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Abstract: Sign language is a basic method for solving communication problems between deaf and
hearing people. In order to communicate, deaf and hearing people normally use hand gestures,
which include a combination of hand positioning, hand shapes, and hand movements. Thai Sign
Language is the communication method for Thai hearing-impaired people. Our objective is to
improve the dynamic Thai Sign Language translation method with a video captioning technique that
does not require prior hand region detection and segmentation through using the Scale Invariant
Feature Transform (SIFT) method and the String Grammar Unsupervised Possibilistic C-Medians
(sgUPCMed) algorithm. This work is the first to propose the sgUPCMed algorithm to cope with
the unsupervised generation of multiple prototypes in the possibilistic sense for string data. In our
experiments, the Thai Sign Language data set (10 isolated sign language words) was collected from
25 subjects. The best average result within the constrained environment of the blind test data sets
of signer-dependent cases was 89–91%, and the successful rate of signer semi-independent cases
was 81–85%, on average. For the blind test data sets of signer-independent cases, the best average
classification rate was 77–80%. The average result of the system without a constrained environment
was around 62–80% for the signer-independent experiments. To show that the proposed algorithm
can be implemented in other sign languages, the American sign language (RWTH-BOSTON-50) data
set, which consists of 31 isolated American Sign Language words, is also used in the experiment. The
system provides 88.56% and 91.35% results on the validation set alone, and for both the training and
validation sets, respectively.

Keywords: string grammar unsupervised possibilistic C-medians; scale invariant feature Transform
(SIFT); fuzzy K-nearest neighbour; sign language; big data

1. Introduction

Deaf persons are unable to discriminate speech through their ears, and therefore cannot use
hearing for communication. Sign language is one communication method for deaf or hearing-impaired
people that communicates information through hand gestures and other body actions. However,
most hearing people cannot comprehend sign language, which can cause communication difficulties.
To solve this issue, hand sign language translation may be able to help deaf or hearing-impaired people
communicate with hearing people. There have been many research studies on hand sign translation
in a variety of sign languages. However, in order to translate the hand sign, the system needs to
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know both where the hands are, and what their movements are. To ease this problem, some research
studies have utilised cyber-gloves (electronic gloves) to help detect the hand positions [1–12]. Other
research works have used colour-coded gloves instead of cyber-gloves [13–17]. However, signers in
these two cases had to wear extra equipment in order for the system to work properly, which might
not fit well with daily life. Hence, there has also been other research on freehand (no extra equipment)
translation systems. Some of these involved pre-processing the image frames, which included hand
segmentation [18–32]. Others only pre-processed the portion of the image with hand parts (only hands
were captured in the video data set) [33–37]. Other works utilised motion sensors or Kinect [38–40]
to capture hand movements. The remaining methods were visual-based, without any segmentation,
and only used cameras [41–46]. Although some of the visual-based methods provided impressively
correct classifications, as shown in Table 1, they still suffered from errors that were caused by similar
hand movements that had different finger movements for different words, similar hand gestures for
different words, etc.

The above-mentioned methods all suffer from extra equipment usage, pre-processing,
segmentation, or a capturing device that might not be practical in daily life. In this paper, we
improve the method for Thai sign language translation using Scale Invariant Feature Transform
(SIFT) and String Grammar Unsupervised Possibilistic C-Medians (sgUPCMed). The String Grammar
Unsupervised Possibilistic C-Medians (sgUPCMed) algorithm is a new string grammar clustering
method that is introduced in this paper for the first time. Since fuzzy clustering is able to cluster
overlapping data samples and deal with noise or outliers, this method might better cope with the
problems outlined above. Moreover, our system does not require hand region detection or hand
segmentation for sign language translation. The system only uses a camera to record the movement,
without any extra sensors or equipment on the signers. The Scale Invariant Feature Transform
method is used to match the test frame with symbols in the signature library. The String Grammar
Unsupervised Possibilistic C-Medians (sgUPCMed) algorithm is used for prototype generation, while
the fuzzy k-nearest neighbour is utilised as a classifier. Ten isolated Thai sign words are used in
our experiments: “elder”, “grandfather”, “grandmother”, “gratitude”, “female”, “male”, “glad”,
“thank you”, “understand”, and “miss”. The experiments are implemented within signer-dependent,
signer semi-dependent, and signer-independent scenarios. The subjects used in the signature library
collection for the SIFT algorithm and in the string grammar clustering algorithms for the generation of
prototypes are utilised in a subject-dependent case, while the subjects that are only presented in the
blind test data set are utilised in a signer-independent case. However, there are two types of signer
semi-independent cases. One is when subjects are only in the signature library collection, and the
other is when subjects are only in the prototype generation process.

The first experiments were implemented with constraints: subjects were asked to wear a black
shirt with long sleeves and stand in front of a dark background. The best system that emerged from
these constraints was then implemented on signers in the blind test data set without any constraints,
i.e., they were asked to wear a short-sleeve shirt and stand in front of various natural backgrounds. We
implemented our proposed system with the RWTH-BOSTON-50 data set, which consists of 31 isolated
American Sign Language (ASL) words as well, in order to show the ability of the system with other
sign languages. We also compare the results with those from the existing algorithms. The remainder of
this paper is organised as follows. Section 2 explains our proposed system, along with a review of the
SIFT method and the String Grammar Unsupervised Possibilistic C-Medians (sgUPCMed) algorithm.
The experimental results are shown in Section 3, and finally, we draw the conclusion in Section 4.
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Table 1. Experiment results from previous algorithms working without extra equipment. SIFT: Scale Invariant Feature Transform; ASL: American Sign Language.

