symmetry MBPY

Article
Adaptive Job Load Balancing Scheme on Mobile
Cloud Computing with Collaborative Architecture

Byoungwook Kim !, Hwirim Byun 2, Yoon-A Heo ? and Young-Sik Jeong %*

1 Creative Informatics & Computing Institute, Korea University, Seoul 02841, Korea;

Byoungwook.kim@inc korea.ac.kr

Department of Multimedia Engineering, Dongguk University, Seoul 04620, Korea;
hazzzly@dongguk.edu (H.B.); hyagood@dongguk.edu (Y.-A.H.)

* Correspondence: ysjeong@dongguk.edu; Tel.: +82-2-2260-3374

Academic Editor: Ka Lok Man
Received: 28 January 2017; Accepted: 25 April 2017; Published: 29 April 2017

Abstract: The adaptive mobile resource offloading (AMRO) proposed in this paper is a load balancing
scheme for processing large-scale jobs using mobile resources without a cloud server. AMRO is
applied in a mobile cloud computing environment based on collaborative architecture. A load
balancing scheme with efficient job division and optimized job allocation is needed because the
resources for mobile devices will not always be provided consistently in this environment. Therefore,
a job load balancing scheme is proposed that considers personal usage patterns and the dynamic
resource state of the mobile devices. The delay time for computer job processing is minimized
through dynamic job reallocation and adaptive job allocation in the disability state that occurs due to
unexpected problems and to excessive job allocations by the mobile devices providing the resources
for the mobile cloud computing. In order to validate the proposed load balancing scheme, an adaptive
mobile resource management without cloud server (AMRM) protocol was designed and implemented,
and the improved processing speed was verified in comparison with the existing offloading method.
The improved job processing speed in the mobile cloud environment is demonstrated through job
allocation based on AMRM and by taking into consideration the idle resources of the mobile devices.
Furthermore, the resource waste of the mobile devices is minimized through adaptive offloading and
consideration of both insufficient and idle resources.

Keywords: mobile cloud computing; collaborative architecture; offloading; mobile resource
management; dynamic scheduling algorithm

1. Introduction

Mobile cloud computing (MCC) is a technology that uses computing resources outside of the
mobile device [1-5]. For the efficient processing of large-scale jobs, the mobile device must send jobs
to an external cloud server. Recently, many studies have been conducted on the technology required
for offloading processing jobs to external computer resources and for receiving the processed results,
thereby overcoming the hardware limitations of the mobile devices [6-10].

Where the cloud computing architecture uses a server with high computing power, offloading has
inherent security problems such as transmission delays and data leakage, which can occur during
network-dependent computing data transmission. Therefore, most of the existing studies are
focused on the creation of boundaries for security or on the use of relays to improve transmission
speed [1,6,8,10,11]. Such offloading methods can be applied efficiently if the server has sufficient
computing power and only the transmission of computing data is required. However, no offloading
technologies exist for processing large-scale jobs in an environment where the connection with the cloud
server is not smooth or where the mobile device computing resources are limited. As an alternative

Symmetry 2017, 9, 65; d0i:10.3390/sym9050065 www.mdpi.com/journal /symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
http://www.mdpi.com/journal/symmetry

Symmetry 2017, 9, 65 2of 14

approach to solving the problem of disconnection from the cloud server, the provision of computing
services designed only for mobile devices should be researched. In other words, a computing service
method is needed that receives resources and services for processing large-scale jobs from other,
neighboring, mobile devices and considers the resource state of each mobile device [12-16].

In this research, adaptive mobile resource offloading (AMRO) is proposed, which is a load
balancing scheme for processing large-scale jobs using only mobile resources with no external
cloud server. This would take place in a mobile cloud computing environment and be based on
collaborative architecture among the MCC environments [9]; and would consist of service-oriented
architecture, agent-client architecture, and collaborative architecture. This environment would require
a load balancing scheme with efficient job division and optimized job allocation, because we cannot
assume that the resources of mobile devices will always be provided consistently in this environment.
Therefore, a job load balancing scheme is proposed that considers the personal usage patterns and
dynamic resource state of the mobile devices. The delay time for computer job processes is minimized
through the dynamic job reallocation and adaptive job allocation in the disability state that can arise due
to unexpected problems and excessive job allocation to the mobile devices providing the resources for
mobile cloud computing. To validate the proposed load balancing scheme, the adaptive mobile resource
management without cloud server (AMRM) protocol was designed and implemented, and improved
processing speed was verified in comparison to the existing offloading method. Improved job
processing speed in the mobile cloud environment is demonstrated through job allocation based
on AMRM, which considers the idle resources of the mobile devices. Furthermore, the resource
waste of mobile devices is minimized through adaptive offloading taking into consideration both the
insufficient resources and the idle resources.

