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Abstract: Centrioles make up the centrosome and basal bodies in animals and as such play important
roles in cell division, signalling and motility. They possess characteristic 9-fold radial symmetry
strongly influenced by the protein SAS-6. SAS-6 is essential for canonical centriole assembly as it forms
the central core of the organelle, which is then surrounded by microtubules. SAS-6 self-assembles
into an oligomer with elongated spokes that emanate towards the outer microtubule wall; in this
manner, the symmetry of the SAS-6 oligomer influences centriole architecture and symmetry. Here,
we summarise the form and symmetry of SAS-6 oligomers inferred from crystal structures and
directly observed in vitro. We discuss how the strict 9-fold symmetry of centrioles may emerge,
and how different forms of SAS-6 oligomers may be accommodated in the organelle architecture.
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1. Introduction

Centrioles are conserved eukaryotic organelles essential for correct cellular behaviour. In animals,
a pair of centrioles together with the pericentriolar material comprise the centrosome, which is the
main microtubule organising centre of cells and directs the formation of the mitotic spindle during
division [1–3], thereby ensuring correct chromosome segregation. Centrioles are also essential for
organising cilia and flagella at the surface of cells. As such, they play a crucial role in cellular motility,
for example of sperm, cell signalling via the primary cilium, and in the interaction of cells with their
surroundings, as seen in tracheal lining cells that sweep mucus and dirt out of the respiratory system.
Thus, aberrations in centriole structure or numbers are linked to disease conditions such as ciliopathies,
male sterility, ectopic pregnancies, primary microcephaly and possibly cancer [4–10].

Centrioles are cylinders characterised by 9-fold radial symmetry in the vast majority of
organisms [11–13] that are approximately 100–250 nm in diameter and 150–400 nm in length, depending
on species and cell type. In centrioles, single, double or triple microtubule ‘blades’ form the outer
wall of the cylinder and they are arranged around a central scaffold, termed the ‘cartwheel’ [14].
The cartwheel typically comprises a stack of 9-fold symmetric rings consisting of a ‘central hub’ with
‘spokes’ emanating radially. These spokes interact with microtubules at the outer centriole wall via
a structure known as the ‘pinhead’, thereby linking the cartwheel radial symmetry to that of the entire
organelle. Thus, cartwheels provide an essential building block for centriole assembly that influences
organelle symmetry.
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Genetic and functional studies in Caenorhabditis elegans aiming to isolate spindle
assembly-defective mutants originally identified five proteins, SAS-6, SAS-4, SAS-5, SPD-2 and
ZYG-1, essential for centriole formation [15–22]; relatives of these proteins were quickly located
across eukaryotic evolution [23,24]. SAS-6 was perceived as a key protein for centriole symmetry,
as immunolocalisation electron microscopy and sub-diffraction fluorescence microscopy studies
placed this protein in cartwheels [25–27]. X-ray crystallography studies showed that SAS-6 comprises
a globular N-terminal domain followed by a long coiled coil (Figure 1) and a C-terminal disordered
region. SAS-6 strongly dimerises in vitro and in vivo via its coiled-coil domain, and protein dimers
further interact via their N-terminal domains to form oligomers with 9-fold radial symmetry on
average [28–31]. The SAS-6 N-terminal domain bears strong structural resemblance to similar domains
of XRCC4 and XLF (Figure 2), proteins involved in DNA repair and non-homologous end joining.
Further, similar to SAS-6, XRCC4 forms dimers via a coiled-coil domain, and it hetero-oligomerises
with XLF via the globular N-terminal domains to form a spiral [32–36].
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Figure 1. SAS-6 oligomerisation. A SAS-6 ring containing nine protein dimers is shown. SAS-6
self-assembles into rings via two dimerisation interfaces mediated by (A) an N-terminal globular
domain (NN) and (B) a coiled coil (CC) 35 to 50 nm long, depending on species. The full extent of the
SAS-6 coiled coil and a disordered C-terminal protein region are not shown. Hinge regions connecting
the SAS-6 N-terminal domains with the coiled coil are indicated by red circles in (B).
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Figure 2. Comparison of SAS-6 to structurally similar proteins. (A) SAS-6; (B) XRCC4; and (C) XLF 
proteins display structurally related N-terminal globular domains and helical dimerisation regions, 
which comprise coiled coils in SAS-6 and XRCC4. Superposition of the N terminal domain of SAS-6 
with XLF (D) and XRCC4 (E) (a single chain is shown for clarity). 

