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Abstract: Previous work has shown that sulphide self-heating occurs in three distinct stages, referred
to as Stage A, Stage B and Stage C. In this publication, the focus is the transition from Stage A to
Stage B which occurs at ca. 100 ◦C. Background literature hints that the transition corresponds to the
transformation of the rhombic form of elemental sulphur to the more reactive monoclinic form that
occurs at 96 ◦C. A test apparatus is modified for adiabatic heating to track the transition. The results
support this transformation of sulphur as being key to the transition, and the transition temperature
is thus modified to 96 ◦C. Variations in a sample’s response under adiabatic conditions are observed
and possible reasons are discussed. Testing in adiabatic mode provides new insights into the sulphide
self-heating process that complements the test designed to identify propensity to self-heat.

Keywords: self-heating; stage A/stage B; transition; rhombic/monoclinic elemental sulphur;
adiabatic heating

1. Introduction

Some materials, when exposed to ambient conditions, can exhibit a rise in temperature without
requiring an external heat source. Generally referred to as pyrophoric or self-heating substances,
they pose a challenge to the safe handling of materials in storage and transportation. Numerous
substances self-heat, ranging from wood chips and powdered milk to coal and sulphide minerals [1,2].
Combinations of sulphide minerals, most notably those containing the iron sulphide pyrrhotite
(Fe(1−x)S), commonly encountered in the extraction of base metals (e.g., copper, zinc, lead, and nickel),
are particularly prone to self-heating [3,4]. If not controlled, sulphide self-heating can lead to work
disruptions, loss of infrastructure, delays in operations and in some severe cases, loss of life [5]. Dramatic
examples include in-situ smelting of ores and resultant fires [5,6] and loss of a ship transporting
Cu-concentrate [7].

Testing for sulphide self-heating risk is required by the International Maritime Solid Bulk
Cargoes Code [8] and tests continue to be proposed [9–12]. Recent work [13] has shown that the
U.N.-recommended test can give false negatives and provides an alternative.

Studies on sulphide self-heating mechanisms identify moisture as key to exothermic reactions
with elemental sulphur as one the products [14,15], the critical range being about 3–8% w/w [16].
Therein lies a conundrum: as moisture is consumed in the reactions and evaporated as temperature
rises to ca. 100 ◦C, what causes the further temperature rise? Rosenblum and co-workers [3,17–20]
have argued that sulphide self-heating follows a three stage process: Stage A, up to ca. 100 ◦C,
where moisture is present and elemental sulphur is produced; Stage B, ca. 100 ◦C to 350 ◦C, where the
sulphur oxidizes; and Stage C, above ca. 350 ◦C, when direct oxidation of the sulphides occurs
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(i.e., smelting). Studies have largely concentrated on the properties of the individual stages, with no
studies reported on the transitions between the stages. Without transition from Stage A to Stage B,
for example, the runaway condition Stage C, which causes most of the problems, does not occur.

The present paper focuses on the factors associated with the Stage A to Stage B transition. We start
with a review of the literature related to the transition.

2. A Brief Review of Self-Heating Literature Related to the Transition

In Rosenblum and Spira [18] the notional temperatures at which the transitions occurred were
identified. The paper also described the test apparatus and protocol designed to assess Stages A and
B (now referred to as the FR-2 apparatus and test). Stage A (i.e., below ca. 100 ◦C) conditioning
(or “weathering”) was simulated using a thermally active waste rock sample from Brunswick Mining
and Smelting. The sample was dry ground then moistened to 8% moisture. The sample was subjected
to cycles of 15 min air injection every 5 h. Weathering at 50 ◦C showed that elemental sulphur was
generated (Figure 1) along with other oxidation products (in this example, goethite and sulphates) and
that the pyrrhotite, which was the source of the oxidation products, diminished with weathering time.
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Figure 1. Effect of weathering in Stage A at 50 ◦C on reduction in pyrrhotite content and increase in
oxidation products (adapted from Rosenblum and Spira [18]).