2. Related Work

In this section, the basics of offloading in the existing mobile computing environment and the
advantages and disadvantages of offloading methods are described.

Balan et al. [11] investigated the offloading of computations through Spectra, which is
an integrated dictionary setup service working through remote procedure call (RPC). Spectra refer to
a database that contains the current availability of servers, CPU load, and so on. As an RPC system
that combines mobile devices and servers through applications, Spectra proposed a new framework
applicable to MCC and a concrete offloading method.

Kemp et al. [17] proposed Cukoo which is a system for offloading mobile device applications
in a cloud. They used Java virtual machine (JVM) to implement, in Android, a method of creating
a personal mini-cloud consisting of notebook computers or local clusters, such as the commercial
offloading service provided by Amazon EC2. They proved that through Cukoo they were able to
improve performance and battery efficiency.

Chun et al. [18] proposed CloneCloud, which is a system for automatically converting mobile
applications to use a cloud. CloneCloud has implemented a framework for offloading through the
network some of the workload of applications to a server with sufficient resources.

Clark et al. [19] implemented a virtual machine migration that sends a memory image from
a source server to a destination server. To copy the dictionary without interruption, during the live
migration the memory page of the virtual machine provides the illusion of smooth migration to protect
the code during the offloading of the program, and security is guaranteed through the boundary of the
virtual machine. However, this method has the shortcoming of workload, as it requires too much time
for the virtual machine migration, making it too heavy to apply to mobile devices.

Kristensen [20] proposed a framework, Scavenger, which uses the mobile code method for
offloading through Wi-Fi. A cost-assessment method was implemented on the basis of the speed of
a surrogate server through a scheduler, and mobile devices offload to more than one surrogate server
using this framework.

Symmetry 2017, 9, 65

3of 14

Figure 1 shows Niroshinie Fernando’s proposed classification for the offloading of mobile cloud
computing into five types from the aspect of functional extension according to structure [9].

Network

Mobile Device
Single Virtual Machine Server

Network

Mobile Device
Multi Virtual Machine Server

Surrogate Server

Surrogate Server

Mobile Device

App
oS
Virtual
Machine Layer

Physical

Physical
Hardware

Mobile Device

Network

Client-Server Communicati

Network

Surrogate Server

Surrogate Server

Server Mobile Agent

Figure 1. Classification of offloading on mobile cloud computing.

Table 1 outlines the merits and demerits that can be expected when applying these offloading

methods to actual MCC [9].

Table 1. Characteristics of offloading methods.

Classification

Merits

Demerits

Client-server communication

Most effective for single
service processing

Difficult in coping flexibly with
various mobile
application environments

Single virtual machine server

Advantageous for single
process collaboration

Has issues in processing data such
as personal information

Multi virtual machine servers

Advantageous for processing data
such as personal information

Inefficient for mobile clouds with
intermittent connection type

Client mobile agent

Usable even in an unstable
network environment

Need to use network data for
agent transmission

Server mobile agent

Possible to achieve fast
processing speed

Limited to mobile agent services
provided by the server

3. Mobile Resource Management without Cloud Server

In this section, Mobile Resource Management without Cloud Server (MRM) is introduced, which is

a resource pool environment set up for mobile devices functioning only in the environment and with no
cloud server or with poor connection in a mobile cloud computing structure and based on collaborative
architecture. MRM can continuously use and manage mobile resources even in troubled situations,
such as failure or disconnection of the cloud server. The mobile device that acts as a server in the mobile
computing infrastructure plays the role of scheduler and controller for joint jobs. Figure 2a shows the
basic conceptual structure of MRM, and Figure 2b shows three steps for MRM construction [21].

The MRM Configuration clusters connected mobile resources on a network, divides devices into
client and master devices, and sets and activates master devices in line with their roles. The MRM
Management continuously verifies the connections of mobile resources in the configured mobile cloud
environment, and excludes disconnected resources or adds new resources. The MRM Service performs

Symmetry 2017, 9, 65 4 of 14

distributed processing for requested large-scale jobs and responds to problems in the client or master
device. The MRM only uses the static and dynamic resources (MAC, IP, CPU, and memory) of the
mobile devices. The static and dynamic metadata for mobile resources are outlined in Table 2.

N, Distributed Processing
Y Mobile Device Fault Tolerance
Master Device Fault Tolerance
Controller/Scheduler T

DL

o) Integrating MRM
Master Mobile Device et l l 10 Service
g f Mobile Device Connection Mobile Device
Resource N L ‘Add Mobile Device
\ Delete Mobile D
\ s
& MRM et i
b
), N j \ 1 Management
(Mobile Device l . _am_p
\ Resource] ’ 4
Mobile Device
_ Resource Clustering Mobile Resources
T = . e
_/Mobile Device
ezoire : Lh
Mobile Resource Pool
(a) (b)

Figure 2. Basic architecture and three steps for mobile resource management construction.
(a) Conception architecture of mobile resource management without cloud server (MRM). (b) Three

steps for MRM construction.