Most SAS-6 oligomers resolved to date are highly reminiscent of cartwheel rings, with a central 
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cartwheel spokes [28,29,31]. Furthermore, disruption of SAS-6 oligomerisation abrogates formation 
of the central centriole scaffold and strongly hinders organelle assembly [29,31]. Thus, SAS-6 
oligomers are thought to comprise the centriole cartwheels, thereby influencing the radial symmetry 
of this organelle [26,37]. 

Although the tertiary structure of SAS-6 is highly conserved amongst homologues, there exists 
both subtle and large variations in oligomer morphologies. For example, Caenorhabditis elegans SAS-6 
(CeSAS-6) self-assembles into a spiral [30] rather than the planar rings observed in the 
Chlamydomonas reinhardtii (CrSAS-6; [31]), Danio rerio (DrSAS-6; [29]) and Leishmania major (LmSAS-6; 
[28]) variants of the same protein. Furthermore, there is substantial heterogeneity in the intrinsic 
symmetry of SAS-6 oligomers, both inferred by X-ray crystallography and directly visualised by 
microscopy. Here, we summarise the structural differences seen across SAS-6 variants, with 
emphasis on the symmetry of protein oligomers, and discuss how SAS-6 variants may support the 
formation of a highly conserved organelle architecture with strict symmetry requirements. 

2. SAS-6 Rings 

Initial insight into the symmetry of SAS-6 oligomers was obtained through in silico models, 
where oligomer symmetry was inferred by combining separate crystal structures of SAS-6 constructs 
comprising dimers of the N-terminal globular domain (NN interface) or coiled-coil dimers (CC 
interface). Such studies suggested that SAS-6 oligomers feature radial symmetries close to the 
canonical centriolar 9-fold arrangement, although significant symmetry variations were observed 
that could be attributed to artefacts of crystallisation or protein conformational heterogeneity. For 
example, there exist three crystallographic models of the CrSAS-6 NN interface and one of the 
CrSAS-6 CC interface [31]; thus, three different oligomer variants can be built depending on the NN 
interface model employed resulting in 9.6- to 10.1-fold radial symmetry. Similarly, when DrSAS-6 
oligomers are built from available crystal structures a variation in oligomer architecture is observed, 
with DrSAS-6 forming either an 8-fold symmetric shallow spiral or an 8-fold symmetric ring [29], 

Figure 2. Comparison of SAS-6 to structurally similar proteins. (A) SAS-6; (B) XRCC4; and (C) XLF
proteins display structurally related N-terminal globular domains and helical dimerisation regions,
which comprise coiled coils in SAS-6 and XRCC4. Superposition of the N terminal domain of SAS-6
with XLF (D) and XRCC4 (E) (a single chain is shown for clarity).

Most SAS-6 oligomers resolved to date are highly reminiscent of cartwheel rings, with a central
hub derived from the N-terminal globular domains and the SAS-6 coiled coils comprising the cartwheel
spokes [28,29,31]. Furthermore, disruption of SAS-6 oligomerisation abrogates formation of the central
centriole scaffold and strongly hinders organelle assembly [29,31]. Thus, SAS-6 oligomers are thought
to comprise the centriole cartwheels, thereby influencing the radial symmetry of this organelle [26,37].

