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Abstract: Microthermometry study of fluid inclusions in quartz veins of the Maletoyvayam deposit
(Koryak Highland, Russia) was carried out. This epithermal gold deposit contains unique Au
compounds including maletoyvayamite, which has not been reported anywhere else. Two paragenetic
mineral associations (pyrite-quartz and maletoyvayamite-quartz) with quartz of different generations
corresponding to different pulses were also described. Only early generations of quartz (Q1) include ore
minerals: pyrite for the first mineral assemblage, and in Au-bearing minerals, sulfosalts, bismuthinite,
and others—for the second assemblage. A study on fluid inclusions in quartz showed a salinity (mainly
NaCl + KCl) range from 0.2 to 4.3 wt.% NaCl eq., increasing from the first mineral association to the
second due to boiling fluids. The obtained temperature variations for quartz crystallization were
295–135 ◦C, the fluid pressure ranged from 79 to 4 bar. On the other hand, the range of conditions
obtained for the gold productive ore association is more narrow: salinity of the fluid inclusions is
4.3 wt.% NaCl eq., the temperatures vary from 255 ◦C to 245 ◦C, and the pressure from 39 to 32 bar.
These physicochemical characteristics of the Maletoyvayam ore deposit greatly coincide with other
HS-type epithermal deposits; however, within the Central Kamchatka Volcanic Belt it is so far the
only deposit of this type reported.

Keywords: Central Kamchatka Volcanic Belt; HS epithermal deposit; maletoyvayamite-quartz
association; fluid inclusions; gold

1. Introduction

The term “epithermal” was defined by W. Lindgren [1] to include a broad range of tellurides,
antimonides or selenides of Au, Ag and base metals deposits which he estimated to be formed
from aqueous fluids at low temperatures (less than 200 ◦C) and moderate pressures. It is, however,
now generally accepted that mainly magmatic fluids at slightly higher temperatures (200–300 ◦C)
and pressures of less than a few hundred bars participate in the formation of these type of deposits.
Nevertheless, the term “epithermal” is still widespread [2].

Taylor, Hedenquist and coauthors [3,4] consider that an epithermal Au deposit consists of three
subtypes: high sulfidation (HS), intermediate sulfidation (IS), and low sulfidation (LS), each represented
by characteristic alteration mineral assemblages, occurrences, textures, and characteristic suites of
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associated geochemical elements. The term HS (high sulfidation) is now widely used [5], and combines
many other previously described types: enargite–gold [6], Goldfield-type [7,8], high-sulfur [9,10],
quartz-alunite [11] and alunite–kaolinite [12] which were assigned to a group of epithermal deposits
based on their mineralogical and geochemical features. HS type deposits are characterized by the
presence of diagnostic minerals of high sulfidation conditions (e.g., enargite), acidic hydrothermal
conditions (e.g., alunite, kaolinite) and relatively oxidized conditions of sulfur (SO2-rich) in the
hydrothermal system. HS deposits are associated with some types of hydrothermal systems due
to influence of a deep magma chamber [13] and also with andesitic volcanoes in which surface
manifestations include high-temperature fumaroles and acid sulfate-chloride hot springs. In contrast,
LS deposits of reduced (H2S-rich) hydrothermal fluids with neutral pH are similar to those found
in geothermal systems [13], that exhibit in the surface: sinter-terraces of silica, hot springs and
steam-heated acid-sulfate alterations [14].

Within the Kamchatka Peninsula, Au-Ag epithermal deposits are localized in volcanic belts of
different ages (Eocene-Oligocene Koryak-West Kamchatka, Oligocene-Quaternary Central Kamchatka,
and Pliocene-Quaternary East Kamchatka), extending along the modern subduction trend [15–19].
All of the Au-Ag mines located there (Aginskoe, Asacha, Ametistovoe, Zolotoe, Baran’evskoe,
Kungurtsevskoe, Oganchinskoe, Ozernovskoe), as well as most of the known Au-Ag deposits and
prospects, fit into the LS epithermal type [19–23]. These deposits are characterized by the presence of
quartz, adularia, illite and calcite in Au-Ag-bearing veins.

The Maletoyvayam deposit located in the Central Kamchatka Volcanic Belt (CKVB) is restricted
to volcano–tectonic structures within the Vetrovayam volcanic zone situated in the northeastern
part of the CKVB (southwestern part of the Koryak Highland) [24,25]. On the contrary to the
above mentioned deposits, Maletoyvayam deposit belongs to the HS type category of epithermal
deposits [26], which are also known in the Eastern part of Russia (Belaya Gora and Svetloye) [27].
The predominance of andesite and basaltic andesite rocks in the CKVB is a reflection of the mafic
composition of its basement. This factor determines the particularity of the metallogeny on this
zone, characterized by a wide development of near-surface mineralization of tellurides as subtypes
of the main gold-silver deposits [28]. The veins of massive quartz are included in the vuggy silica,
and both are Au(Ag)-bearing. The central vuggy silica zones are rimmed along the periphery of the
ore field by quartz-alunite-kaolinite association. The Maletoyvayam HS type deposit differs from
others known on the Kamchatka Peninsula, which are of the LS type, by a great variety of mineral
phases: native gold, chalcogenides of Au and Ag, Cu-sulfosalts with Sb and As, as well as complexes
including Au-bearing oxides among which some are considered rare or unique. Contrary to the other
deposits of the CKVB, native gold in these ores is not dominant. The study of other styles of gold
occurrences in sulfide-telluride-selenide ores and the physicochemical conditions of their formation
are of great interest from a mineralogical, genetic and technological point of view [29]. The first results
on the mineral composition of Maletoyvayam deposit were obtained recently [26,30–35]. Typical
and uncommon minerals of epithermal systems were reported in this deposit: senarmontite (Sb2O3),
tripuhyite (FeSbO4), bismite (Bi2O3), rooseveltite (Bi(AsO4)), tiemannite (HgSe), antimonselite (Sb2Se3),
Te-,Sb-bearing guanajuatite: (Bi2(Se,Te)3 and (Bi,Sb)2Se3), bismuthinite ((Bi2S3) and (Bi,Sb)2(S,Se)3),
unnamed phase ((Sb,Bi,Te,As,Fe)2O5), tellurium (Te,Se). In addition, unique compounds, that had not
been previously found in nature, were reported: maletoyvayamite and its S-rich analogue (Au3Se4Te6