Sign Language # of Recognised
Words Data Set Instrument Used Mode Pre-Process with

Segmentation # of Signers Classification
Rate (%)

Taiwan Sign Language [19] 15 Test data set None: free hand Signer-independent Yes N/A 91

Japanese Sign Language [20] 6 Test data set None: free hand Signer-independent Yes 20 93.5

Taiwan Sign Language [21] 20 Test data set None: free hand Signer-dependent Yes 20 93.5

American Sign
Language (ASL) [22] 39 Test data set None: free hand Signer-dependent Yes 1 95

Malaysian Sign Language
(MSL) [26]

66 (gestures not
words)

Combined training
and validation set) None: free hand Signer-dependent No 1 80

Amefican sign language
(RWTH-BOSTON-50) [27] 30 Combined training

and test data set None: free hand
Combined

signer-dependent and
signer-independent

Yes 3 89.1

Indian Sign Language [28] 36 (gestures not
words) Test data set None: free hand Signer-dependent Yes N/A 91.11

Chinese Sign Language [29] 8 (gestures not
words) Test data set Kinect Signer-dependent Yes 8 82.79

Bangla Sign Language [31] 40 (alphabet) Test data set None: free hand Signer-dependent Yes N/A 95.90

Indian Sign Language [32] 24 Test data set None: free hand Signer-dependent Yes N/A 90

Thai Sign Language (finger
spelling) [33] 15 Test data set None: free hand Signer-dependent Yes 5 91.20

Thai Sign Language (finger
spelling) [34] 49 Test data set None: free hand Signer-dependent Yes 2 72

Hand Gesture [35] 10 Test data set None: free hand Signer-dependent Yes 15 97.62

Arabic Sign Language (ArSL)
[36] 28 Test data set None: free hand Signer-dependent Yes N/A 93.21

American sign language (ASL)
[37]

37 (gestures not
words) Test data set None: free hand Signer-dependent Yes 5 94.32

Arabic Sign Language [41] 30 Test data set None: free hand
Signer-dependent

Yes
8 97.4

Signer-independent 10 94.2
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Table 1. Cont.

Sign Language # of Recognised
Words Data Set Instrument Used Mode Pre-Process with

Segmentation # of Signers Classification
Rate (%)

Thai Sign Language Finger
spelling words (with SIFT) [42] 10 Test data set

None: free hand Signer-dependent
No

2 81.64 (on
average)

None: free hand Signer-independent 2 33 (on average)

Thai sign language (with with
Hidden Markov Model) [43] 10 Validation set

None: free hand Signer-dependent
No

5 86–95 (on
average)

None: free hand Signer semi-dependent 10 80 (on average)

None: free hand Signer-independent 5 75–76 (on
average)

Arabic Sign Language [44] 23 Test data set None: free hand Signer-dependent Yes 3 99.80

American Sign Language
(RWTH-BOSTON-50) [45] 15 Test data set None: free hand Signer-dependent Yes 3 93.33

American Sign Langage
(RWTH-BOSTON-50) [46] 50 Test data set None: free hand Signer-dependent No 3 82.8
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2. System Description

The overview of the proposed Thai Sign Language translation system is shown in Figure 1. There
are three parts to the system: string representation, string grammar clustering, and string grammar
classification. In order to create string representation for each video, we first needed to collect 31 hand
gestures [47] from 10 Thai hand sign words. Since fingers shapes, positions, and hand information
are needed in the recognition system, we asked five subjects to wear a black shirt with long sleeves
and stand in front of a dark background for the hand gesture collection process. Each subject was
asked to perform each hand sign several times, and their movements were recorded in the form of
video files. Then, we manually selected representative frames (Rframes) of each video file, and created
the signature library [43] from these Rframes as a part of the training process. Each manual Rframe
selection only captured a portion of the hand, which measured 190 × 190 pixels. Please note that this
hand image is called a keyframe for the sake of simplicity. For each subject, we had 730 keyframes,
and there were 3650 keyframes in total. Examples of hand gestures and their corresponding numbers
of keyframes in the signature library are shown in Figure 2.

In the recognising process, we first chose F image frames with approximately equal spacing from
each video sequence to generate a string from the video file. For each image frame, we utilised the
Scale Invariant Feature Transform (SIFT) method [48] to extract interesting points. Then, we created
descriptors that matched those in the signature library. Next, we selected a symbol representing that
image frame. Finally the whole symbol sequence representing video files was generated. To create a
prototype of each Thai hand sign word, we utilised the String Grammar Unsupervised Possibilistic
C-Medians (sgUPCMed) algorithm. For the classification process, we utilised a modified version of
the fuzzy k-nearest neighbour (FKNN) algorithm [49] to find the right Thai hand sign word.
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Now, let us briefly describe the SIFT algorithm [48]. This approach is used to detect and describe
local features in training images called the keypoint. It is one of the most popular approaches in 2D
image-features matching. The SIFT consists of four main steps to generate a keypoint: the detection of
scale-space extrema, feature point localisation, orientation assignment, and feature point descriptor.
In the detection of scale-space extrema, Gaussian scale-space is constructed. The input image is
smoothed with the difference of Gaussian (DoG) function. Scale space is separated into octaves.
To create a set of scale-space images, the initial image is repeatedly convolved with Gaussian masks
on each octave. The difference between consecutive blur amounts is then output as one octave of
the pyramid. The local extrema of difference of Gaussian in scale space are found by comparing an
interest pixel to its 26 neighbours in 3 × 3 regions at the current and adjacent scales. The extremum is
selected as a keypoint location if the value of the pixel is greater than or less than all of its neighbours.
Now, the number of keypoints is less than the number of pixels. However, there are still plenty of
points, and many of them are bad points. In the keypoint localisation step, it rejects points with low
contrast and points with poor edges. Please note that the number of found keypoints for each image
will depend on the characteristics of the image. To assign an orientation, the gradient histogram and a
small point around the keypoint based on local image gradient directions are used. The magnitude
and direction of the gradient are calculated for all of the pixels in a neighbouring area around the
keypoint in the Gaussian-blurred image. A gradient histogram with 36 bins is created in this step. Any
peak within 80% of the highest peak is used to create a keypoint with that orientation. Then, a 16 × 16
neighbourhood around the keypoint is found. It is divided into 16 sub-blocks, with the size of 4 × 4.
For each sub-block, an eight-bin orientation histogram is created. Each keypoint descriptor is a vector
of 128 dimensions that distinctively identifies the neighbourhood around the keypoint. Figure 3a
shows the keypoints found in an example keyframe, and examples of keypoint descriptors of three
hand gestures are shown in Figure 3b–d.