Although the tertiary structure of SAS-6 is highly conserved amongst homologues, there exists
both subtle and large variations in oligomer morphologies. For example, Caenorhabditis elegans SAS-6
(CeSAS-6) self-assembles into a spiral [30] rather than the planar rings observed in the Chlamydomonas
reinhardtii (CrSAS-6; [31]), Danio rerio (DrSAS-6; [29]) and Leishmania major (LmSAS-6; [28]) variants of
the same protein. Furthermore, there is substantial heterogeneity in the intrinsic symmetry of SAS-6
oligomers, both inferred by X-ray crystallography and directly visualised by microscopy. Here, we
summarise the structural differences seen across SAS-6 variants, with emphasis on the symmetry of
protein oligomers, and discuss how SAS-6 variants may support the formation of a highly conserved
organelle architecture with strict symmetry requirements.

2. SAS-6 Rings

Initial insight into the symmetry of SAS-6 oligomers was obtained through in silico models,
where oligomer symmetry was inferred by combining separate crystal structures of SAS-6 constructs
comprising dimers of the N-terminal globular domain (NN interface) or coiled-coil dimers
(CC interface). Such studies suggested that SAS-6 oligomers feature radial symmetries close to
the canonical centriolar 9-fold arrangement, although significant symmetry variations were observed
that could be attributed to artefacts of crystallisation or protein conformational heterogeneity. For
example, there exist three crystallographic models of the CrSAS-6 NN interface and one of the CrSAS-6
CC interface [31]; thus, three different oligomer variants can be built depending on the NN interface
model employed resulting in 9.6- to 10.1-fold radial symmetry. Similarly, when DrSAS-6 oligomers are
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built from available crystal structures a variation in oligomer architecture is observed, with DrSAS-6
forming either an 8-fold symmetric shallow spiral or an 8-fold symmetric ring [29], while LmSAS-6
inferred oligomer symmetry ranges from 7.8- to 11.3-fold [28]. The variation in oligomer symmetry
from different SAS-6 crystallographic models is summarised in Figure 3A.

Symmetry 2017, 9, 74  4 of 10 

 

while LmSAS-6 inferred oligomer symmetry ranges from 7.8- to 11.3-fold [28]. The variation in 
oligomer symmetry from different SAS-6 crystallographic models is summarised in Figure 3A. 

 

Figure 3. Analysis of variation in SAS-6 oligomer symmetry. (A) Variation of symmetry in SAS-6 
oligomers [28–31] inferred from crystal structures (black circles) or directly visualised by electron 
microscopy (grey bars). (B) Variation in oligomer symmetry of wild type [37] and engineered 
CrSAS-6 [31] (denoted as in panel A). (C,E) Fluctuations in LmSAS-6 (C) and CeSAS-6 (E) oligomer 
symmetry over a 100-ns molecular dynamics (MD) simulation. Triplicate simulations are shown in 
blue, green and orange. (D,F) Frequency of LmSAS-6 (D) and CeSAS-6 (F) oligomer symmetry 
derived from 10,000 conformations where both NN and CC interfaces are varied. 

Heterogeneity in symmetry was also observed in in vitro experiments where SAS-6 oligomers 
were reconstituted and their symmetry directly examined. For example, rotary metal shadowing 
electron microscopy (EM) of CrSAS-6 oligomers revealed the formation of rings with variable 
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atomic force microscopy (AFM) studies [37,38] of the same oligomers (Figure 4A). These 
experiments argued that symmetry differences inferred from the SAS-6 crystallographic structures 
did not represent artefacts, but rather genuine protein flexibility at the SAS-6 NN and CC interaction 
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Figure 3. Analysis of variation in SAS-6 oligomer symmetry. (A) Variation of symmetry in SAS-6
oligomers [28–31] inferred from crystal structures (black circles) or directly visualised by electron
microscopy (grey bars). (B) Variation in oligomer symmetry of wild type [37] and engineered
CrSAS-6 [31] (denoted as in panel A). (C,E) Fluctuations in LmSAS-6 (C) and CeSAS-6 (E) oligomer
symmetry over a 100-ns molecular dynamics (MD) simulation. Triplicate simulations are shown in
blue, green and orange. (D,F) Frequency of LmSAS-6 (D) and CeSAS-6 (F) oligomer symmetry derived
from 10,000 conformations where both NN and CC interfaces are varied.