and Au3S4Te6), AuSe and Au(Te,Se); their occurrence is due most likely to specific properties of the
hydrothermal solutions. Microthermometric study of these ores had not previously been carried out.
Thus, the purpose of this study is to present mineralogical and microthermometric measurement data
of this particular type of ore and to show the physicochemical conditions that played an important role
in the ore accumulation.
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2. Regional Geology and Mineralization

The Central Kamchatka Volcanic Belt (Russia) is about 1800 km long, controlled by the Main
Kamchatka deep fault, displaying a significant number of gold-silver epithermal deposits [22,28].
The Maletoyvayam deposit is particularly confined to a volcano-tectonic structure (up to 30 km) within
the Vetrovayam volcanic zone located in the northeastern region of the Central Kamchatka Volcanic
Belt and delimited by the Koryak Highland in the southwestern part [24,25]. This whole structure is
controlled by the Vyvensky northeast-striking deep fault and the northwest-striking faults zone [36,37].
Stratified subvolcanic and intrusive formations, as well as Quaternary sediments, are the constituent
elements of the ore field (Figure 1).
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upper member (N1vt2) of the Vevetrovayam Formation is 10–30 m thick and composed mainly by 
effusive rocks: andesite and basaltic andesite. Interlayers of basalt, tuff, tuff breccia, and tuff 
conglomerates of intermediate and mafic composition are less common. The radiometric age for 
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Figure 1. Schematic geological map (volcano-tectonic structure) of the Maletoyvayam gold deposit,
modified after Stefanov and Schiroky [37]. 1—Quaternary deposits; 2,3—rocks of the upper member (2)
and the lower member (3) of the Vetrovayam Formation (Middle-Late Miocene); 4—Vetrovayam volcanic
complex (Late Miocene); 5—main faults; 6—faults covered by Quaternary deposits; 7—hydrothermally
altered rocks; 8—ore occurrences (numbers in circles): 1—Yubileyny, 2—Yugo-Zapadny, 3—Gaching,
4—Tyulul; 9—Sampling location.

Stratified deposits are represented by effusive, pyroclastic, and tuffaceous-sedimentary rocks of the
Vetrovayam Formation (Figure 1), which are divided into two lithostratigraphic members. The lower
member (N1vt1) is composed of tuff and tuff breccia of intermediate to basic composition, andesite,
basaltic andesite, and, less often, dacite and felsic tuff. At the base of this member, there are lenses
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and interlayers of tuffaceous sandstone, tuff conglomerate, tuff siltstone, and brown coal. The upper
member (N1vt2) of the Vevetrovayam Formation is 10–30 m thick and composed mainly by effusive
rocks: andesite and basaltic andesite. Interlayers of basalt, tuff, tuff breccia, and tuff conglomerates of
intermediate and mafic composition are less common. The radiometric age for effusive rocks (K/Ar
method) is 7–18 Ma [38]. Intrusive subvolcanic bodies and dikes form a single volcanic complex
(Vetrovayam), which is represented by diorite, quartz diorite and granodiorite. The age of this complex
was determined as Middle-Late Miocene [38]. Volcanic rocks in the area exhibit different degrees of
hydrothermal alteration, which are associated with areas of gold mineralization and sulfur deposits
explored in 1971 [25,36,38]. The Maletoyvayam deposit includes four areas (ore occurrences) where
gold ore reserves have been identified and estimated: Yubileyny, Yugo-Zapadny, Gaching and Tyulul.

Based on the types of mineral assemblages [26], these ore occurrences are associated to a HS
epithermal type [4,39,40]. However, they differ among themselves in the degree of oxidation of the
primary mineralization. For instance, at the Gaching occurrence, the ores are less oxidized (about 10%
sulfate iron and 90% sulfide iron), compared to the Yugo-Zapadny occurrence, where sulfide iron is
only 8%. Hence, the primary mineralization at the Gaching ore occurrence is considered to be more
preserved and for that reason it was selected and analyzed in the present study.

Maletoyvayam deposit is composed of rocks of the lower member of the Vetrovaym Formation.
Vuggy silica was identified in the central part of the ore field, transitioning outwards into quartrz-alunite,
quartz-kaolinite, quartz-sericite-kaolinite and then to argillic- and propylitic-altered rocks. Gold was
found both in vuggy silica remnants located on the watershed in the Gachingalhovayam river valley
(Figure 2a), and in quartz veins. The color in rock samples showing vuggy and massive silica
texture is light gray to gray (Figure 2b). In the samples with texture the main mineral phase is
quartz—85–90 vol.%; kaolinite—5 vol.%, and alunite—4–5 vol.%; the rest of the minerals correspond
to potassium feldspar, barite, anglesite, muscovite, etc.
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Figure 2. (a) Vuggy silica in the Gachingalhovayam river valley, (b) Vuggy silica sample with
quartz veins, (c) fragment of quartz vein containing the maletoyvayamite-quartz association, Gaching
ore occurrence.