Symmetry 2017, 9, 321  6 of 24 

 

Now, let us briefly describe the SIFT algorithm [48]. This approach is used to detect and 
describe local features in training images called the keypoint. It is one of the most popular 
approaches in 2D image-features matching. The SIFT consists of four main steps to generate a 
keypoint: the detection of scale-space extrema, feature point localisation, orientation assignment, 
and feature point descriptor. In the detection of scale-space extrema, Gaussian scale-space is 
constructed. The input image is smoothed with the difference of Gaussian (DoG) function. Scale 
space is separated into octaves. To create a set of scale-space images, the initial image is repeatedly 
convolved with Gaussian masks on each octave. The difference between consecutive blur amounts 
is then output as one octave of the pyramid. The local extrema of difference of Gaussian in scale 
space are found by comparing an interest pixel to its 26 neighbours in 3 × 3 regions at the current 
and adjacent scales. The extremum is selected as a keypoint location if the value of the pixel is 
greater than or less than all of its neighbours. Now, the number of keypoints is less than the 
number of pixels. However, there are still plenty of points, and many of them are bad points. In the 
keypoint localisation step, it rejects points with low contrast and points with poor edges. Please 
note that the number of found keypoints for each image will depend on the characteristics of the 
image. To assign an orientation, the gradient histogram and a small point around the keypoint 
based on local image gradient directions are used. The magnitude and direction of the gradient are 
calculated for all of the pixels in a neighbouring area around the keypoint in the Gaussian-blurred 
image. A gradient histogram with 36 bins is created in this step. Any peak within 80% of the highest 
peak is used to create a keypoint with that orientation. Then, a 16 × 16 neighbourhood around the 
keypoint is found. It is divided into 16 sub-blocks, with the size of 4 × 4. For each sub-block, an 
eight-bin orientation histogram is created. Each keypoint descriptor is a vector of 128 dimensions 
that distinctively identifies the neighbourhood around the keypoint. Figure 3a shows the keypoints 
found in an example keyframe, and examples of keypoint descriptors of three hand gestures are 
shown in Figure 3b–d. 

     
“a” “a1” “b” “c” “cb1” “cb2” “d” “d1” 
27 

keyframes 
27 

keyframes 
19 

keyframes 
18 

keyframes 
16 

keyframes 
14 

keyframes 
51 

keyframes 
56 

keyframes 

     
“e” “ef1” “ef2” “ef3” “f” “g” “g1” “g2” 
14 

keyframes 
14 

keyframes 
19 

keyframes 
26 

keyframes 
19 

keyframes 
15 

keyframes 
41 

keyframes 
16 

keyframes 

     
“hi1” “hi2” “i” “j” “j1” “k” “kl1” “kl2” 

18 
keyframes 

25 
keyframes 

14 
keyframes 

43 
keyframes 

41 
keyframes 

14 
keyframes 

22 
keyframes 

15 
keyframes 

    

 

“l” “m” “mn1” “mn2” “nh” “nh1” “nh2”  
16 

keyframes 
15 

keyframes 
12 

keyframes 
8 

keyframes 
49 

keyframes 
18 

keyframes 
28 

keyframes 
 

Figure 2. Examples of 31 hand gestures. 

The keypoint matching process is performed by comparing the Euclidean distance between the 
two nearest neighbour keypoint descriptors in the signature library, and the current keypoint 
descriptor. If the ratio of the smallest distance to the second smallest distance is less than a given 
threshold, then the two keypoints match. Examples of keypoint matching are shown in Figure 3e–g. 

Figure 2. Examples of 31 hand gestures.

The keypoint matching process is performed by comparing the Euclidean distance between
the two nearest neighbour keypoint descriptors in the signature library, and the current keypoint
descriptor. If the ratio of the smallest distance to the second smallest distance is less than a given
threshold, then the two keypoints match. Examples of keypoint matching are shown in Figure 3e–g.
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Since the keyframes for each symbol in the signature library may have different numbers of keypoints,
to identify the correct symbol for that image frame, the average number of matched keypoints per
keyframe (Avg_Match) [43] of each symbol is computed as:

Avg_Match =
Number of matched keypoints of the symbol

Number of keyframes of the symbol
(1)

An example of this process is shown in Figure 4. We repeat these steps for F selected image frames
of the video. Then, we obtained the sequence of symbols of each video, and then used this as the
sequence of primitives in our string grammar fuzzy clustering algorithms.

In this paper, we propose the String Grammar Unsupervised Possibilistic C-Medians (sgUPCMed)
algorithm to find multiprototypes of string data, i.e., Thai hand sign words in this work, from the
training data set. We briefly describe the sgUPCMed algorithm here. Let S = {s1, s2, . . . , sN} be a set of
N strings. Each string (sk) is a sequence of symbols (primitives). For example, sk = (x1x2 . . . xl), a string
with length l, where each xi is a member of a set of defined symbols or primitives. Let V = (sc1, sc2, . . . ,
scc) represent a C-tuple of string prototypes, each of which characterises one of the C clusters. Let U
= [uik]C×N be a membership value of string k in cluster i. Let T = [tik]C×N be a possibilistic value of
string k in cluster i. Since this is a string calculation, the numeric distance metrics cannot be used in
this case. Hence, the distance metric used in the paper is the Levenshtein distance [50–53] between
string sj and string prototypes sci (Lev(sci, sj)) (a smallest number of transformations needed to derive
one string from the other) between input string j and cluster prototype i.