Table 2. Mobile resource static and dynamic metadata.

Attributes Static Resource Metadata Dynamic Resource Metadata
MAC MAC address of the corresponding client device
1P IP address of the corresponding client device
Number of CPU cores of the corresponding Current CPU share of the corresponding
CrPuU
client device client device (%)
Memor Memory size of the corresponding client Current memory share of the corresponding
y device (MB) client device (%)

MRM uses the dynamic resource information for the mobile device at the time of distribution
for dynamic job allocation. The processing steps are illustrated in Figure 3. As shown in Figure 3-D,
a client device requests resources from a master device. As shown in Figure 3-©2), the master device
then creates job distribution metadata (JDM), which is a job distribution table based on the collected
dynamic resource information. The configuration of JDM is outlined in Table 3.

E

Client Device #1
© Generate JDM based on
job \ Dynamic Resource Metadata
3

Client Device #7 g
Master Device

Client Device #6 Client Device #2

Client Device #5
Incomplete jobs Request Device job
Large-scale job

Client Device #4

jobs

© Transmit Result

i Client Device #3
jobs

Figure 3. Load balancing with dynamic resource metadata for large-scale job. JDM: Job distribution metadata.

Symmetry 2017, 9, 65 5o0f 14

Table 3. Configuration of job distribution metadata.

Attributes Description
MAC MAC address of the client device to which a job has been assigned
P IP address of the client device to which a job has been assigned
Job Index Index of the assigned job

Then, as shown in Figure 3-®, the JDM is sent to the device requesting the job, and, as shown in
Figure 3-®, the job requesting device divides the job and sends a part of the job to each client device.
Each client device processes the allocated job and returns the results to the job requesting device.

4. Adaptive Job Load Balancing Scheme

4.1. Execute Model

CPUs of the integrated mobile devices share CPU resources equally to perform multiple jobs.
In this paper, the job execution time is calculated using the Equation (1).

Jobime = §n(—un(Sy < (1=). L (8 % (1-t))

C . —u:
]‘:O Ziczdgmaunt mln(S] X (1_u]), El=l(S] 2(1 u])))

x JobTotal) (1)

The description of the symbols used in Equation (1) is provided in Table 4.

Table 4. Description of used symbols in Equation (1).

Symbols Description
Jobrime Completion time of large-scale job
M Number of mobile devices in MRM
5; Static CPU capacity of mobile device j
Uj CPU usage of mobile device j
C 30's; Cycle of 30 s
JobTotal Requested User Job

An adaptive large-scale job load balancing scheme is proposed for MRM functions considering the
mobile characteristics where unexpected and sporadic personal user application jobs can be executed.
The average CPU usage of mobile users is measured for a specific cycle of 30 s and is used as the average
idle resource information for job distribution. The 30 s used as the measurement cycle for average
CPU usage is the average usage time of smartphones per session of smartphone users, as identified in
the research of Sally Andrews [22]. For information on the average idle resource, the AMRO scheme
is used to improve large-scale job throughput by identifying the average resource used by users.
The average idle resource information is defined as Average Idle Resource Information (AIRI), and the
metadata is transmitted by adding the AIRI to the mobile resource information. For the master device,
an Adaptive Resource Information Table (ARIT) is used in which the Dynamic Resource Information
(DRI) and AIRI are collected, as opposed to the DRIT (Dynamic Resource Information Table) in which
only DRI is collected. The equation for creating JDM using DRI and AIRI is expressed as follows:

DRI, = S] X (1—u]') (2)
c
~ . (S; 1-U;
arry, = Zima(5 X (1= W) 3)
C
min(DRI;, AIRI)
Job; = ! X JobTotal 4)

yCmount min(DRI;, AIRI)
1

Symmetry 2017, 9, 65 6 of 14

where Job; denotes the number of jobs processed by the it mobile resource, Cdamount denotes the total
number of mobile resources configured, DRI; denotes the dynamic idle resource information of the
client device, AIRI; denotes the average idle resource information of the ith client, JobTotal denotes the
total size of the large-scale job. This equation is used to select a value with fewer idle resources among
the DRI and AIRI, and to divide the job accordingly.

