the other two models, yielding predictions with MSE
lower than 0.19 and responding less sensitively to parameter changes. The SVM models produce poor
classification results with low cost value (<2.5), and the ANN models yield the most complex and
inaccurate predictions in the training process according to variation patterns of MSE, especially when
the learning rate is greater than 0.2.

Among all the ML parameters, some are related to model architecture, including number of trees
in RF, number of neurons in ANN, as well as number of feature maps and number of neurons in CNN,
define the complexity of the corresponding models. It is commonly recognized in many research
fields that elaborate ML models tend to yield more accurate predictions [29,32,81]. However, in this
study regarding prospectivity modelling, a statistical analysis of MSE results with an increment of
architecture-related parameters was conducted. The results indicate that complex architectures of
models do not lead to better performance in the prospectivity modelling of the study area, as shown
in Figure 9. As the relevant parameters increase, all statistical indices, especially the lowest MSE
and average MSE used for evaluating the classification error, do not exhibit an obvious decreasing
trend. Conversely, the increasing number of trees, neurons, and feature maps remarkably increase the
computing cost. It is implied that elaborate architectures of ML models are not necessarily needed in
the modelling processes presented here. This implication is in accord with some previous studies [5,24]
that also reveal complex models did not necessarily result in more accurate predictions. These results
may be attributed to the small size of training datasets that usually consist of dozens of mineral deposit
and non-deposit locations. Training models with such limited datasets may easily achieve the desired
precision, whereas complex architectures and excessive training may produce over-fitting errors.
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Figure 8. Results of sensitivity analyses showing the classification errors (MSE) for possible combinations
of parameters for training each machine learning model: Number of trees and number of features used
for training RF models based on Dataset 1 (a), Dataset 2 (b), and Dataset 3 (c); gamma and cost used for
training SVM models based on Dataset 1 (d), Dataset 2 (e), and Dataset 3 (f); number of neurons and
learning rate used for training ANN models based on Dataset 1 (g), Dataset 2 (h), and Dataset 3 (i);
number of feature maps and number of neurons used for training CNN models based on Dataset 1 (j),
Dataset 2 (k), and Dataset 3 (1).
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model complexity: (a) number of trees employed in RF; (b) number of neurons employed in ANN; (c)

number of feature maps employed in CNN; and (d) number of neurons employed in CNN.

5.2. Model Assessment and Selection of Prospectivity Map

The ML models trained by the optimal combinations of parameters output the prediction at
each cell that is represented by a floating probability value ranging from 0 to 1 (Figure 10). The ML
algorithms label those cells with probability values greater than 0.5 as prospective areas that potentially
contain a mineral occurrence. Other cells are marked as barren regions without sufficient prospecting
potential. According to such classification scenario, the confusion matrices of validation datasets
for the four ML methods are generated and listed in Table 2, based on which the accuracy of binary
classification is quantitatively measured by various statistical indices, as listed in Table 3. It can be
seen that individual models exhibit different performances in different datasets and in different indices.
In general, the CNN model achieves the greatest performance both in the overall accuracy and in
predicting positive and negative samples, followed by the RF and SVM models, whereas the ANN
model produces relatively worse predictions. Specifically, the CNN model is the most sensitive that
correctly identifies 87.62% of deposit locations in all the three datasets, followed by the RF model
(82.86%). The sensitivity values of the SVM and ANN models are both lower than 80%. The CNN
model has a specificity of 97.14%, indicating that 97.14% of non-occurrence cells are correctly classified
as barren regions. The rest of the models also achieve very high values of specificity: 93.34%, 92.38%,
and 92.38% for the SVM, RF, and ANN models, respectively. All four models have high positive
predictive values greater than 91%, meaning that more than 91% of the predicted prospective cells
actually contain W occurrences. The ANN model yields the lowest negative predictive rate (80.85%),
indicating that 80.85% of predicted non-occurrence cells are true non-occurrence locations. In contrast,
the CNN model achieves the highest negative predictive rate (88.72%), followed by the RF (84.40%)
and SVM (81.04%) models. The CNN model achieves the highest overall accuracy of 92.38%, indicating
92.38% of all samples are correctly classified, followed by the RF model (87.62%), whereas the SVM
(85.71%) and ANN (85.24%) models produce relatively low values of classification accuracy.
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Figure 10. Predictive maps showing average probability output by machine learning models based on
three input datasets: (a) RF; (b) SVM; (c) ANN; and (d) CNN models.