Symmetry 2017, 9, 321  7 of 24 

 

Since the keyframes for each symbol in the signature library may have different numbers of 
keypoints, to identify the correct symbol for that image frame, the average number of matched 
keypoints per keyframe (Avg_Match) [43] of each symbol is computed as: 

Number of matched keypoints of the symbol 
_

Number of keyframes of the symbol
Avg Match =  (1) 

An example of this process is shown in Figure 4. We repeat these steps for F selected image 
frames of the video. Then, we obtained the sequence of symbols of each video, and then used this as 
the sequence of primitives in our string grammar fuzzy clustering algorithms. 

In this paper, we propose the String Grammar Unsupervised Possibilistic C-Medians 
(sgUPCMed) algorithm to find multiprototypes of string data, i.e., Thai hand sign words in this 
work, from the training data set. We briefly describe the sgUPCMed algorithm here. Let S = {s1, s2, …, 
sN} be a set of N strings. Each string (sk) is a sequence of symbols (primitives). For example, sk = 
(x1x2…xl), a string with length l, where each xi is a member of a set of defined symbols or primitives. 
Let V = (sc1, sc2, …, scc) represent a C-tuple of string prototypes, each of which characterises one of the 
C clusters. Let U = [uik]C×N be a membership value of string k in cluster i. Let T = [tik]C×N be a 
possibilistic value of string k in cluster i. Since this is a string calculation, the numeric distance 
metrics cannot be used in this case. Hence, the distance metric used in the paper is the Levenshtein 
distance [50–53] between string sj and string prototypes sci (Lev(sci, sj)) (a smallest number of 
transformations needed to derive one string from the other) between input string j and cluster 
prototype i. 

 
(a) 

   

(b) (c) (d) 

  
(e) (f) (g) 

Figure 3. Keypoint descriptor generation (a) keypoints found on a keyframe; keypoint descriptors 
found on hand gestures (b) “f”, (c) “l”, and (d) “d1”; and the hand gesture (e) “b” assigned to a test 
image using the SIFT method and test images within a constraint environment, (f) “e” assigned to a 
test image using the SIFT method and test frames without a constraint environment, and (g) “nh” 
assigned to a test image using the SIFT method and test frames without a constraint environment. 

Figure 3. Keypoint descriptor generation (a) keypoints found on a keyframe; keypoint descriptors
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Our String Grammar Unsupervised Possibilistic C-Medians (sgUPCMed) algorithm is a modified
version of the unsupervised possibilistic C-medians [54]. They are based on the same concept. That
is, the objective function is based on the fuzzy C-means (FCM) clustering algorithm and two cluster
validity indices, i.e., the partition coefficient (PC) and the partition entropy (PE). However, in our case,
the feature vectors are not numeric vectors, but strings, and the distance is not the Euclidean distance,
but the Levenshtein distance. Hence, the sgUPCMed’s objective function is:

min
N
∑

k=1

C
∑

i=1
um

ik Lev(sk, sci) +
β

m2√c

C
∑

i=1

N
∑

k=1
(um

ik log um
ik − um

ik)

for k = 1, . . . , N and 0 ≤ uik ≤ 1.
(2)

where uik is the membership value of string sk belonging to cluster i, sci is the string prototype of
cluster i, m is the fuzzifier (normally, m > 1), β is a positive parameter, and N is the number of strings.
Yang and Wu [19] defined β as the sample covariance based on the Euclidean distance. However, our
data set is a string data set, and our β is calculated based on the Levenshtein distance as:

β =
∑N

k=1 Lev(Med, sk)

N
(3)

where Med is the median string of the data set, i.e.,

Med = argmin
j∈S

N

∑
k=1

Lev
(
sj, sk

)
(4)

Theorem 1 (sgUPCMed). If Lev(sk, sci) > 0 for all i and k, when m, η, k >1, and S contains C < N distinct
string data, then Jm,η is minimised only if the update equation of uik is:

uik = exp
(
−m
√

cLev(sci, sk)

β

)
(5)
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Proof. The reduced form of Equation (5) with V fixed for the kth column of U is:

min

{
Li(U, λ) = Jik

m(U) = um
ik Lev(sk, sci) +

β

m2
√

c

C

∑
i=1

N

∑
k=1

(um
ik log um

ik − um
ik)

}
(6)

From the Lagrange multiplier theorem, the derivative of Li(U,λ) with respect to uik and setting it
to zero leads to:

∂Li(U,λ)
∂uik

= m(uik)
m−1Lev(sk, sci) +

β

m2√c (mum−1
ik m ln uik −mum−1

ik ) = 0
m
√

cLev(sk ,sci)+βuik
m−1 ln uik√

c = 0

uik = exp
(
−m
√

cLev(sci ,sk)
β

) (7)

The fuzzy median string [55–58] is utilised as a cluster center update equation because of the
utilisation of the Levenshtein distance in our string grammar clustering. Hence, the cluster center i
update equation is:

sci = argmin
j∈S

N

∑
k=1

um
ik Lev

(
sj, sk

)
for 1 ≤ i ≤ C (8)

However, Ref. 56 and 57proved that the modified median string provides a better classification
rate than the regular median string. Then, the modified method in [56–58] is also modified to calculate
the fuzzy median. Let Σ* be the free monoid over the alphabet set Σ and a set of strings S ⊆ Σ*. Then,
the modified fuzzy median, i.e., an approximation of fuzzy median using edition operations (insertion,
deletion, and substitution) over each symbol of the string [56–58] will be:

sci = argmin
j∈∑∗

N

∑
k=1

um
ik Lev

(
sj, sk

)
for 1 ≤ i ≤ C (9)

The modified fuzzy median string algorithm of the sgUPCMed isshown in Algorithm 1:

Algorithm 1. The modified fuzzy median string algorithm of the sgUPCMed.