Using differential scanning calorimetry (DSC), the heat-generating potential of a sulphide ore
sample was assessed (Figure 2). The fresh (un-weathered) sample exhibited practically zero heating
and with increased weathering (at 40 ◦C) the exothermic peaks increased showing a direct correlation
between the extent of weathering and heat generation. In terms of the stages, the weathering was in
Stage A with resultant heat flow occurring in Stage B (DSC peaks are >100 ◦C).
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Figure 2. Effect of weathering in Stage A at 40 ◦C on DSC exotherms (adapted from Rosenblum and
Spira [18]).

In an extension to the results in Figure 2, which represents about 4 days, weathering was conducted
at 50 ◦C for 45 days followed by DSC measurements (Figure 3). The heat flow continued to increase
with increased weathering, reaching a maximum at about 20 days then dropping, reaching a plateau,
followed by a further drop. Based on the prior results, the following was argued to be the sequence of
events giving rise to these swings in reactivity. In the initial stage of weathering elemental sulphur is
formed which becomes the fuel that drives the observed exothermic reaction in the DSC test (i.e., Stage B
reaction/s). With increased weathering, the other oxidation products (oxides, etc.) that are formed
could interfere with the oxidation of the elemental sulphur thus reducing the heat flow. Note that
after washing, filtering and drying the 45-day weathered sample, reactivity increased significantly.
A suggestion is that washing either dissolved or dislodged the oxides, etc., which are also formed,
thus exposing more of the elemental sulphur resulting in increased heating.

In the 1995 publication [9] SO2 off-gas was measured as a function of temperature. Figure 4
(open symbols, % scale) shows SO2 began to appear at about 100 ◦C and with increasing temperature
substantially more SO2 was generated. From these results, it appears that SO2 is emitted in Stage B only.

Included in the figure is experience at one mine site [21] where high levels of SO2 were detected
which prompted measurements to correlate SO2 emissions with the corresponding in situ temperature.
Results (closed symbols, ppm scale) showed that most data fell above 100 ◦C, that is, corresponding to
a Stage B event. When plotting sulphur vapour pressure as a function of temperature [22], it is noted
that vapour first appears at a temperature above ca. 100 ◦C (dashed curve).

These results support the interpretation that self-heating of sulphides proceeds in at least two
distinct stages: Stage A, where the presence of moisture causes exothermic reactions producing
elemental sulphur, followed by Stage B, where the sulphur oxidizes to generate heat and sulphur
dioxide. There is evidence [23] that the elemental sulphur formed in Stage A is the rhombic form (α-S8)
which is stable below 96.5 ◦C, and above this temperature it transitions to the less stable monoclinic
form (β-S8) that readily oxidizes to generate heat and SO2. As an average we adopt a sulphur-form
transition temperature of 96 ◦C, the range being from 95 ◦C [23–25] to 96.5 ◦C [26].
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With this background, experiments were designed to identify factors affecting the Stage A to Stage
B transition.
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3. Materials and Methods

3.1. Samples

Samples of rod mill discharge (RMD) from Glencore’s Brunswick Mine and nickel concentrate
(Ni Con) from Glencore’s Raglan Mine were used in this test series. The RMD sample was ground to
80% passing 75 µm, split in a rotary splitter into 500-g samples then bagged and sealed. The Ni Con
sample was shipped under a water cover. On receipt, the sample was filtered, spread and dried in a
convection oven at 40 ◦C for 5 h. The sample was then split using the rotary splitter into 500 g samples,
bagged, sealed and stored at room temperature.

3.2. Self-Heating Test Apparatus

3.2.1. Constant Temperature Control (CTC)

The FR-2 apparatus (Figure 5), described in detail elsewhere [3,27], was used. In the standard test,
Stage A is conducted on a 500-g dry sample moistened to 6% w/w, the temperature is set at 70 ◦C with
air injection (via a water bath below the sample) at 100 mL/min for 15 min every 5 h for ten such cycles.
A reactive sample is identified by peaks in the temperature-time plot (thermogram) accompanying
the air injections. Stage B is conducted after raising the temperature to 140 ◦C with air injection at
200 mL/min for 15 min every 5 h repeated until no more heating is observed (i.e., there are no further
peaks on the thermogram).
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3.2.2. Adiabatic Temperature Control (ATC)

To follow the transition, the apparatus was modified to operate in adiabatic mode where oven
temperature follows the sample temperature; that is, little or no heat flows in or out of the sample.