Table 2. Confusion matrices of machine learning models in different validation datasets.

Dataset 1 Dataset 2 Dataset 3
Model Predictive Class atase atase atase
True True True True True True
Deposit Non-Deposit  Deposit Non-Deposit  Deposit Non-Deposit
Predicted deposit 30 3 28 2 29 3
RF Predicted

. 5 32 7 33 6 32

non-deposit
SUM Preciigzoilccti:gosn 28 2 28 3 26 2
. 7 33 7 32 9 33

non-deposit
ANN Prec}i;t;?c(;ljgogt 27 3 28 3 27 2
. 8 32 7 32 8 33

non-deposit
CNN Prec}iizzcjcii:C}i)wu 30 0 31 2 31 1
5 35 4 33 4 34

non-deposit
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Table 3. Classification performance of machine learning models.

Model Dataset Sensitivity Specificity Positive Predictive Rate = Negative Predictive Rate Accuracy
Dataset 1 85.71% 91.43% 90.91% 86.49% 88.57%
RF Dataset 2 80.00% 94.29% 93.33% 82.50% 87.14%
Dataset 3 82.86% 91.43% 90.63% 84.21% 87.14%
Average 82.86% 92.38% 91.62% 84.40% 87.62%
Dataset 1 80.00% 94.29% 93.33% 82.50% 87.14%
SVM Dataset 2 80.00% 91.43% 90.32% 82.05% 85.71%
Dataset 3 74.29% 94.29% 92.86% 78.57% 84.29%
Average 78.10% 93.34% 92.17% 81.04% 85.71%
Dataset 1 77.14% 91.43% 90.00% 80.00% 84.29%
ANN Dataset 2 80.00% 91.43% 90.32% 82.05% 85.71%
Dataset 3 77.14% 94.29% 93.10% 80.49% 85.71%
Average 78.09% 92.38% 91.14% 80.85% 85.24%
Dataset 1 85.71% 100.00% 100.00% 87.50% 92.86%
CNN Dataset 2 88.57% 94.29% 93.94% 89.19% 91.43%
Dataset 3 88.57% 97.14% 96.88% 89.47% 92.86%
Average 87.62% 97.14% 96.94% 88.72% 92.38%

All the ML models can correctly identify most known occurrences (>78%) in the prospective
areas defined by the default classification scenario (i.e., probability > 0.5). However, for “real world”
mineral exploration, it is unrealistic to explore all these “prospective areas” due to the expense of
exploration. Therefore, target regions ideally possess the highest confidence over the smallest area.
The delineation of high-confidence zones and predictive efficiency of the models are essential for
exploration applications and thus need to be effectively assessed.

The predictive performance of high-probability zones can be evaluated by the ROC curve.
Classification results of predictions are judged by varying discriminative thresholds from high to
low probability values. In the ideal situation that all the occurrence samples have higher probability
than the non-occurrence ones, the ROC curve is a y = 1 straight line with the highest AUC of 1.
A non-occurrence cell with high probability or an occurrence cell with low probability would make
the ROC curve deviate from the y = 1 curve and decrease the AUC value. The ROC curves of the
four ML models trained by different input datasets are exhibited in Figure 11. It is suggested that the
closer a ROC curve is towards the upper left corner, the closer it is towards the y = 1 curve, and the
better the model performs. The ROC curve of the RF model is the closest to the top left corner in all
cases, having the highest AUC values that are greater than 0.95. The SVM and CNN models show
comparable performance with secondary highest AUC values, whereas the ANN model performs the
weakest predictive capability in the assessment of ROC curves.