When processing a large-scale job in a resource pool consisting of mobile resources only, the AMRO
reallocates jobs according to the idle resource state of the device that is providing resources. If the
processing of an offloaded job is delayed due to the execution of another application or for other
reasons while a device is processing an allocated job, it is defined as a resource trouble. On the other
hand, if an idle resource is generated because another application stops running while a device is
running an allocated job, it is determined to be an idle resource. The equation for the criterion for
determining an idle resource or a resource trouble is as follows:

LargestJobDeviceta1job
CurrentDevicerosaijob

STsecond = X ProcessingTimer st jop 5)

where LargestJobDevicery,j,, denotes the total number of jobs of the mobile resources to which the
largest number of jobs have been allocated, Current Devicerytqijo, denotes the total number jobs that
have been allocated to the current device, and ProcessingTimer,s,, denotes the processing time of
the job that has been processed fastest. A resource trouble occurs when the job processing speed of
the current client device is slower than ST, and an idle resource occurs when it is faster than
STsecond- To reduce unnecessary job reallocations due to the excessive determination of idle resources
and resource troubles, a padding of +10% is applied to the value obtained for ST

4.2. Fault Tolerance Scheme

Figure 4 shows the adaptive processing when a resource trouble occurs in the mobile client while
it is processing an allocated job. As shown in Figure 4-®, a resource trouble is detected when it is
identified to the master device or when the master device receives real-time resource information.
Figure 4-@ shows the process of reallocating a job of a mobile client that has a resource trouble to
an idle resource. A JDM of an incomplete job that has not been processed by the mobile client is created
for a device that has an idle resource. As shown in Figure 4-®, the created JDM is sent to the job request
device. The job request device, as shown in Figure 4-®, sends the incomplete job to a mobile client
that has an idle resource. Figure 4-® shows that the newly allocated incomplete jobs are processed by
devices in reverse order. The device with a resource trouble processes jobs in the specified order and
incomplete jobs in reverse order, thus processing the allocated jobs faster.

<

Client Node #1
4

B 25 “
4.4 @ Processing reverse 2

- = =
Client Node #7 ordér for incomplete job ~ _ Master Node DM
A e
7
y

Generate JDM for
incomplete job of request node

Job T e
Logical Connection Status

&2 // &
7 —
" o Y. Client Node #2
Client Node #6 /// € Detect resource trouble
)
//
" € Send JDM —
V| NoneResourees

V' e -

m) RunUser S8 I I

l) - job Application aa

Client Node #5 Client Node #3

Request Node

DM
(4] Incomplete Job Re-Allocation l I lete Jobs
based on JDM @ 4 Complete Jobs

Client Node #4

jobs

Figure 4. Fault tolerance scheme on adaptive mobile resource offloading (AMRO).

Symmetry 2017, 9, 65 7 of 14

4.3. Idle Resource Scheme

Figure 5 shows the process when an idle resource occurs in the mobile client. In Figure 5-®,
the master device detects an idle resource while collecting resource information from mobile clients.
As shown in Figure 5-@, a JDM is created for an incomplete job based on the job processing status
information that the master device receives. The JDM is sent to the job request device as shown in
Figure 5-®, and the job request device sends the job to the mobile client in a resource idle state as
shown in Figure 5-@. Figure 5-® shows that the newly allocated incomplete jobs are processed in
reverse order.

g F
CRET ¢) Generate JDM for

Client Node #1 incomplete job of

© Processing reverse
request node

order for incomplete job —

= i « jobs A
CACIRN > .

. Detect the remain - :
Client Node #7 © Detecr i DM

4 job e)
Logical Connection Status

-

2 €) Send JDM

Client Node #6

Incomplete Jobs | =

Complete Jobs :'Z'l
jobs 2

obs

J
. Client Node #5 Client Node #3
Request Node

DM —
i
) Incomplete Job Re-Allocation Qs

Client Node #4

Figure 5. Idle resource scheme.

5. AMRM Design and Implementation

5.1. AMRM Design

In this section, the design of AMRM is described: this is a mobile cloud computing service
with no server, which applies AMRO. When AMRO is applied to collaborative architecture using
a high-performance cloud server, a visible comparison of performance may be difficult. Therefore,
the AMRO was applied to the collaborative architecture with no server. Figure 6 shows the overall
composition of the modules of AMRM.

AMRM

MRM MRM
Job Decider Network Controller Heartbeat Manager AIRI Counter
; : | ARIT Manager

Job Processor Device Manager

| |
Job Re-allocator
Resource Resource Cluster AMRO
Collector Manager) Client Resource
Monitor
Job Switcher
/ Resource Manager

-

Storage Viewer Storage

Job Temporary Job Allocate AMRM Resource '“RIST"“P"WY
Storage Monitor Monitor Iorage

Table Storage J

Figure 6. Module diagram of adaptive mobile resource management without cloud server (AMRM).
MRM: Mobile resource management without cloud server.