The dark zones in samples exhibiting vuggy silica texture are due to the presence of an intense
dissemination of mainly pyrite, or sulfosalts along with gold mineralization. Au content in samples
with vuggy silica texture reaches 8.8 ppm, whereas Ag—47.2 ppm. The white quartz veins also
contain a fine-grained dissemination of ore minerals, which is irregularly distributed (Figure 2c).
The concentration of Au in quartz veins vary within the range 1.40–144 ppm, and for Ag—147–724 ppm.
Other ore elements show concentrations of: Cu—1.38–3.18; As—up to 2; S—up to 2.26; Sb, Se, Te—more
than 0.2 (wt.%) [25].

3. Samples and Analytical Methods

Quartz veins samples selected for this study are shown in (Table 1). In the first stage, thin polished
sections were made from these samples. To determine the phases’ transition temperatures in quartz fluid
inclusions, cryo- and thermometry methods were used (Linkam THMSG-600 heating-freezing chamber
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(Linkam Scientific Instruments, Tadworth Surrey, United Kingdom, https://www.linkam.co.uk/) with
a measurement range of −196/+600 ◦C). The composition of the gas phase and corresponding
identification of solid phases in the inclusions were carried out by Raman spectroscopy (JobinYvon
“Ramanor U-1000” spectrometer, MillenniaProS2 laser (532 nm), HORIBA JOBIN YVON detector,
Novosibirsk, Russia).

Table 1. List of samples with their main characteristics

Sample Texture Morphology Minerals Included in Quartz or Filling
Cracks and Cavities

3053_a Filling of cavities Segregation Fe-hydroxide, Fe-antimonite/tellurite,
sulfosalts, Au-Fe(Sb,As,Te) oxide

3053_b Filling of cavities Segregation Sulfosalts, maletoyvayamite, tellurium
3058_a Interspersed Inclusions Pyrite
3058_b Interspersed Inclusions Pyrite

3058_c Interspersed Inclusions Bismuthinite, maletoyvayamite,
Sb(Bi,Te,As,Se) oxide, sulfosalts

Note. All samples are a vein of white quartz.

The total salt concentrations in fluid inclusions and their corresponding water–salt system
were determined using the cryometry method [41,42]. The assessment of the pressure of mineral
formation environment was carried out using the published pressure-temperature-composition data
for NaCl-H2O systems. The AqSo_NaCl [43], ISOHOR [44] and FLINCOR [45] software packages were
also used to estimate the pressure of mineral formation from microthermometric data obtain in the
study of fluid inclusions.

The chemical compositions of the minerals (samples 3053-8_a,d,c) and texture of mineral aggregates
were studied at the Analytical Center for multi-elemental and isotope research of the Sobolev Institute
of Geology and mineralogy Russian Academy of Sciences (SB RAS) in Novosibirsk, using a LEO-413VP
scanning electron microscope (SEM) with the INCA Energy 350 microanalysis system (Oxford
Instruments Ltd.) equipped with an energy dispersive spectrometer (EDS) (analysts: Dr. N. Karmanov,
M. Khlestov), operated at an accelerating voltage of 20 kV, current intensity 0.4 nA, 50 sec. measuring
time, and beam diameter ~1 µm. The following standards were used: pure metals (Ag, Au, Bi, Se, Sb,
Fe, Cu), pyrite (S), synthetic HgTe (Te), sperrylite (As). The detection limit was 0.02%. The following
X-ray lines were selected: Lα for Ag, Te, As, Sb and Se; Kα for S, Fe, Cu and O; and Mα for Au and Bi.
Analytical data for the samples 3053-3 a,b was obtained at the Institute of Volcanology and Seismology
of Far Eastern Branch of RAS, using a TescanVega-3 scanning electron microscope equipped with an
energy dispersive spectrometer, EMF X-MAX (analyst: V.M. Chubarov), operated at an accelerating
voltage of 20 kV, current intensity 3–0.7 nA, 50 sec. measuring time, and beam diameter ~1 µm.
The following standards were used: pure metals (Au, Ag, Se, Sb), synthetic FeS2 (Fe), InAs (As),
CdTe (Te), CuSbS2 (Sb), Bi2S3 (Bi), CuFeS2 (S, Cu). The detection limit was 0.1 wt.%. The following
X-ray lines were selected: Lα for Ag, Te, As, Sb and Se; Kα for S, Fe, Cu and O; and Mα for Au and Bi.

4. Results

4.1. Mineralogy of Studied Maletoyvayam Deposit Ores

The studied samples are represented by quartz veins with abundant spotty dissemination of
fine grain ore minerals. In some of the ore samples only pyrite is present, whereas Au minerals are
completely absent. These samples are considered to be related to early pyrite-quartz assemblage
(Figure 3a,b). Other samples contain fine dissemination of Au compounds along with other ore
minerals; however, pyrite is absent or only represented as subordinate inclusions within other minerals.
These samples are genetically associated to the later gold-bearing assemblage [26], which in the context
of our study was named as: the maletoyvayamite-quartz association.

https://www.linkam.co.uk/
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formation. 
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Figure 3. Impregnation of pyrite in quartz: irregular (sample 3058-8_a) (a) and spotted (b) from the
pyrite-quartz association (sample 3058-8_b).