3.2.3. Weathering

For the weathering tests, moist (6% w/w) samples were exposed at 70 ◦C for a set number of
air injection cycles ranging from 0 to 20. The sample was then dried, re-moistened to 6% w/w and
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tested at the standard Stage A condition (70 ◦C; 10 cycles). Some of these samples were also analyzed
for elemental sulphur. There were two objectives: (1) to correlate weathering with the generation
of elemental sulphur; and (2) correlate the effect of weathering (number of cycles) with self-heating
capacity of Stage A.

3.2.4. Transition Stage A to Stage B

Both the as received and weathered samples were tested. The apparatus was first set to CTC
mode (70 ◦C) with no air injection. After the sample reached the set temperature, control was switched
to ATC mode. At that point, air injection (100 mL/min) commenced. To prevent runaway temperatures
(that can result in a fire), the ATC mode was limited to 140 ◦C, at which point it was switched back
to CTC mode. When the sample temperature equilibrated with the oven temperature, the oven
was shut-off.

3.2.5. Sulphur Determination

On selected samples, elemental sulphur was determined using the carbon disulphide method
which brings elemental sulphur directly from the sample into solution [28]. Five-gram samples were
contacted with 15 mL carbon disulphide (Sigma-Aldrich, 99.9% A.C.S reagent grade) in a 50 mL beaker,
stirred for 10 min then filtered into a 50 mL flask. To ensure that all the sulphur had been recovered,
an additional 5 mL carbon disulphide was added, the contents stirred and filtered into the same 50 mL
flask. The filtrate was evaporated using an overhead fan in a fume hood and weighed to determine the
elemental sulphur content (%).

4. Results

4.1. Weathering

4.1.1. Effect on Elemental Sulphur Generation

Figure 6 shows that increased weathering increased the formation of elemental sulphur.
The as-received RMD sample (i.e., zero weathering) had less than 0.1% sulphur, which after 15 cycles
rose to 1.8%. In contrast, the as-received Ni Con sample contained almost 1% elemental sulphur
(suggestive of prior weathering) and weathering only marginally increased the sulphur content.
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4.1.2. Effect on Self-Heating

Starting at ten weathering cycles, Figure 7 shows that increased weathering cycles resulted in
increased Stage A self-heating capacity for both the RMD and Ni Con. The rate of increase for both is
similar (lines almost parallel). The higher values exhibited by RMD are attributed to the fact that after
the initial 10 weathering cycles there was more elemental sulphur present compared with the Ni Con
sample (Figure 6).
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4.2. Transition from Stage A to Stage B

4.2.1. Example of a Successful Transition

The sample temperature was first raised to 70 ◦C under CTC mode with no airflow. When
stabilized, control was changed to ATC mode and air injection started (Figure 8). The sample
temperature increased, plateaued near the transition temperature for about 3 h (10 h to 13 h) then
continued to rise. At 140 ◦C oven temperature control was changed back to CTC mode, with sample
temperature continuing to rise reaching a maximum of 166 ◦C then dropping back. The temperature
rise from 70 ◦C to ca. 100 ◦C represents Stage A self-heating while the further temperature rise to
166 ◦C represents Stage B self-heating. Stage B was sustained for about 8 h (13 h to 21 h) when
the sample temperature began to drop, which is consistent with the fuel, elemental sulphur, having
been consumed.



Minerals 2020, 10, 1133 8 of 12

Minerals 2020, 10, x FOR PEER REVIEW 8 of 13 

 

 
Figure 7. Effect of weathering on Stage A self-heating capacity (for calculation for self-heating 
capacity see [3]). 

4.2. Transition from Stage A to Stage B 

4.2.1. Example of a Successful Transition 

The sample temperature was first raised to 70 °C under CTC mode with no airflow. When 
stabilized, control was changed to ATC mode and air injection started (Figure 8). The sample 
temperature increased, plateaued near the transition temperature for about 3 h (10 h to 13 h) then 
continued to rise. At 140 °C oven temperature control was changed back to CTC mode, with sample 
temperature continuing to rise reaching a maximum of 166 °C then dropping back. The temperature 
rise from 70 °C to ca. 100 °C represents Stage A self-heating while the further temperature rise to 166 
°C represents Stage B self-heating. Stage B was sustained for about 8 h (13 h to 21 h) when the sample 
temperature began to drop, which is consistent with the fuel, elemental sulphur, having been 
consumed.  