Table Storage

Connection Monitor I Resource Monitor

Symmetry 2017, 9, 65 8 of 14

Network Controller is responsible for the network connection of mobile devices and is used when
mobile clients are connected to an initial master device. The Job Decider determines the roles of
master and client according to their performance once the mobile cloud environment has been set up.
After the devices share performance information, the Job Decider determines the master device which
performs its allocated role. The master device and the mobile clients periodically communicate with
each other through the Heartbeat Manager, which checks the occurrence of trouble on the basis of
responses. The mobile client and the master device have client and master architectures, respectively,
because they perform different jobs according to their specified roles.

Client is composed of a Job Processor and a Resource Collector. The Job Processor processes
jobs sent from the resource request device. Every mobile client and master device shares the same
Job Processor. In order to process different types of jobs, a new Job Processor must be distributed.
The Resource Collector measures the idle resources of mobile devices and provides this information to
the master device so that jobs can be allocated to idle resources.

Master is composed of the Device Manager and the Resource Cluster Manager. The Device
Manager collects and manages information about the mobile clients in the cloud environment and
copes with any problem that occurs among the mobile clients. The Resource Cluster Manager uses
the mobile client information to determine the job allocation when it receives a job request from
a mobile client.

Job Switcher is used when there is a problem in a mobile client or master device and their roles
must be replaced. When a mobile device discovers a problem in the master device and determines that
it has to play the role of master device based on the resource information, it finishes its client role and
starts to play the master role through the Job Switcher.

Storage is composed of Job Temporary Storage and Table Storage and is used to temporarily store
jobs allocated to mobile clients or to store resource information. Job Temporary Storage receives and
stores information about jobs to be processed by the mobile clients. The mobile client sequentially
performs the jobs stored in Job Temporary Storage. Table Storage is used to temporarily store resource
information and to table information about job distribution.

Viewer is composed of Job Allocate Monitor, AMRM Resource Monitor, Connection Monitor,
and Resource Monitor. It is used to visually check the configuration, management, and services of the
mobile cloud environment. Job Allocate Monitor is used to check the job allocation status through the
AMRO, which makes it possible to check the adaptive offloading process when a problem occurs in
a mobile client. The AMRM Resource Monitor shows the resources of the mobile clients as collected
by the master device. It can see the status of jobs that are being processed by and are allocated to the
mobile clients. In Connection Monitor, a list of the connection states of all mobile resources comprising
the mobile cloud computing environment can be seen. The Resource Monitor shows all resources in
the current mobile cloud, as well as the total resources that each mobile client can provide and the
resources currently being used.

AMRO provides an adaptive mobile resource offloading scheme. The AIRI Counter calculates
AIRI which is the average idle resource of the mobile device over 30 s. The ARIT Manager creates
and manages the table ARIT, which integrates the AIRI received from the mobile clients with DRI.
The Client Resource Monitor receives the AIRI of the mobile clients and determines the job processing
speed. If the job processing speed is determined as fast or slow, jobs are reallocated through the Job
Re-allocator. The Resource Manager configures the currently available resources considering the DRI
and AIRI. The storage of AMRO consists of AIRI Temporary Storage and Table Storage. The AIRI
Temporary Storage temporarily stores the AIRI received from each mobile client. The Table Storage
temporarily stores the ARIT and JDM.

5.2. AMRM Implementation

Figure 7 shows the interfaces of AMRM as implemented on the Android platform, Java, and SDK
Version 23.

Symmetry 2017, 9, 65 9of 14

\1; 2 or— ém_

N’
AMRM Connection AMRM connection wait Resource Monitor - DRI Connection Monitor

MASTER Crent lnfo
Client Device #1
-1P:192.168.0.3
- MAC : 1C-6-65-C8-C2-83
N 3 -DRI:32%
Connecting three clients - AIRI: 43%
Client Device #2
-1P:192.168.0.16

cuent = - MAC : 4D-31-3C-A1-13-34
Resource Monitor - AIRI DRI 12%

~ - AIRL: 10%
3 Client Device #3
-1P:192.168.0.7
- MAC : 40-61-86-89-89-89
\ - DRI: 10%
= AIRI: 23%
. > CHECK WES 30Kt Moste #2192 A1 o F—— =
. A ™ i A -

AMRM Connection Resource Monitor Connection Monitor

[N T

[avRM B AMRM | O M I

AMRM Resource Monitor AMRM Resource Monitor Task Allocate Monitor Task Allocate Monitor

BB = of Device. N # of Device.

4
41 — . =
42

M AN Man AN

A ARM M T~ AR M A ARM [A ARM R

AMRM Resource Monitor Task Allocate Monitor

Figure 7. Interfaces of AMRM.

Figure 7-() shows an interface for devices trying to access in order to configure the mobile cloud
environment of AMRM. The steps are described in detail in the following;:

Step 1-1 The devices start to access as master or client. The device that selected the master role
waits for the access of mobile clients. The devices that selected the mobile client role enter
their IP and the port of the master device and attempt to access the master device through
the network.