The studied ore-bearing samples correspond to quartz veins. The concentrations of noble metals
vary depending on the dissemination density within the ore samples: Au from 0.8 to 147 ppm and Ag
from 0.5 to 200 ppm. In Au-Ag enriched samples (3053-3), quartz contains very small quartz druses;
these cavities are partially or completely filled with a finely dispersed reddish-gray mass, represented by
a mixture of iron hydroxides, tellurites and iron antimonates, sulfosalts (Figure 4a), native and secondary
(mustard) gold and other rare minerals including unique compounds of Au-sulfoselenotellurides and
complex Au-bearing oxides (Figure 4b).
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Sulfosalts are widespread in the ore associations of the Maletoyvayam deposit. Two main
groups of sulfosalts were identified in the Gaching area: the tetrahedrite-group Cu12(As,Sb,Te)4S13 and
enargite-group Cu3(As,Sb)S4 [33]. In the samples with highest noble metals enrichment, maletoyvayamite
occurs as independent grains intergrown with tellurium and sulfosalts. It is often found along cracks or
in the intergranular space of quartz (Figure 5a), or confined to the margins of large grains of sulfosalts
(Figure 5b).

Au-bearing minerals range in size from a few µm to 80 µm, while sulfosalt grains reach up to
2.5 mm. The sulfosalts are enriched in Se within a range of 5.84–10.42 wt.%. The substitution of Se
for S is ubiquitous (Table 2). The presence of selenium in sulfosalts indicates specific conditions for
their formation.
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Table 2. Compositions of ore minerals shown in Figure 5 from the maletoyvayamite-quartz. association
(sample 3053-3), wt.%.

No S Cu As Se Sb Te Au Total Formula

1 21.49 42.37 5.84 8.46 20.75 99.28 Cu11.82(Te2.86 Sb1.22)4.08(S11.80Se1.30)13.10
2 21.43 40.28 2.30 8.76 6.40 21.38 100.56 Cu11.05(Te2.92Sb0.92 As0.54)4.38(S11.65 Se1.93)13.58
3 6.34 6.24 50.5 37.80 100.88 Au2.89Te5.95(S2.97Se1.19)4.16
4 6.35 5.60 50.47 37.76 100.19 Au2.91Te6.00(S3.01Se1.08)4.09
5 3.38 11.03 49.89 36.16 100.46 Au2.91Te6.20(Se2.22S1.67)3.89
6 6.97 92.99 99.95 Te0.89Se0.11
7 25.81 42.65 6.15 7.50 17.88 0.73 100.72 Cu4.09(Sb0.89As0.50 Se0.48Te0.04)1.91(S4.90Se0.10)5.00
8 20.59 42.59 1.02 7.74 12.34 15.75 100.03 Cu11.79(Te2.17 Sb1.78As0.24)4.19(S11.30Se1.73)13.02
9 32.8 66.68 99.49 Te0.56Se0.44
10 2.95 12.15 48.75 36.40 100.26 Au2.96Te6.11(Se2.46S1.47)3.93
11 19.71 40.94 9.99 8.85 20.00 99.49 Cu11.57(Te2.82Sb1.31)4.13(S11.04Se2.27)13.31
12 26.94 45.54 16.52 10.42 2.34 101.76 Cu2.97(As0.91Sb0.08)0.99(S3.49Se0.55)4.04

Note. 1,2,8,11—goldfieldite Cu12(Te,Sb)4(S,Se)13; 3,4—S-rich analogue of maletoyvayamite Au3Te6(S,Se)4; 5,10—
maletoyvayamite Au3Te6(Se,S)4; 6,9—tellurium; 7—watanabeite Cu4(Sb,As)2(S,Se)5; 12—enargite Cu3(As,Sb)(S,Se)4.
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Figure 5. SEM image. The maletoyvayamite-quartz association in the sample 3053-3_b, highest
enrichment in noble metals (Au is 144 ppm, Ag is 200 ppm); (a) ore minerals localized along cracks in
the intergranular space of quartz; (b) maletoyvayamite confined to the margins of sulfosalts grains;
mlt—maletoyvayamite, gdf—goldfieldite, wtb—watanabeite, Te0.9Se0.1—Te-Se solid solution. Points
with numbers correspond to the analysis numbers in Table 2.

Another sample (3053-8_a,d,c) containing the maletoyvayamite-quartz ore association with
concentrations of Au and Ag 1.4 and 12.3 ppm, respectively, contains large bismuthinite inclusions.
In addition, sulfosalts of various compositions (tetrahedrite, goldfieldite, enargite, etc.), which are
described in [33], are also found in association with bismuthinite (Figure 6a,c,d). Bismuthinite has an
unusual composition, since Sb and Te in its structure are substituted for Bi, whereas Se and Te for S
(Figure 6a,b; Table 3). Furthermore, it was found that bismuthinite has an S/Se = 2 ratio. Moreover,
we suggest the possibility of this mineral phase corresponding to a potentially new mineral Bi2S2Se.
This phase has also been reported from the HS-IS epithermal Perama Hill deposits, in Greece [46].
It is intergrown with the Se-bearing tellurium (Figure 6c). Complex oxides of various oxidation states
in primary minerals, including maletoyvayamite, are common in the Maletoyvayam deposit [26,31].
In the analyzed sample, bismuthinite and similar phases are replaced by oxides of Sb, Bi, As, Te and Se
in variable proportions; Fe, Cu and occasionally Ag are minor elements. The oxidation state also varies
in these compounds from (Sb,Bi,Te,As,Se)0.31O0.69 to (Sb,Bi,Te,As,Se)0.24O0.76 (Figure 7) depending
mainly on the oxygen fugacity: log f O2 ranging from −29.8 to −27.3; values previously calculated for
the ore-bearing mineral association [26].
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Figure 6. SEM image. The maletoyvayamite-quartz association in the sample 3053-8-c (Au is 1.37 ppm
and Ag is 12.3 ppm): (a) Sb,Te,Se-bearing bismuthinite (bsm) replaced by (Sb,Bi,Te)-oxide in intergrowths
with enargite (eng) hosted in quartz; (b) bismuthinite replaced by (Sb,Bi,Te)-oxide; (c) unnamed phase
Bi2S2Se with inclusions of Se-rich tellurium (Te0.7Se0.3) replaced by (Sb,Bi,Te)-oxide, in intergrowth with
tetrahedrite (ttr) and goldfieldite (gfd); (d) inclusions of maletoyvayamite (mlt) and enargite in quartz;
(e) maletoyvayamite in intergrowths with (Sb,Se,Te,As)-oxide; (f) grain of (Sb,Bi,As)-oxide containing
the naumannite (Ag2Se) inclusions in quartz. Points with numbers correspond to the analysis numbers
in Table 3.