Start with the initial string s.
For each position i in the string s
1. Build alternative

Substitution: Set z = s. For each symbol a ∈ Σ
(a) Set z’ to be the result of substituting ith symbol with symbol a.

(b) If
N
∑

k=1

(
um

ik
)

Lev(z′, sk) <
N
∑

k=1

(
um

ik
)

Lev(z, sk).

then, set z = z’.
Deletion: Set y to be the result of deleting the ith symbol of s.
Insertion: Set x = s. For each symbol a ∈ Σ

(a) Set x’ to be the result of adding a at position ith of s.

(b) If
N
∑

k=1

(
um

ik
)

Lev(x′, sk) <
N
∑

k=1

(
um

ik
)

Lev(x, sk).

then, set x = x’.
2. Choose an alternative

Select string s’ from the set of strings {s,x,y,z} from step 1 using

s′ = argmin
G∈{s,x,y,z}

N
∑

k=1

(
um

ik
)

Lev(G, sk).

Then, set s = s’.
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Hence, the summary of sgUPCMed algorithm is shown in Algorithm 2.

Algorithm 2. sgUPCMed algorithm.

Store N unlabeled finite strings S = {sk; k = 1, ..., N}
Initialise string prototypes for all C classes
Set m
Compute β using Equation (3)
Do {

Update membership value using Equation (5)
Update center string of each cluster i (sci) using Equations (8) and (9)

} Until (stabilise)

After, the multiprototypes, i.e., SC =
{

sc1
1, . . . , sc1

N1
, sc2

1, . . . , sc2
N2

, scC
1 , . . . , scC

NC

}
where scj

k is
string prototype k of class j, are created. The fuzzy k-nearest neighbour [48] is utilised as a classifier.
The FKNN is similar to the k-nearest neighbour (KNN), except that each data point can belong to
multiple classes, with different membership values associated to these classes. For each string s,
the membership value ui in class i can be calculated as the following:

ui(s) =

K
∑

j=1
uij

 1

Lev
(

scq
j ,s
)
1/(m−1)

K
∑

j=1

 1

Lev
(

scq
j ,s
)
1/(m−1)

 (10)

where uij is the membership value of the jth prototype from class q (scq
j ) in class i, c is the number of

classes, and K is the number of nearest neighbours. The decision rule for the test string s is:

s is assigned to class i if ui(s) > uj(s) for j 6= i (11)

In the experiment, since we know the class that the prototype string scq
j represents, we set uiq = 1

for scq
j in class q and 0 for all of the other classes. The parameter m is used to determine how heavily

the distance is weighted when calculating each neighbour’s contribution to the membership value,
and its value is chosen for our experiment as m = 2.

To summarise our algorithm as shown in Figure 1, we first need to create the multiprototypes
training process with the SIFT and the sgUPCMed algorithms. The Levenshtein distance and the
FKNN are used to recognise the sign language words. The computational complexity of the training
process will be O(F·(ot·m·n + kp + m·n + m·n·b2·kp)) + O(F·nS·dl2) + O((l2·N2) + (l2·N2) + (l3·c·|Σ|)),
where m and n are the width and height of an image, ot and kp are the number of octaves and the
number of keypoints, dl is the SIFT descriptor length, F is the number of video image frames, and
nS is the number of keyframes in the signature library. The remaining parameters are string length
(l) (equals to F), the number of data samples (N), the number of clusters (c), and the alphabet set (Σ).
For the recognising process, the computational complexity is O(F(ot·m·n + kp + m·n + m·n·b2·kp)) +
O(F·nS·dl2) + O(N·(l2 + NlogN + K)), where K is the number of nearest neighbours used.

3. Experimental Results

An experiment data set (training and test video data sets) was collected from 25 subjects at
different times of day for several days. Subjects 1–20 were asked to wear a black shirt with long sleeves
and stand in front of a dark background. In contrast, subjects 21–25 were asked to wear short sleeves
and were in front of various complex natural backgrounds. The data set consisted of 10 hand sign
words (classes), i.e., “elder”, “grandfather”, “grandmother”, “gratitude”, “female”, “male”, “glad”,
“thank you”, “understand”, and “miss”. The number of samples for each hand sign is shown in
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Table 2. We first collected the keyframes in the signature library from subjects 1–5. We manually
selected a portion of the hand in each frame that measured 190 × 190 pixels. After that, we computed
keypoint descriptors for each frame using SIFT, and then stored it in the signature library database.
The test videos were recorded for subjects 1–20 (with constraint) and for subjects 21–25 (without any
constraints). Each video was decimated, which left only 14 frames. Each frame was matched to a
representative symbol in the signature library using SIFT, and the threshold values for the experiment
varied between 0.65, 0.7, and 0.75.

Table 2. Number of words in the training data set with subjects 1–15 and the test data set with
subjects 1–25.