Step 1-2 This interface consists of a Check button to check the mobile cloud configuration after
selecting the master or client role and after entering the required information and clicking the
Start button for connection.

Step 1-3 The master device checks the number of currently connected mobile clients. When the
connection of mobile clients is completed, the mobile client configuration is finished.

Figure 7-2 Here the Resource Monitor shows the available resources of the current mobile
resource pool and the total resources after the mobile cloud environment of the AMRM has been set up.

Step 2-1 This interface shows a graph of DRI and AIRI for all mobile clients in the mobile cloud, as
well as Usage, representing their current share and Idle, representing their idle resources.

Step2-2 This interface shows menu buttons that can be used in the service environment of
AMRM, which include Resource Monitor, Job Allocate Monitor, AMRM Resource Monitor,
and Connection Monitor.

Figure 7-® illustrates the Connection Monitor, which shows the real-time resource information of the
mobile clients comprising the AMRM cloud environment.

Step 3-1 The information of connected mobile clients, which is updated according to the update cycle
of resource information.

Symmetry 2017, 9, 65 10 of 14

Figure 7-® shows the state of job processing by each mobile client. The jobs are processed
adaptively through the AMRO.

Step 4-1 This interface shows a graph of the number of jobs allocated to each mobile client. This graph
decreases as the mobile client processes the jobs, and the jobs of devices that have a slow
processing speed are reallocated to mobile clients that have already finished their jobs.

Step 4-2 This interface shows the results of the device state as determined by the AMRO and the
reallocation results as logs.

Figure 7-® provides progress information about job reallocation through the AMRO.

Step 5-1 This interface visually shows the total number of jobs allocated to each mobile client.
The devices with faster processing speeds process more jobs through the AMRO.

Step 5-2 This interface shows the results of the device state as determined by the AMRO and the
reallocation results as logs.

6. Performance Evaluation

To evaluate the performance of AMRO, the same jobs were performed using different offload
methods in the MRM cloud environment and the time until job completion was measured. The relative
performance of each offload method was evaluated based on the average of the measured times.
The offload methods used in this performance evaluation were static resource information offload,
dynamic resource information offload, and AMRO. The static resource information offload allocates
jobs only according to the static information of the mobile devices. Static device information refers
to SRI, that is, the CPU and RAM of the device. Performance changes by jobs are not considered.
The dynamic resource information offload uses DRI at the time of the offload. Jobs are offloaded based
on the current idle resources of the mobile devices. AMRO offloads jobs using both AIRI and DRI and
adaptively reallocates jobs.

Figure 8 shows a comparison of cases where the mobile device does not run any other processes
apart from providing resources to the mobile cloud computing. The times that elapsed during 100, 200,
500, and 1000 jobs in the same mobile cloud environment were measured. In experiments of 500-job
and 1000-job processing, 100 and 200 jobs do not exhibit the result of static resource information in
Figure 8. The measurements were divided into four units because job processing in a small unit cannot
clearly portray the difference in time taken. The static resource information offload method for 500 and
1000 jobs was excluded from the verification because it took too much time compared with the other
offload methods. The dynamic resource information offload and the AMRO showed similar processing
times, but the static resource information offload was slower and had a less accurate performance
measure as compared to the other two offload methods.

Figure 9 shows the processing time when the resource state changed due to the execution of
a high-priority process in some mobile clients, which supplies resources three seconds after the job
started. The executed process here creates a delay of three seconds regardless of the device performance.
The times required for the processing of 100, 200, 500, and 1000 jobs were measured.

As shown Figure 9, the result of evaluation has the same experimental environments for the
static resource information. Here AMRO showed a faster processing speed than the dynamic resource
information offload through job reallocation, and the static resource information offload still showed
the slowest processing speed.

In this research, AMRO evaluated the performance of random-allocation, static-allocation and
dynamic-allocation according to increasing number of jobs as shown Figure 10 with 9 mobile devices
on Android. Random-allocation decides the client node to allocate through random generation of
a master node. As shown Figure 10, AMRO and dynamic-allocation exhibit the result of performance
more than random/static-allocation. Additionally, AMRO is effective at about 59.32% for 100 jobs
versus dynamic-allocation, about 33.66% for 200 jobs, about 32.78% for 500 jobs and about 7.58% for
1000 jobs, respectively.