Table 3. Compositions of ore minerals shown in Figure 6 from the maletoyvayamite-quartz. association
(sample 3053-8_c), wt.%.

No. Au Cu Ag Bi Sb Te As Se S Total Formula

1 62.41 8.46 2.89 10.89 14.16 98.81 (Bi1.54Sb0.36Te0.12)2.01(S2.28Se0.71)2.99
2 65.07 5.19 3.20 11.36 13.45 98.27 (Bi1.65Sb0.23Te0.13)2.01(S2.23Se0.76)2.99
3 72.54 14.13 11.34 98.01 Bi1.97S2.01Se1.02
4 47.11 2.86 15.93 1.07 31.32 98.29 Cu3.01(As0.86Sb0.10)0.96(S3.97Se0.06)4.03
5 35.10 47.38 14.80 2.03 99.31 Au2.89Te6.03(Se3.04S1.03)4.07
6 55.87 47.07 14.67 2.14 99.75 Au2.95Te5.97(Se3.01S1.08)4.09
7 71.84 26.49 98.33 Ag2.00Se1.00

Note. 1,2—Sb,Te,Se-bearing bismuthinite (Bi,Sb,Te)2(S,Se)3, 3—unnamed phase, 4 enargite, 5,6—maletoyvayamite,
7—naumannite.
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4.2. Quartz Generations and Corresponding Types of Fluid Inclusions

The ore-bearing samples selected to study of fluid inclusions are represented by two main
associations: pyrite-quartz and maletoyvayamite-quartz.

4.2.1. Pyrite-Quartz Association

In the studied samples showing this mineral association, there are at least three successively
crystallized generations of quartz (Figure 8a). The earliest generation is represented by a grayish to
dark gray fine-grained quartz aggregate with abundant dissemination of fine pyrite grains. Subsequent
generations of quartz are represented by veins that cut the early pyrite-bearing quartz. In late veinlets,
crustified, microdruse, cockade and, less often, collomorphic textures can be observed (Figure 8a).
These textures are also representative of mineral associations in other gold-bearing low sulfidation
epithermal deposits in the Kamchatka Peninsula [19]. Late quartz veins also contain sporadic pyrite,
but very rarely. Separate large grains of quartz in late veinlets are characterized by a zonal structure.
The central parts of quartz grains contain single two-phase inclusions with isometric shape (Figure 9b).
Growth zones on the periphery of quartz crystals are traced by abundant fluid inclusions with oval
vacuoles, elongated perpendicular to the faces of quartz crystals (Figure 9c).
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Figure 8. Quartz generations. (a) pyrite-quartz mineral association: Early quartz (Q1) is presented
in association with abundant pyrite grains (black spots) and intersected by veins of quartz (Q2−4),
containing rare pyrite inclusions; (b) maletoyvayamite-quartz mineral association: In this sample,
early quartz (Q1) contains inclusions of bismuthinite and maletoyvayamite. This quartz generation is
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Figure 9. (a) quartz exhibiting zoning pattern with crustified texture from a pyrite-quartz association;
(b) a group of isolated two-phase inclusions in the center part of the quartz crystal, (c) two-phase
inclusions with elongated shape trace the growth zone at the periphery of the quartz crystal.
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Crystallization of some quartz generations with different textures occurred close in time or almost
simultaneously, since smooth transitions are often observed among them. It is likely that several
hydrothermal pulses at very short time intervals were consistently segregated during the formation of
ores. Thus, different quartz generations represent the observed textural varieties as a result of these
rhythmic pulses. On this subject, when presenting the results on fluid inclusions, showed by textural
features, we will divide the quartz in the pyrite-quartz association into only two generations—the
early fine-grained generation with abundant dissemination of pyrite and the late one, represented by
veinlets cutting the first one.