Heterogeneity in symmetry was also observed in in vitro experiments where SAS-6 oligomers
were reconstituted and their symmetry directly examined. For example, rotary metal shadowing
electron microscopy (EM) of CrSAS-6 oligomers revealed the formation of rings with variable diameters
corresponding to 7.8 to 9.4-fold radial symmetry [31], a conclusion also supported by atomic force
microscopy (AFM) studies [37,38] of the same oligomers (Figure 4A). These experiments argued
that symmetry differences inferred from the SAS-6 crystallographic structures did not represent
artefacts, but rather genuine protein flexibility at the SAS-6 NN and CC interaction interfaces which
drive oligomerisation. Atomistic molecular dynamics (MD) simulations of CrSAS-6 performed
previously [37], and similar work on LmSAS-6 presented here (described in Appendix A), showcase
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this conformational flexibility. In this type of analysis, SAS-6 oligomers are built using a fixed model
of one interface from crystallography and variable models of the second interface derived from
snapshots of the interface MD trajectory. The resulting SAS-6 oligomers show substantial fluctuations
in symmetry; for example, CrSAS-6 oligomers built using a simulated NN interface range from 7- to
13-fold symmetry [37], while we noted 6- to 23-fold symmetries for LmSAS-6 oligomers built from
a simulated CC interface (Figure 3C). Furthermore, we derived 10,000 distinct oligomer models of
LmSAS-6 by combining independent MD simulations of the NN and CC dimerization interfaces
(Figure 3D), and noted that a substantial fraction (24.5 ± 2.7%) of LmSAS-6 oligomers acquire 12-fold
or larger symmetries, with a mean oligomer symmetry at approximately 10-fold.
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Figure 4. In vitro visualisation of SAS-6 oligomers. (A) Atomic force microscopy images of CrSAS-6
oligomers forming rings. Left panel presents an overview of the sample; right panel magnifies the
indicated region. Reprinted with permission from [38]. Copyright 2014 American Chemical Society.
(B) Negative stain transmission electron microscopy images of CeSAS-6 protein spirals [30]. Left panel
shows long CeSAS-6 double spirals; white arrowheads denote points at which individual strands of
the double spirals separate or come together. Right panel shows a magnified view of isolated CeSAS-6
spiral strands.

3. SAS-6 Spirals

Although C. elegans centrioles show strong structural and functional conservation compared
to those of other species [28,29,31], crystallographic and electron microscopy studies of CeSAS-6
suggested that this protein variant forms spiral oligomers rather than rings. Interestingly, despite the
limited sequence similarity between CeSAS-6 and its homologues [24,39,40], both the overall SAS-6
architecture of a globular N-terminal domain succeeded by a coiled coil and the tertiary structure of the
N-terminal domain itself were highly similar. Rather, the discrepancy of SAS-6 oligomeric architecture
between C. elegans and other organisms appears to originate at the protein region connecting the
N-terminal domain and the coiled coil, known as the hinge (Figures 1 and 5). There, in ring-forming
SAS-6, invariably exists a small amino acid residue, typically glycine or alanine. In contrast, in the
spiral forming CeSAS-6 this position is occupied by a valine (Figure 5); a valine is also found at
the hinge position of XRCC4, which forms spirals similar to CeSAS-6 [32,34–36]. The steric effect
imposed by the valine in CeSAS-6 moves the coiled-coil helix relative to the N-terminal domain by
approximately 40◦ compared to other SAS-6 variants [30], thereby driving successive CeSAS-6 dimers
out of the horizontal plane and into a steep spiral of ~30 nm pitch. Such CeSAS-6 spirals were observed
to intertwine in vitro (Figure 4B); thus, it was proposed that in C. elegans centrioles two CeSAS-6 spirals
may form a central scaffold analogous to the cartwheel [30].