Symmetry 2017, 9, 65 11 0f 14

processed jobs processed jobs
100 200
20 180
80 160
70 140
60 120
50 100
40 80
30 60
20 40
10 20
0 seconds 0 seconds
1 2 3 4 5 1 2 3 4 5 6 7 8 9 10
= Dynamic Resource Information esssAMRO e====Static Resource Information e Dynamic Resource Information e AMRO === Static Resource Information
100 Jobs 200 Jobs
processed jobs processed jobs
500 1000
450 900
400 800
350 700
300 600
250 500
200 400
150 300
100 200
50 100
J seconds ¢} seconds
1 2 3 a4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22
== Dynamic Resource Information s====AMRO e Dynamic Resource Information e AMRO
500 Jobs 1000 Jobs

Figure 8. Job processing time with idle status resources.

processed jobs processed jobs
100 200
90 180
80 160
70 140
60 120
50 100
40 80
30 60
20 40
10 20
o seconds 0 seconds
1 2 3 4 5 6 1 2 3 4 5 6 7 8 9 10 11
e Dynamic Resource Information ess=AMRO e====Static Resource Information e Dynamic Resource Information e AMRO === Static Resource Information
100 Jobs 200 Jobs
processed jobs processed jobs
500 1000
450 900
400 800
350 700
300 600
250 500
200 400
150 300
100 200
50 100
0 seconds 0 seconds
i 2 3 4 s 6 7 8 9 10 11 12 13 14 123 456 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24
e Dynamic Resource Information — esss=AMRO ‘e Dynamic Resource Information ess==AMRO
500 Jobs 1000 Jobs

Figure 9. Job processing time with dynamic resource status.

Symmetry 2017, 9, 65 12 of 14

For verification of our execute model of AMRO, 100 jobs was compared to the average value
of simulated mobile devices in Figure 11. As shown Figure 11, AMRO is significantly faster than
static-allocation and dynamic-allocation and the efficiency of actual execution environment is about
49.08% higher than simulation.

seconds

70 -
60 -
50
= random-allocation
40 static-allocation
L dynamic-allocation
30 1 AMRO
/ —1 —
20
10 - r l
0 - : ; ; =)
100 jobs 200 jobs 500 jobs 1000 jobs number of jobs

Figure 10. Comparisons according to increasing jobs of random-allocation, static-allocation,
dynamic-allocation, and AMRO.

seconds

simulation static-allocation dynamic-allocation AMRO kinds of job allocation

Figure 11. Comparison of random-allocation, static-allocation, dynamic-allocation, and AMRO.

7. Conclusions

This paper proposed an AMRO approach, which is an offload method that can respond to
changes in the resource of mobile devices. For AMRO, an adaptive mobile resource offloading scheme
was constructed to efficiently use the resources of mobile devices in the mobile cloud environment.
The AMRM was designed and implemented to verify whether the proposed method had actually
improved the processing speed compared to the existing offloading method. The AMRO increased
the job processing speed in the mobile cloud environment through job allocation by considering the
idle resources of mobile devices. Furthermore, the wastage of the idle resources of the mobile devices
could be minimized by adaptive offloading through the identification of insufficient resources and
idle resources. Thus, the AMRO offloading method was found to minimize the waste of resources in
the mobile cloud environment when it consisted of mobile devices only with no cloud server. In the
future, offloading methods for a mobile cloud environment with heterogeneous devices which includes
mobile devices will be researched.

Symmetry 2017, 9, 65 13 of 14

Acknowledgments: This work was supported by the Dongguk University Research Fund of 2016
(5-2016-G0001-00019) and was also supported by the MSIP (Ministry of Science, ICT and Future Planning),
Korea, under the ITRC (Information Technology Research Center) support program (IITP-2017-2013-0-00684)
supervised by the IITP (Institute for Information & communications Technology Promotion).

Author Contributions: All the authors contributed equally to this work. All authors read and approved the
final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sonkar, S.K.; Kharat, M.U. A survey on resource management in cloud computing environment. Int. J. Adv.
Trends Comput. Sci. Eng. 2015, 4, 48-51.

2. Jennings, B.; Stadler, R. Resource management in clouds: survey and research challenges. J. Netw. Syst. Manag.
2015, 23, 567-619. [CrossRef]

3. Satyanarayanan, M. Fundamental challenges in mobile computing. In Proceedings of the Fifteenth
Annual ACM Symposium on Principles of Distributed Computing (PODC "96), Philadelphia, PA, USA,
23-26 May 1996; pp. 1-7.

4. Mastelic, T.; Oleksiak, A.; Claussen, H.; Brandic, L; Pierson, J.; Vasilakos, A.V. Cloud computing: Survey on
energy efficiency. ACM Comput. Surv. 2015, 47, 1-36. [CrossRef]

5. Grozev, N.; Buyya, R. Inter-Cloud architectures and application brokering: Taxonomy and survey.
Softw. Pract. Exp. 2014, 44, 369-390. [CrossRef]

6. Kashyap, D.; Viradiya, J. A survey of various load balancing algorithms in cloud computing. Int. J. Sci.
Technol. Res. 2014, 3, 115-119.