4.2.2. Maletoyvayamite–Quartz Association

Quartz associated with this mineral assemblage is similar to those of the pyrite-quartz association
in respect to the textural and structural features, as well as in the distribution of fluid inclusions. Quartz
displaying crustified texture also contain inclusions of ore minerals. Pyrite in the studied sample is
represented by single small crystals whereas Au minerals (maletoyvayamite) are the most abundant
(Figure 6 d,e); among Ag minerals, naumannite Ag2Se and hessite Ag2Te occur in association (Figure 6f).
The quartz of the maletoyvayamite-quartz association, as in the pyrite-quartz association, also contains
two types of fluid inclusions (Figure 10a,b) with the characteristic that they belong to the primary
phase, and less often to the pseudo-secondary phase according to [47,48]. The first type is represented
by two-phase inclusions close to isometric, containing a gas bubble and liquid in vol. ratios 1/10–1/12,
which does not exceed 10 µm in size (Figure 10c). The second type is represented by two-phases, which
are close to the faces of the quartz crystal and delimitate its growth zones. They have an elongated
or tubular shape of up to 30 µm in length and 5–10 µm in cross-section (Figure 10d), and as a rule,
they are associated with single-phase vapor inclusions, also elongated with channel-shaped, of up to
50 µm in length.
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Figure 10. (a) quartz exhibiting zonation texture from a maletoyvayamite-quartz association; (b) group
of isolated fluid inclusions in the central part of the quartz crystal and elongated shape of inclusions at
the periphery of the crystal; close-up showing the representative shape and details of the inclusions in
the center of quartz crystals (c) and in the growth zones (d).



Minerals 2020, 10, 1093 11 of 19

The origin of elongated fluid inclusions is related with the repulsion of mineral particles by the
growing face of the crystal, or with the processes of dissolution of quartz and subsequent healing of
the formed tunnel-like hollows [47]. The presence of single-phase vapor inclusions seems to be due to
boiling processes of the mineral-forming fluid. Judging by the significant elongation of the vacuoles of
fluid inclusions located perpendicular to the faces of the quartz crystal, the boiling process is suggested
to be quite long [47].

4.3. Results of the Fluid Inclusions Microthermometry

The results of fluid inclusions study from different types of quartz veins associations make it possible
to characterize the main physicochemical parameters related to their formation. Table 4 summarizes these
main parameters for two types of quartz from the different associations discussed before.

Table 4. Results of fluid inclusions microthermometry in quartz from early and late generations.

Quartz
Generation

T ◦C
Homogenization,

(n *)
T ◦C Eutectic T ◦C

Ice Melting
NaCl,
wt.%

KCl,
wt.%

Total
Salinity,

wt.%

Pressure **,
Bar

Pyrite-Quartz Association

Early (Q1)

290–288 (5) −25 (−38–−35) −0.5–−0.4 0.6 0.3 0.9 70–68
270–260 (6) −24–−23 −0.6–−0.4 0.6 0.3 0.9 50–43

295 (2) 25 (−38–−35) −0.5–−0.4 0.6 0.3 0.9 76
245 (4) −24.5 −0.5 0.6 0.3 0.9 32

264–268 (3) −26–−25 −2 2.5 0.8 3.3 49

Late 260–240 (4) −38 −0.1 0.1 0.1 0.2 43
(Q2–4) 200 (2) −38–−35 −0.1 0.1 0.1 0.2 13

Maletoyvayamite-Quartz Association

Early (Q1)
255–245 (4) −38–−35 −2.5–−2 3.3 1.0 4.3 39–32
250–245 (2) −38–−35 −2.4–−2.2 3.3 1.0 4.3 36–32

Late 228–210 (6) −38 −0.7–−0.5 1.0 0.5 1.5 23–16
(Q2–4) 220–135 (3) −38 −0.6–−0.3 0.9 0.3 1.2 20–4

Note. * Number of inclusions; ** pressure value calculated for the concentration of solutions (wt.%) to NaCl eq.

4.3.1. Pyrite-Quartz Association

Two-phase water–salt inclusions from early quartz are homogenized at temperatures ranging
from 290 to 260 ◦C. Ice is formed in these inclusion solutions when they are cooled, and melts again
when heated at a temperature range from −2 to −0.4 ◦C. The first melting of ice is observed in a
temperature range from −38 to −35 ◦C, although intense, ice melting and the appearance of liquid
in is recorded in the range from −26 to −23 ◦C. In small inclusions, the first melting is distinguished
in the same temperature interval (from −26 to −23 ◦C), which is close to the melting temperature of
the eutectic NaCl + KCl + H2O water–salt system (−23.5 ◦C). This may indicate that the main salt
components in the inclusions are probably NaCl and KCl with a diminutive admixture of other soluble
salts, which somewhat lower the eutectic of the solutions. One of such impurities may correspond
to K2CO3, since the melting temperatures of eutectics in the water–salt systems Na2CO3 + K2CO3 +

H2O and K2CO3 + H2O correspond to −37 and −36.4 ◦C [48], that also coincides with a temperature
interval of the ice first melting in large inclusions −38–35 ◦C.

According to the method used by Borisenko [41] it was revealed that the concentrations of Na and
K chlorides prevailing in the composition of solutions in the inclusions are estimated as 2.5–0.1 wt.%
NaCl and 0.8–0.1 wt.% KCl, however, the presence of Fe and Mg chlorides in the composition of the
inclusions is unlikely. Mg compounds are not typical for the studied mineral associations. FeCl2 and
FeCl3 in water–salt systems would cause a metastable state, which also would involve incomplete
crystallization of the cooled solution and, as a consequence, a decrease in the melting point of the
eutectic [49,50], which was not observed in our studies.
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Cryometric study of individual vapor inclusions and the gas component of water–salt inclusions
did not reveal the presence of a dense gas phase. The cooling down to −190 ◦C did not result in any
gases’ liquefaction or crystallization. The absence of a dense gas phase is also confirmed by the study
of fluid inclusions with Raman spectroscopy. Raman spectra of the gas phase of inclusions do not
contain bands characteristic of CO2, N2, and CH4 [51].

The pressure values were calculated for the concentration of solutions (wt.%) equivalent to NaCl.
These values decrease from early generations of quartz to later ones and are in the range of 70–13 bar
for the pyrite-quartz association.