Similar to SAS-6 from other species, oligomers of CeSAS-6 inferred from crystallographic
structures of the NN and CC interfaces show substantial variation in symmetry ranging from
approximately 9- to 11-fold per turn of an intertwined spiral (Figure 3A), thus suggesting the presence
of conformational flexibility in the NN and CC interfaces. Indeed, direct visualization of CeSAS-6
spiral oligomers by negative stain EM demonstrated an even broader symmetry distribution from
7- to 11-fold; it is therefore possible that the structural variation seen in crystallographic structures
underestimates the true degree of interface flexibility. MD simulations of the CeSAS-6 CC interface
resulted in spiral SAS-6 oligomers of 7- to 16-fold symmetry (Figure 3E; [37]); more strikingly,
when combining simulations of the NN and CC interfaces, CeSAS-6 oligomer symmetries ranged from
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6.4- to 16-fold, with a mean symmetry of 8.8-fold (Figure 3F). This indicates that, despite the steric
clash at the hinge region imposed on CeSAS-6, the protein remains flexile and able to accommodate
a range of oligomer symmetries.Symmetry 2017, 9, 74  6 of 10 
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with the hinge valine of CeSAS-6 shown in the green sphere representation.

4. Discussion

Crystallographic, biophysical and computational analysis of the SAS-6 NN and CC interfaces
suggest that these exhibit substantial flexibility, which in turn leads to heterogeneity of SAS-6 oligomers.
Thus, SAS-6, if acting alone, would have given rise to highly variable cartwheels and centrioles;
however, centriole symmetry is strictly controlled in vivo which suggests that additional factors
or proteins beyond SAS-6 influence the radial organisation of this organelle. This conclusion was
reinforced by a very recent study where CrSAS-6 was subjected to rational engineering [37]. There,
amino acid variants of the NN interface produced CrSAS-6 oligomers with symmetries ranging
from 5- to 10-fold as judged by crystallography, negative stain EM and AFM (Figure 3B). However,
centrioles in C. reinhardtii cells incorporating these CrSAS-6 variants almost always retained 9-fold
symmetry; the sole exception was a CrSAS-6 variant giving rise to 5-fold symmetric oligomers in vitro
that produced a 2:1 ratio of 9- and 8-fold symmetric centrioles in vivo. Thus, it is clear that while
SAS-6 plays a central role in determining centriole symmetry, the organelle architecture must also
be dependent on other factors. We note, for example, that null mutants of C. reinhardtii bld10, a gene
orthologous to human cep135, generate centrioles with variable numbers of microtubule blades,
indicating that Bld10 protein may also contribute to centriolar symmetry [41].

How may SAS-6, Bld10/Cep135 and microtubules work together to determine centriole
symmetry? A likely relevant observation is that cartwheel diameter, primarily determined by the length
of the SAS-6 coiled coil plus Bld10/Cep135, instructs the diameter and hence the circumference of
centrioles. This, in turn, governs the number of microtubule blades that can be accommodated around
the perimeter of the centriole central core. On the other hand, the size of microtubule blades and the
geometry of the linkers connecting them also define a preferred circumference for centrioles. Thus, strict
organelle 9-fold symmetry may emerge as a result of coinciding but independent weak circumference
preferences derived by SAS-6 and Bld10/Cep135, and microtubules at the centriole outer wall. In this
manner, different SAS-6 and Bld10/Cep135 variants in organisms, or expression of different protein
isoforms in different cell types, could lead to different cartwheel diameters and hence shift organelle
symmetry towards different modal points. Although speculative, such molecular processes may
account for observations in Acerentomon centrioles, which possess 9-fold symmetry in somatic cells but
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14-fold symmetry in spermatocytes with a corresponding enlargement of diameter [42]. Alternatively,
different SAS-6 and Bld10/Cep135 isoforms could be accommodated in centrioles without varying
symmetry by changing the size of microtubule blades at the outer organelle wall in a compensatory
manner. We note, for example, that D. melanogaster germ line centrioles possess a triplet of microtubules
in each organelle blade, while centrioles in somatic cells have microtubule doublets [43].