7. Singh, A.; Kaur, I. A Survey on cloud computing and various scheduling algorithms. Int. |. Adv. Res. Comput.
Sci. Manag. Stud. 2016, 4, 209-212.

8. Kulkarni, R.A,; Patil, S.H. A survey on improving performance of real time scheduling for cloud systems.
Int. J. Innov. Res. Sci. Technol. 2015, 1, 171-173.

9. Fernando, N.; Loke, S.W.; Rahayu, W. Mobile cloud computing: A survey. Future Gener. Comput. Syst. 2013,
29, 84-106. [CrossRef]

10. Flinn, J.; Park, S.; Satyanarayanan, M. Balancing performance, energy, and quality in pervasive computing.
In Proceedings of the 22nd International Conference on Distributed Computing Systems, Vienna, Austria,
2-5 July 2002; pp. 217-226.

11. Balan, R,; Satyanarayanan, M.; Park, S.; Okoshi, T. Tactics-based remote execution for mobile computing.
In Proceedings of the 1st International Conference on Mobile Systems, Applications and Services,
San Francisco, CA, USA, 5-8 May 2003; pp. 273-286.

12. Kar, J.; Mishra, M.R. Mitigating threats and security metrics in cloud computing. J. Inf. Process. Syst. 2016, 12,
226-233.

13. Motavaselalhagh, F; Esfahani, F.S.; Arabnia, H.R. Knowledge-based adaptable scheduler for SaaS providers
in cloud computing. Hum. Centric Comput. Inf. Sci. 2015, 5, 1-19. [CrossRef]

14. Kim, S; Lee, H.; Kwon, H.; Lee, S. Evaluation model of defense information systems use. J. Converg. 2015, 6,
18-26.

15. Park, J.H,; Kim, H.; Jeong, Y. Efficiency sustainability resource visual simulator for clustered desktop
virtualization based on cloud infrastructure. Sustainability 2014, 6, 8079-8091. [CrossRef]

16. Kim, H.-W,; Park,].H.; Jeong, Y.-S. Human-centric storage resource mechanism for big data on cloud service
architecture. J. Supercomput. 2015, 72, 2437-2452. [CrossRef]

17. Kemp, R,; Palmer, N.; Kielmann, T.; Bal, H. Cuckoo: A computation offloading framework for smartphones.
In Proceedings of the 4th International conference on Mobile Computing, Applications, and Services, Seattle,
WA, USA, 11-12 October 2012; Volume 76, pp. 59-79.

18. Chun, B.-G.; Ihm, S.; Maniatis, P.; Naik, M.; Patti, A. Clonecloud: Elastic execution between mobile device
and cloud. In Proceedings of the EuroSys 2011 Conference, Salzburg, Austria, 10-13 April 2011; pp. 301-314.

19. Clark, C; Fraser, K.; Hand, S.; Hansen, J.; Jul, E.; Limpach, C.; Pratt, I.; Warfield, A. Live migration of
virtual machines. In Proceedings of the 2nd Conference on Symposium on Networked Systems Design and
Implementation (NSDI '05), Berkeley, CA, USA, 2-4 May 2005; pp. 273-286.

http://dx.doi.org/10.1007/s10922-014-9307-7
http://dx.doi.org/10.1145/2656204
http://dx.doi.org/10.1002/spe.2168
http://dx.doi.org/10.1016/j.future.2012.05.023
http://dx.doi.org/10.1186/s13673-015-0031-4
http://dx.doi.org/10.3390/su6118079
http://dx.doi.org/10.1007/s11227-015-1390-3

Symmetry 2017, 9, 65 14 of 14

20. Kristensen, M. Scavenger: Transparent development of efficient cyber foraging applications. In Proceedings
of the 2010 IEEE International Conference on Pervasive Computing and Communications, Mannheim,
Germany, 29 March-2 April 2010; pp. 217-226.

21. Heo, Y.-A. A Study on Mobile Resource Management Scheme Based on Collaborative Architecture.
Master’s Thesis, Dongguk University, Seoul, Korea, January 2017.

22. Andrews, S.; Ellis, D.A.; Shaw, H.; Piwek, L. Beyond self-report: Tools to compare estimated and real-world
smartphone use. PLoS ONE 2015, 10. [CrossRef] [PubMed]

@ © 2017 by the authors. Licensee MDP]I, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1371/journal.pone.0139004
http://www.ncbi.nlm.nih.gov/pubmed/26509895
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Mobile Resource Management without Cloud Server
	Adaptive Job Load Balancing Scheme
	Execute Model
	Fault Tolerance Scheme
	Idle Resource Scheme

	AMRM Design and Implementation
	AMRM Design
	AMRM Implementation

	Performance Evaluation
	Conclusions