 

 

Figure 8. Example thermograph of a sample that passed the transition temperature (shown from
initiation to completion of test).

4.2.2. Example of Failure to Transition

In an expanded first part of the temperature response, Figure 9 shows that in this case while
the sample temperature rose when the system was switched to ATC mode, it did not pass the
transition temperature.
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4.2.3. Transition and Weathering

The RMD samples weathered for various durations and analyzed for elemental sulphur were
remoistened to 6% and then evaluated for the transition from Stage A to Stage B. Using the maximum
sample temperature recorded (see Figure 8) to characterize the sample’s self-heating propensity,
Figure 10 shows a bell-shaped response: the sample with less than 0.5% sulphur did not pass the
transition (in fact did not self-heat as the temperature remained at 70 ◦C), samples from ca. 0.6% to
1.5% sulphur showed increasing maximum temperatures, and samples with greater than 1.5% sulphur
showed a decrease in maximum temperature. The decrease is attributed to the growing presence of
other oxidation products (sulphates, oxides/hydroxides), which appear to restrict access of oxygen to
the elemental sulphur.
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Figure 10. Elemental sulphur and transition from Stage A to Stage B: RMD sample.

A second test series used the Ni Con, which entailed weathering of two samples in duplicate
(at 5 and 20 cycles) and one sample in triplicate (at 10 cycles) with testing in ATC mode. Figure 11
shows that for the duplicate at 5 cycles both samples transitioned to Stage B and reached a maximum
temperature of ca. 130 ◦C. The other duplicate (at 20 cycles) and the triplicate sample (10 cycles), however,
produced a range of results from just reaching the transition temperature to rising above 140 ◦C.
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5. Discussion

The original hypothesis was that transition from Stage A to Stage B occurs at 100 ◦C; that Stage A
involved the formation of elemental sulphur which was the fuel for Stage B. Based on the literature
and the present findings, the current interpretation refines Stage A as up to 96 ◦C, corresponding to the
transition from rhombic sulphur (α-S8) to the more reactive monoclinic sulphur (β-S8).

In this interpretation, the self-heating in Stage A is the result of exothermic oxidation of sulphides
in the presence of moisture that generates rhombic elemental sulphur. Under favorable conditions,
the material could reach 96 ◦C and the sulphur start to transition to the monoclinic form which requires
latent heat. Figure 8 appears to show this latent heat, the temperature remaining roughly constant
around 96 ◦C for a period before continuing to rise. This transition time could range from minutes to
days and may not always occur.

Failure to pass the transition temperature can have several causes. Some possibilities include:
(1), moisture level may decrease below that to sustain Stage A reactions (moisture is consumed in the
reactions and is lost to evaporation and replenishment via humidity may not be sufficient); (2), while
transition probability increases with sulphur content (i.e., weathering), the increasing level of other
oxidation products, sulphates, oxides, etc., may act to coat surfaces and prevent oxygen from reaching
the elemental sulphur, as suggested in Figures 3 and 10; and (3), there may be differences in sample
packing that affect access to oxygen and moisture.

These possibilities help explain the finding that the same samples can vary in response to the
degree of weathering (Figure 11). This variation is mirrored in the field where self-heating typically
occurs in isolated “hot spots” and not generally across the entire pile [18].

The standard Stage A/Stage B test tends not to encounter variations in response on the same
sample. In these tests the temperature in Stage B is set at 140 ◦C consequently whether transition occurs
is not at issue. The test, designed to identify a material’s propensity to self-heat and progress from
Stage A to Stage B (and by extension Stage C), is independent of whether, on occasions, conditions
may suppress transition. Testing in adiabatic mode, as introduced here, does offer further insights into
the self-heating process and complements the standard FR-2 test.

6. Conclusions

This study focused on the transition from Stage A to Stage B in the self-heating of sulphides.
A new test using adiabatic conditions is introduced. Evidence is presented that the transition occurs at
96 ◦C, corresponding to the transition from the stable rhombic form of elemental sulphur to the more
reactive monoclinic form. The transition temperature, formerly designated as 100 ◦C, is duly revised to
96 ◦C. Variations in sample response to transitioning are detected and possible reasons are discussed.
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