Further molecular mechanisms may of course influence centriole symmetry; for example, work
in human cells has suggested that pre-existing centrioles may template newly assembled organelles
through possible interactions of new SAS-6 cartwheels with the mother centriole lumen [44,45].
However, it is worth noting that the lumen of human centrioles becomes vacant, and hence available
to template new cartwheels, only due to SAS-6 degradation during the G1 phase [1]. Other organisms,
such as C. reinhardtii and C. elegans, do not degrade SAS-6 in the same manner; hence, template-based
assembly of new SAS-6 cartwheels cannot account for strict centriole symmetry in these species.

Cryo-electron tomography of Trichonympha sp. [46,47] and C. reinhardtii [48] centrioles revealed
that the spokes of successive SAS-6 rings merge as they radiate outwards, leading to stacking of SAS-6
rings with a periodicity of approximately 8.5 nm at the central hub and 17 nm at the end of spokes
(Figure 6A). SAS-6 stacking periodicity aligns with the axial periodicity of microtubules at the outer
centriole wall. C. elegans centrioles, in contrast, likely use a different mechanism to reach the same
periodicity. In EM of fixed C. elegans embryos an electron lucent centriole centre was observed with no
evidence of aligned, or merged, cartwheel spokes [49,50], which was interpreted as possible evidence
for a centriole cartwheel formed by CeSAS-6 spirals rather than stacked rings. Reconstructions of
such CeSAS-6 spirals from the crystallographic structures show successive spokes with 16 nm axial
periodicity, thereby aligning with microtubules, but offset by a ~20◦ angle [30]. In this manner,
CeSAS-6 spokes do not align to give rise to strong electron scattering (Figure 6B). Thus, we surmise
that both spiral and ring SAS-6 arrangements may be present in centrioles, as they both provide contact
points with the microtubule wall at equivalent spacing and hence can be accommodated with no
additional alterations of the centriole architecture.
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Figure 6. SAS-6 oligomer structural comparison. (A) A CeSAS-6 spiral oligomer is shown in blue
alongside a stack of LmSAS-6 cartwheels in green. The distance between equivalent spokes is indicated;
(B) A tilted view of a CeSAS-6 spiral as in panel A with consecutive spoke ends indicated; the rotational
offset between spokes is evident; (C) Top view of panel A with a CeSAS-6 spiral and LmSAS-6 cartwheel
stack overlaid, showing the spoke distribution from the alternative SAS-6 oligomeric structures.
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In summary, the conformational flexibility observed in SAS-6 oligomers suggests it is unlikely
this protein alone dictates centriole symmetry. Rather, SAS-6 and other protein factors, including
Bld10/Cep135 and microtubules, collaborate to strictly define the radial appearance of this organelle.
In contrast, different SAS-6 oligomeric architectures, spirals and rings, can be accommodated
equally well within a cylindrical microtubule wall, and thus may be both present in centrioles from
different species.
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Appendix A

SAS-6 dimer loops were modelled using modeller v9.12 and the resulting models used to
initiate 100-ns long MD simulations in simple point charge (SPC) water using the OPLS-AA/L
forcefield at 310 K and Na and Cl ions added to neutalise charge. Pressure was maintained using the
Parrinello-Rahman barostat [51] and temperature was maintained using the V-rescale thermostat [52].
Simulations were run and analysed in GROMACS v4.6 [53] with a 2-fs timestep and frames were
recorded every 10 ps. Trajectories were visualised in PyMOL v1.7.x [54] and Chimera v1.10.2 [55].
Protein data bank (PDB) codes used in MD simulations: 4CKN, 4CKM [28], 4GFC, 4G79 [30].
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