Data Set Subjects Elder Grandfather Grandmother Gratitude Female Male Glad Thank You Understand Miss

Training
data set

1a 36 36 36 36 12 36 36 36 36 36
2a–15a 32 32 32 32 32 32 32 32 32 32

Test data
set

1b 12 12 12 12 12 12 12 12 12 12
2b–15b 8 8 8 8 8 8 8 8 8 8
16–19 20 20 20 20 20 20 20 20 20 20

20 10 10 10 10 10 10 10 10 10 10
21–25 5 5 5 5 5 5 5 36 5 5

Our experiment was divided into three parts, i.e., training with 1a, training with 1a–5a, and
training with 1a–15a. There were three groups of blind test: data set 1b–15b, data set 16–20 (used
to represent the signer-independent cases), and 21–25 (with various complex natural backgrounds).
For all of the training and test data sets, we assigned symbols to each frame in the training data set
using the SIFT method. We use multiprototypes created from the sgUPCMed algorithm to classify 10
hand sign words, in which the lengths of each string representation were 14. Afterwards, we created
multiprototypes in terms of a sequence of primitives, and the test string was assigned to the word that
the closest prototype belonged to, according to the FKNN algorithm with the Levenshtein distance.

We implemented four-fold cross validation on the training set and implemented the sgUPCMed
with four, eight, and 12 clusters on each class separately to create multiprototypes for each class. Then,
the FKNN with K = 1, 3, 5, 7 and 9 were implemented as classifiers. Figures 5–7 show the best and
average correct classification of the validation set of training with 1a, training with 1a–5a, and training
with 1a–15a for the FKNN with K = 1, 3, 5, 7, and 9, respectively. We can see that the best classification
rate was at 98.81%, when trained with 1a and 12 prototypes for each class with 0.75 SIFT threshold
and K = 9. Whereas, when trained with 1a–5a, the best classification rate that system provided was
at 94.55%, with 12 prototypes, 0.65 SIFT threshold, and K = 9. For the 1a–15a training data set, we
obtained 88.37% correct classification with 12 prototypes, 0.7 SIFT threshold, and K = 9. From all
of the experiments, we can see that if we increase the number of prototypes in the process of string
grammar clustering, there is a chance that the classification rates of all of the types of signer will also
increase. From the results in Figures 5–7, the 12-prototype string grammar clustering with 9-FKNN
gave a classification rate that was higher than the other prototypes. Hence, we used 12-prototypes
string grammar clustering with 9-FKNN to test the blind test data set, as shown in Figures 8–11.

From Figure 8, the classification rates for 1a and 1b (signer-dependent cases) were 97.92% and
90.56%, respectively, since this system was trained with the first subject. The average classification rate
from the signer semi-independent cases (2a–5a and 2b–5b) was approximately 59.50%. Meanwhile,
the average classification results from subjects 6a–15a, 6b–15b, and 16–20 (the signer-independent
cases) was around 54.32%.

The classification results on the test set when we trained on the data set 1a–5a are shown in
Figure 9. The best average classification rate of the blind test data sets of the signer-dependent cases
(subjects 1–5) was around 95.24%. The best average classification rates of the blind test data sets of
the signer-independent cases, subjects 6–15 and subjects 16–20, were 67.64% and 71.8%, respectively.
Therefore, we can see that the classification rates from all of the types of signer are increased, if we
increase the number of signers in the training process of the sgUPCMed method.
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From the blind test results from the training process with 1a–15a, as shown in Figure 10, we can
see that the best average classification rates for the signer-dependent cases (subjects 1–5) was 90.99%,
whereas that of the signer semi-dependent cases (subjects 6–15) was 85.14%. Meanwhile, the best
average classification rate of the signer-independent cases (subjects 16–20) was 79.90%. Again, the
greater the number of training subjects, the more accurate the system.
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Hence, we selected the system trained with subjects 1a–15a, and tested it on subjects 21–25, who
were asked to wear any type of shirt and stand in front of natural backgrounds. Each subject performed
each sign five times at any time of day. The classification results are shown in Figure 11. We can see
that the best result for subjects 21–25 were 76% with 0.70 SIFT threshold, 80% with 0.70 SIFT threshold,
66% with 0.70 SIFT threshold, 68% with 0.65 and 0.70 SIFT threshold, and 62% with 0.75 SIFT threshold
for the five subjects, respectively. Since the signers of this test set (subjects 21–25) were different
signers from the training data set and the signature library, the results of this experiment provided low
classification. Furthermore, when we used SIFT with the unconstrained system and complex natural
backgrounds, the matched keypoints might be incorrectly matched, as shown Figure 3g. We can use
Equation (1) to find the correct symbol for each test frame, even though it has some mismatched
keypoints from the SIFT process. However, our algorithm cannot find the right symbol if there are too
many mismatched keypoints.
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Now, we compare the performance of our algorithm with the reported classification rate results
of the Thai Sign Language (TSL) translation system [43] using Hidden Markov Model (HMM) on
the same data set as shown in Table 3. We can see that the best results for the signer-dependent,
signer semi-dependent and signer-independent cases from the TSL with HMM were 88.60%, 80.55%,
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and 76.75%, respectively. Whereas those from our proposed algorithms were 90.85%, 85.14%, and
79.90%, respectively. A comparison can be done between this method and the best average of our
translation system. Our system yields a pretty good result that is comparable with TSL [43] in all of
the experiments. HMM may create higher misclassification than our method because the HMM model
that gives the maximum value is not the right one. Meanwhile, our method not only chooses the
maximum one, it also utilises string grammar fuzzy clustering to find the multiprototypes, and after
that, the FKNN algorithm will choose the closest string prototypes using the k-nearest neighbours.
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signers against various complex natural backgrounds.