The success-rate curve is straightforward in revealing the predictive efficiency of models. As
shown in Figure 12, the success-rate curve of each model can be fit by three regression lines with
different slopes. A steeper slope is indicative of higher predictive efficiency. The identified prospective
zones capture more known occurrences within smaller delineated areas. In this sense, prospectivity
zoning can be conducted based on the thresholds identified by the intersection of the neighboring
regression lines that reveal high, moderate and low potential for discovering new W occurrences
(Figure 13). It is worth noting that only the zones of high potential, commonly with a success-rate
curve slope greater than 5, are prospective areas suitable for further exploration. Other areas have a
slope equal to or lower than 1, equivalent to, or lower than the natural distributed density (i.e., every
1% of the area contains 1% of the mineral occurrences). Therefore, the predictive efficiency of ML
models depends on the slope of the first segment of the success-rate curve. The RF model achieves the
most efficient predictive performance with the highest slope of 6.7797, delineating the high potential
areas that cover only 9% of the total area, but capture 66.95% of existing occurrences. The SVM (6.4241),
CNN (5.3232), and ANN (5.1835) models perform less efficiently according to their lower slopes. The
priority rank of the models revealed by the success-rate curves is consistent ranking based on ROC
curves (Figures 12 and 13).
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Figure 13. Prospectivity maps of (a) RF, (b) SVM, (c) ANN, and (d) CNN models showing different
potential areas delineated by the thresholds identified from Figure 12.

Considering both classification accuracy and predictive capability, it can be concluded that the
CNN model is the best recognition engine, but not a good predictor for the MPM application of the
study area, whereas the RF model is a good recognition engine and the best predictor. The RF model is
selected as the optimal model for exploration targeting since the predictive efficiency should be ranked
first in the decision-making process of further mineral exploration. Thus, the predictive map generated
by the RF model is utilized as the final prospectivity map (Figure 13a).

In this study, the RF model achieves the most excellent predictive performance. The RF model also
outperformed the other models in almost all ML-based MPM studies (e.g., [5,24,27,28,82]). This may
be attributed to the random sampling scenarios used in RF training processes providing great diversity
derived from limited original data, and thus effectively avoid over-fitting.
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5.3. Geological Interpretation of Predictive Models and Implications for Future Mineral Exploration

The interpretation of modelling results was conducted by quantifying the relative importance of
each evidential feature contributing to the final predictive models (Figure 14). W anomaly makes the
most important contribution to the four predictive models, followed by Mn anomaly, proximity to
Yanshanian intrusions, and density of fault intersections. Other features do not contribute significantly
as predictor variables in the MPM modelling. Among the important predictor variables, W anomaly
is the direct indication for the targeted mineralization in the study area, thus exerting the greatest
influence on the predictive modelling. It is worth pointing out that Mn anomaly imposes a significant
influence on predictive models. Such influence is even greater than the influences exerted by proximity
to Yanshanian intrusions and regional structures that are well-recognized ore-controlling factors.
Although W, Mn, and Fe are critical components of wolframite that dominates the tungstate of
the ores in the study area, and geochemical anomalies have long been emphasized in the practical
mineral exploration, Mn and Fe anomalies were previously neglected, because it was assumed all
ore-forming elements of wolframite originated from magmatic fluids [83-85]. However, a recent
study demonstrates that Fe and Mn contributed by host rocks exerts a decisive control on wolframite
precipitation in the Panasqueira region (Portugal), and infers that Fe enrichment in the host rocks leads
to the predominance of ferberite (FeWQ,) in the wolframite ores [86]. The fluid—rock interaction may
also play a crucial role in the formation of wolframite in the southern Jiangxi Province, and Mn/Fe
enrichment in the wall rocks may be a prerequisite for wolframite formation. Some evidences are
summarized below. (i) In a recent work conducted on the Xihuashan deposit in the study area [46],
the LA-ICP-MS analyses of fluid inclusion indicate that mineralized fluid is depleted in Fe and Mn.
The occurrences of siderite and pyrophanite in the wall rocks are evidences of Fe and Mn release during
wall rock alteration. (ii) In an unpublished work conducted by Wu (one of the co-authors of this paper),
intensive alteration was observed in the wall rocks adjacent to wolframite-bearing ore veins in the
Piaotang deposit in the study area. Chlorite and biotite were replaced by muscovite and pyrophanite.
The pyrophanite and residual chlorite widely distributed in the wall rocks formed a zone enriched
in Mn/Fe. The proximal wall rocks can provide sufficient Mn/Fe source for wolframite precipitation
when W-enriched fluids encountered these rocks. The metal source of Mn/Fe from the wall rocks can
explain why Mn anomalies exert a significant influence on W prospectivity modelling in this study.
The spatial correlation of Mn anomalies and W mineralization in the study area is also revealed by a
weights-of-evidence analysis [65]. It is also noted that Fe anomaly provides little evidential information
for predicting W mineralization, which may be ascribed to (i) majority of hubnerite (MnWOQO,) in the
wolframite ores from W-Sn deposits that dominate the W-polymetallic mineralization in the study
area [87], and (ii) interference from widely distributed Fe-enriched Cretaceous red beds formed after
W mineralization in the study area. Ore-forming materials of wall rocks played an important role in
the formation of wolframite ores, and the Mn anomaly should be regarded as an important exploration
criterion. This criterion may facilitate the future tungsten prospecting and provide insights into the
genetic model of tungsten mineralization in this area.
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6. Conclusions and Future Work