4.3.2. Maletoyvayamite-Quartz Association

Two-phase inclusions in the early quartz of the maletoyvayamite-quartz association were
homogenized in a temperature range from 255 to 245 ◦C. Ice is formed in cooled solutions of
two-phase inclusions, which then is melted at temperatures ranging from −2.5 to −2 ◦C. The beginning
of ice melting in cooled solutions occur in the range from −38 to −35 ◦C. Fluid inclusions in late quartz
from veinlets were homogenized in a temperature range from 225 to 135 ◦C (Table 4).

The rate of ice melting in cooled inclusions increases sharply at temperatures above −23 ◦C,
and lastly ice melts in a temperature range from −0.7 to −0.3 ◦C. The temperature ranges for the initial
melting point of cooled solutions in the inclusions are close to the melting temperature of the eutectic of
the water–salt systems Na2CO3 + K2CO3 + H2O and K2CO3 + H2O: −37 ◦C and −36.4 ◦C, respectively.
A quick acceleration of ice melting in cooled solutions at a temperature of −23 ◦C suggests the presence
of NaCl and KCl solutions along with Na2CO3 and K2CO3 as part of the composition.

The water–salt inclusions of the ore-bearing minerals from the maletoyvayamite-quartz association
are more saturated in salts in comparison with the inclusions from the pyrite-quartz association (Table 4).
Salt concentrations were calculated by the method of Borisenko [41], reaching NaCl = 3.3 and 1.0,
and KCl = 1.0 and 0.5 (wt.%) in early quartz and late quartz, respectively. These values decrease from
early generations of quartz to later ones and are in the range of 39–4 bar for the maletoyvayamite-quartz
association (Table 4, Figure 10).

5. Discussion

The results obtained from fluid inclusions microthermometry in vein quartz of the Maletoyvayam
deposit (Gaching area) indicate that the quartz was formed in a wide range of temperatures from nearly
300 to 180 ◦C and even below. In the same way, the pressure also varies from 80 to 10 bar (average).
At high temperatures (295–255 ◦C) and pressures (50–75 bar), pyrite is the main ore mineral (pyrite-quartz
association) (Figure 11a), while maletoyvayamite, bismuthinite, Cu-sulfosalts, etc. occurred in a rather
narrow range of temperatures and pressures (245–255 ◦C and 32–39 bar) (Figure 12).
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Both of the diagrams in (Figure 11) display a gradual change between the mineral associations,
moving from pyrite-quartz to maletoyvayamite-quartz; the late quartz generation of the first association
coincides with the early quartz generation of the second association in P-T parameters (Figure 11a);
however, they do differ in salt content (Figure 11b). For instance, the salinity percentage in fluid
inclusions of the productive gold-bearing association (maletoyvayamite-quartz) is considerably bigger
(3.3 versus 0.6).

Sulfosalts are an important indicator of mineral formation conditions in hydrothermal deposits of
various types [52–54]. Enargite in particular is a formation conditions indicator of HS type epithermal
deposits [2]. This mineral has been found in ores of well-known HS epithermal deposits: Goldfield
(Nevada, USA), Red Mountain, Lake City II and Summitville (Colorado, USA), Julcani (Peru) [2,55,56]
and others. It is also common among the sulfosalts described at Maletoyvayam [33], and, in particular,
in the studied samples (Figure 5). Enargite-bearing epithermal deposits develop when fluid rapidly
rises to higher levels of the earth’s crust without interacting with groundwater. Then, its gradual
cooling and partial neutralization due to its reaction with the host rocks leads to the formation of a
pyrite–enargite association, including alunite and barite [57].

Earlier, we made the assumption that pyrite formation and maletoyvayamite are divergent
in time based on the fact that they have never been encountered in equilibrium intergrowths [26].
Indeed, the microthermometry study on fluid inclusions in quartz confirmed this hypothesis: the most
abundant dissemination of pyrite grains occur in the earliest generations of the fine-grained quartz
aggregate (Figure 8a), with temperatures that correspond to a range of 295–245 ◦C, whereas the Au
minerals, sulfosalts and other associated minerals of the main ore stage crystallized at 255–245 ◦C
(Table 3, Figures 10 and 12). Moreover, pyrite crystallization precedes enargite in many HS-type
epithermal deposits [58].

The fluid inclusions data for HS epithermal deposits (Table 5) indicate that ore deposition occurred
mainly at temperatures similar to the LS and IS types. For example, the homogenization temperatures
of primary inclusions in quartz from the Aginskoye deposit (LS type) were 230–280 ◦C, with the ore
phase being in the range of 250–260 ◦C [59]. Similar temperature ranges have been established both
for the LS type deposits (Rodnikovoye and Asachinskoye in South Kamchatka, Russia) [19,21,60] and
in regard to the IS type deposit (Cheshmeh Hafez, Iran) [61], the homogenization temperatures of
the primary inclusions are in the range of 140–280 ◦C with peaks at around 180–250 ◦C. This is also
compatible with all HS type deposits, and with the obtained formation parameters of the Maletoyvayam
deposit (Table 5).