In order to consider how this system performs when implemented on other sign languages; we
implemented our system on the RWTH-BOSTON-50 data set [46]. Although this data set has 50 words
from three signers, there are 19 words in which the total number of video sequences for each word is
around one to three sequences. Hence, we only used the 31 words that have more than three sequences
for each word. The details of the words used and the number of sequences and signers performing
the words are shown in Table 4. Hence, for 31 words, there are 437 sequences in total. Again, for
this data set, we collected keyframes to create a signature library. Since each signer did not perform
the same amount of sequences for each word, the numbers of repetitions selected manually for each



Symmetry 2017, 9, 321 15 of 24

keyframe were not the same. There were 81 keyframes; hence, there are 319 keyframes in total in the
signature library. An example of keyframes and the corresponding number of keyframes is shown
in Figure 12. In this case, to generate a string for each word, the minimum number of frames of each
word is used as the number of symbols F of the word sequence, because each word contains a different
number of frames, as shown in Table 4. For example, for the word “ARRIVE”, we created a string with
a length of seven, whereas for “BOX”, the created string had a length of nine. Again, we chose F image
frames with approximately equal spacing from each video sequence to generate a test string for each
word. This shows that our sgUPCMed does not require the strings to have the same length in order to
perform the string clustering.

Table 3. Comparison of classification rates on test sets of our proposed method with Thai Sign Language
(TSL) (with HMM).

Method Mode

The Best Average of Classification
Rate (%)

SIFT Threshold

0.65 0.70 0.75

TSL (with HMM) [43]
signer-dependent 88.60 88.29 87.82

Signer semi-dependent 80.35 80.45 80.55
signer-independent 76.75 76.32 75.23

Proposed Method
signer-dependent 90.85 90.99 89.32

Signer semi-dependent 81.67 81.88 85.14
signer-independent 79.90 79.40 77.90

Note: The best classification rate is indicated with bold and underline character.
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Table 4. Details of RWTH-BOSTON-50 [46] used in the experiment.

Word ARRIVE BLAME BOOK BOX BREAK-DOWN BUY CAN CAR

# sequences 15 6 23 7 5 31 19 19

Minimum
sequence length 7 8 5 9 14 5 4 4

# of signers 3 3 3 1 2 3 3 3

Word FINISH FUTURE GIVE GO HAVE HOUSE IX_i IX_i far

# sequences 7 21 24 19 6 12 37 12

Minimum
sequence length 3 6 6 6 5 15 5 15

# of signers 2 3 2 1 2 2 3 2

Word IX_1p LIKE LOVE NEW NOT POSS PREFER READ

# sequences 8 6 16 7 7 12 5 4

Minimum
sequence length 3 5 5 6 5 5 5 6

# of signers 3 2 3 2 2 3 2 1

Word SHOULD SOMETHING GONE VISIT WHAT WHO WOMAN YESTERDAY

# sequences 10 12 18 24 25 8 12

Minimum
sequence length 4 4 6 14 6 6 6

# of signers 3 3 3 3 3 2 3

We implemented leave-one-out cross-validation for this data set, meaning that we only selected
one sequence for each word to be our validation set, and used all of the other sequences to train our
sgUPCMed algorithm. The numbers of prototypes created by our sgUPCMed algorithm were not
the same, as shown in Table 5, because of the different numbers of word repetitions of the data set.
We then used FKNN with only one nearest neighbour to find the best word match. The SIFT threshold
used in this data set varied from 0.4 to 0.75, with a step size of 0.5. The results from the validation data
set and the combined training and validation set are shown in Table 6. The SIFT threshold used in this
data set varied from 0.4 to 0.75, with a step size of 0.5. The best result of the validation set was 88.56%,
while the best result of the combined training and validation set was 91.35%.

Table 5. Number of prototypes for the RWTH-BOSTON-50 data set.

Word ARRIVE BLAME BOOK BOX BREAK-DOWN BUY CAN CAR

# prototypes 5 3 4 2 2 6 3 4

Word FINISH FUTURE GIVE GO HAVE HOUSE IX_i IX_i far

# prototypes 2 3 6 4 2 2 4 2

Word IX_1p LIKE LOVE NEW NOT POSS PREFER READ

# prototypes 3 2 3 2 2 3 2 2

Word SHOULD SOMETHING GONE VISIT WHAT WHO WOMAN YESTERDAY

# prototypes 3 3 3 3 3 2 3

Table 6. Classification rate on the validation set, and the classification rate on the combined training
and validation sets of the RWTH-BOSTON-50 data set.

Data Set
SIFT Threshold

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

Validation set 86.27 88.56 86.73 87.19 86.73 85.81 84.21 84.21
Combined training and validation set 91.05 91.35 90.81 90.68 90.55 90.38 90.18 89.94

Note: The best classification rate is indicated with bold and underline character.



Symmetry 2017, 9, 321 18 of 24

We compared our results with the existing algorithms to show the performance of our proposed
method. Tables 7 and 8 show the performance of the proposed algorithm and that of the existing
algorithms on the Thai sign language data set and the RWTH-BOSTON data set, respectively. However,
on the RWTH-BOSTON data set, we merely show the performance of different algorithms ([27,45,46])
on the same data set without any comparison analysis, because it could be thought of as an unfair
comparison. Table 8 shows that our result is in the same range (88.56% correct classification rate) of
those in [27,45,46] with different experiment settings. Also, it is difficult to directly/indirectly compare
our method with the other methods, because the sign languages of other countries are different from
Thai Sign Language. Hence, we can only say that our algorithm can be used in different sign languages,
not just in Thai Sign Language, and it can provide a reasonable result that is within the same range as
the existing algorithms shown in Table 1. Moreover, in order to implement our proposed algorithm in
a different sign language, we need to create a signature library for each sign language, since it is not
the same for different sign languages. We also need to train our system according to that separately.

Table 7. Indirect comparison of the classification rate of the test sets for our proposed method and the
other methods on the Thai Sign Language data set.