Predictive modelling of mineral prospectivity was carried out in the southern Jiangxi Province.
Based on abundant exploration data and publicly accessible multi-source geo-information, three
input datasets including 118 known occurrences, 118 randomly selected non-occurrences, and eight
evidential features related to W mineralization were prepared. A set of ML models including RF, SVM,
and ANN, as well as the deep learning CNN model were trained by using different input datasets,
and the performances of the resulting models were assessed by the confusion matrix, ROC curve, and
success-rate curve.

In the training process, CNN and RF models present great accuracy and stability against variations
of model parameters. The sensitivity analysis reveals that elaborate models with complex architecture
do not necessarily improve predictive performance in the MPM of the study area. Predictive
performance of trained models was comprehensively assessed and compared in order to select the
optimal one to generate the prospectivity map. With respect to classification accuracy, the CNN model
achieves the most accurate performance that correctly classifies 92.38% of labelled samples, and leads
to other statistical indices derived from confusion matrices, followed by RF, SVM, and ANN models.
The overall predictive performance of ML models was evaluated by the ROC curves, which reveals that
the RF model outperforms the rest of ML models. The success-rate curves indicate that the prospective
zones identified by the RF model capture more known W occurrences in smaller delineated areas,
suggesting the most efficient predictive performance. Regarding the above measurements of model
assessment, the RF model was chosen as the best model to generate the prospectivity model for further
exploration in the study area. The high potential areas capture 66.95% existing occurrences within
9% of the total area of this region. The modelling results rank the relative importance of evidential
features contributing to the predictions. It is revealed that W anomalies, Mn anomalies, proximity to
Yanshanian intrusions, and density of fault intersections are the most significant features for predicting
W mineralization. Mn anomalies in the host rocks represent an innovative exploration criterion that
has been long neglected in the practical mineral exploration in the study area, and can provide insights
into the genetic model of W mineralization in this region.

There are some limitations in the MPM of this study, and further work needs to be carried
out in the future. Firstly, although the spatial and genetic associations of Mn anomalies and W
mineralization have been demonstrated in this study, it is worth noting that Mn is coprecipitated in
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steam sediments and is sensitive to oxidation—reduction reaction in the water. More reliable data, such
as rock and soil geochemical data, should be collected and analyzed when applying the prospectivity
model and targeting Mn anomalies as an indicator of W mineralization in the future prospecting
work. Secondly, the applicability of ML models can be enhanced. There are two main factors that
undermine the advantageous performances of artificial intelligence models in MPM field: (i) The
mineral occurrences used for training ML models are scarce when compared to thousands of samples
employed in the image recognition field, and (ii) the mineralization pattern under recognition are too
complex to be efficiently captured by limited training data, because mineralization is an end-product
of complex interplays of ore-forming processes that leave behind its signatures of patterns in the form
of various nonlinear-correlated geological features. In this regard, more efforts, including imbed of
knowledge-driven engine and use of effectively lucid expression of evidential layers, have to be made
to “help” ML models learn the complex mineral systems in future work, given that the problem of
scarce input data cannot be solved at this stage.
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