The salinity of ore-forming solutions differs both between the deposit types (LS and HS) and
even within the same type (Table 5). The salinity range can be strongly influenced on one hand by the
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mixing with meteoric water (dilution), or, on the other hand, by boil-off (concentrating) [57,62]. Fluid
inclusions with high salinity reflect the fluid history after crystallization of underlying magmas [63,64].
The strongly acidic hot fluids interaction with host rocks typically dissolve the surrounding rock,
leaving only silica. Then, brines containing gold ascend from the magma and precipitate metals in the
vuggy quartz forming the HS deposits. In general, the salinity of HS type deposits show a wide range
of values. For example, the highest salinity values of HS type ore deposits range from 5 to 24 wt.%
NaCl eq. for Julcani, Summitville and Goldfield [65,66] (Table 5). The ranges of 3–12 wt.% NaCl eq.
are typical of the Kairagach and Shelekhovskoe [67,68]. However, data from fluid inclusions in quartz
associated with the main gold stage from Red Mountain, Mt Carlton, Lepanto, Agan, Danchenkovskoe
and Belaya Gora [27,69–72], including Maletoyvayam, indicate salinities of up to 4.5 wt.% NaCl eq.
(Table 5).

Table 5. Crystallization conditions parameters for HS type epithermal deposits.

District
Measured Selected Ore Representative

References
T ◦C Salinity T ◦C Salinity

Red Mountain, BC, Canada 215–265 (?) 1.6 240 1.6 [69]
Summitville, CO 231–276 (?) 7–21 [65]

Goldfield, NV 150–325 (?) 5–18 [65,66]
Julcani, Peru 161–275 (?) 5–24 [65]

Mt Carlton, NE Australia 163–264 (57) 0–1.6 222 [70]
Lepanto, Philippines 166–285 0.2–4.5 [71]

Kairagach, Uzbekistan 120–300 <12 [67]
Agan, Russia 88–184 (6) 0.2–2.6 136 [27]

Danchenkovskoe, Russia 297–336 1–4 [72]
Belaya Gora, Russia ≈100 <1 [68]

Shelekhovskoe, Russia 180–250 3–8
Maletoyvayam * Russia 295–245 (23) 0.9–3.3 270 2 This study

Maletoyvayam ** 255–245(6) 4.3 250 4.3 This study
Maletoyvayam *** 228–135(9) 1.3 180 1.3 This study

Note. *—pyrite-quartz association (early Q1); **—maletoyvayamite-quartz association (early Q1); ***—maletoyvayamite-
quartz association (later Q2−4). Salinity in wt. % NaCl eq. Selected Temperature and Salinity related to the
productive stage.

The HS mineralization associated with the dilute to moderately saline solutions (<5 to ~10 wt.%
NaCl eq.) occur at temperatures between 180 and 320 ◦C [71]. The hotter and more saline fluid
inclusions occur in rocks of deep horizons closer to the magma fluid source [14,73]. The reduction
in the sulfidation state of fluids due to interaction with wallrocks can change HS fluids to IS ones,
as confirmed by paragenetic transitions from HS to IS mineralization [74]. In the IS-type epithermal
deposits, salinity ranges vary widely and reaches high values, for example, 4.7–18 wt.% NaCl eq. at the
Cheshmeh Hafez field [61]. While the salinity in inclusions from LS-type deposits of the Aginskoye
deposit of the Central Kamchatka volcanic belt is no more than 2 wt.% NaCl equiv. [59], as in the
Juliet field (LS-type), at the Okhotsk-Chukotka volcanic belt, the salinity of the inclusions is about
1.2–5.6 wt.% NaCl eq. [75]. In this respect, it is clear that the salinity of fluid inclusions is not intimately
related to the type of deposit, but more dependent on the conditions of ore deposition.

Based on the formation model for HS epithermal deposits [4,39,64,76,77], it can be assumed that
gold–copper–porphyry mineralization may be found at deeper horizons in the Maletoyvayam area
since the models for epithermal deposits form in a relatively near-surface magmatic-hydrothermal
environment associated with volcanic rocks that overlie cogenetic intrusive rocks.

6. Conclusions

Two mineral associations were indentified during the study of quartz mineralization at the
Maletoyvayam Au-deposit: the earlier pyrite-quartz and the Au-bearing maletoyvayamite-quartz
associations. Each of them contains different generations of quartz, but only the early quartz generations
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in each of the mentioned associations include either pyrite (pyrite-quartz association) or sulfosalts
with gold compounds and other rare associating minerals (maletoyvayamite-quartz association).
Maletoyvayamite is the main Au mineral of the maletoyvayamite-quartz association, which has never
been reported in any other epithermal gold deposit in the world. It was particularly identified in
samples having high Au concentrations, and occurs in the marginal parts of sulfosalts, intergrown with
complex oxides of chalcogenides and native tellurium, and also as individual inclusions in quartz.

The following features and physicochemical conditions on the formation of a productive ore
association were identified based on the fluid inclusions study (Figures 11 and 12):

The composition of primary fluid inclusions in the quartz is represented by the dominant NaCl
and KCl, as well as Na2CO3 and K2CO3. The total percentage of salinity varies from 4.3 wt.%.
in the early quartz from the maletoyvayamite-quartz association to 0.2 in late quartz from the
pyrite-quartz association. The temperature of fluids varied from 290 to 135 ◦C, decreasing during
the crystallization of the later generations of quartz (Figure 11). The calculated pressure of the fluid
varies from 79 to 4 bar, and most likely corresponds to hydrostatic fluid. The fluids that formed
the maletoyvayamite-quartz association differ from those forming the pyrite-quartz association with
lower temperatures (255–135 ◦C), and increased salt concentration (4.3 wt.%). The increase in the
total concentration of salts in the hydrothermal solutions that formed the maletoyvayamite-quartz
association is due to the boiling of fluids. All parameters before presented and discussed agree in all
respects with other HS-type epithermal deposits around the world; however, they do not provide
further evidence of the particularities in ore mineral composition of the Maletoyvayam deposit, which
is as yet the only known occurrence of the HS type on the Central Kamchatka Volcanic Belt.
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