Method # of Recognised
Words Data Set Instrument

Used Mode Pre-Process with
Segmentation

# of
Signers

Classification
Rate (%)

TSL (with HMM)
[43] 10 Validation

set

None: free
hand signer-dependent

No

5 86–95
(on average)

None: free
hand signer-semi-dependent 10 80 (on average)

None: free
hand signer-independent 5 75–76

(on average)

Proposed
Method on Thai
Sign Language

data set

10 Validation
set

None: free
hand signer-dependent

No

5 89–91
(on average)

None: free
hand signer-semi-dependent 10 81–85

(on average)

None: free
hand signer-independent 5 77–80

(on average)

Table 8. Indirect comparison of the classification rate of the test sets for our proposed method and the
other methods on the RWTH-BOSTON-50 data set.

Method
# of

Recognised
Words

Data Set Instrument
Used Mode Pre-Process with

Segmentation
# of

Signers
Classification

Rate (%)

ASL_RWTH-
BOSTON-50 [27] 30

Combined
training and test

data set

None: free
hand

Combined
signer-dependent and
signer-independent

Yes 3 89.09

ASL_RWTH-
BOSTON-50 [45] 15 Test data set None: free

hand signer-dependent Yes 3 93.33

ASL_RWTH-
BOSTON-50 [46] 50 Test data set None: free

hand signer-dependent No 3 82.8

Proposed
Method on

RWTH-BOSTON-50
31

Validation set
(Leave-one-out

strategy)

None: free
hand

Combined
signer-dependent and
signer-independent

No 3

88.56

Combined
training and

validation data set

None: free
hand 91.35

One might also ask about the difference between the proposed method with that in [42,43].
The method in [42] can be used to translate Thai finger-spelling, but not Thai hand sign. The method
only uses the SIFT method to find a matching alphabet. If the composed alphabets match with any
spelled words, then the system reports that word. The one in [43] used the SIFT method to extract
this feature as in this proposed method. However, it used HMM as a classifier, while we use the
sgUPCMed and the FKNN algorithms as our classifiers here. In addition, from Table 7, our proposed
method is better than the results shown in [43].
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One of the advantages of our algorithm is that it provides a good result for recognising isolated
sign language words that have similar hand gestures. Examples of Rframes representing the Thai
Sign Language words of “grandmother” and “grandfather” are shown in Figure 13. The symbol
sequence of the word “grandmother” is “mmmbbbbbmbbbbb”, while that of the “grandfather” is
“mmmmcb2cb2bbbbbbbb”. We can see that these two words have similar hand gestures in the
sequence. The blind test recognition rates of “grandmother” and “grandfather” at a SIFT threshold
of 0.65 and FKNN with K = 9 are 72% and 84%, respectively. Examples of frames from “GO” with
the symbol sequence of “ooooo1o2” and “SHOULD” with the symbol sequence of “ooo1o2” from the
RWTH-BOSTON-50 are shown in Figure 14. Again, the recognition rates with a SIFT threshold of 0.45
with one nearest neighbour (FKNN) of these “GO” and “SHOULD” are 73.68% and 80%, respectively.
These are examples of sign language words with similar hand gesture. However, for the whole data
set, there were some other words with similar hand gestures as well. With this condition, our system
can still provide a good recognition rate for the whole data set. However, some misclassifications have
occurred in our system, which might be the result of some hand gestures that are very similar, yet
represent different symbols in the signature library. An example of similar hand gestures for symbols
“g”, “g2”, and “k” in Thai Sign Language are shown in Figure 15. Meanwhile, Figure 16 shows an
example of the similar hand gestures for symbols “t”, “t1”, “v”, and “v3” in RWITH-BOSTON-50.
If this occurs for different words, it might cause the system to think that they are the same word.
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Figure 13. Representative frames (Rframes) of Thai sign language words (a) “Grandmother”  
and (b) “Grandfather”. 
Figure 13. Representative frames (Rframes) of Thai sign language words (a) “Grandmother” and
(b) “Grandfather”.
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To implement this system in real time, one might wonder how fast the algorithm will be when
implemented online. One of the parameters that might influence the real-time processing is the number
of keypoints found on each image frame. The number of minimum, maximum, and average number of
keypoints from the Thai Sign Language data set were 56, 153, and 72, respectively. Whereas, those from
the RWTH-BOSTON-50 data set were 32, 112, and 41 keypoints, respectively. Of course, the greater the
number of keypoints, the slower the algorithm. However, the average recognising processing times
of both data sets was approximately one to two seconds per sign word, respectively. This part of the
experiment was implemented on a 3.6 GHz Intel Core i7 with 8 GB 2400 MHz DDR4 RAM.

4. Conclusions

In this paper, we improved the dynamic Thai Sign Language translation system with video caption
without prior hand region detection and segmentation using the Scale Invariant Feature Transform
(SIFT) method and the proposed String Grammar Unsupervised Possibilistic C-Medians (sgUPCMed)
algorithm. The SIFT method was used to match test frames with symbols in the signature library,
whereas the proposed sgUPCMed algorithm was used to generate multiprototypes for each sign. The
fuzzy k-nearest neighbour (FKNN) algorithm was utilised to find the matched sign words. Please
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note that because of the different signs in various languages, it is necessary to train the system with
several SIFT thresholds and several cluster numbers from sgUPCMed in order to find the best SIFT
threshold and the best cluster number. Also, the best number of K in the FKNN for the recognising
process can be found by trial and error on several testing data sets before using the system in real-time
applications. We found that the best result for the blind Thai Sign Language (isolated sign word)
data sets of signer-dependent cases was in between 89% and 91% on average, and the average
for the signer semi-independent cases (where the same subjects were used in the string grammar
clustering) was around 81–85%. Whereas, the best average classification rate of the blind data sets
of the signer-independent cases was 77–80%. Moreover, our system could perform translations for
each video without the need for any pre-processing techniques, i.e., segmentation and hand detection.
The SIFT method provides more informative information of the position, shape, and orientation of the
hand and fingers. This allows the system to be able to recognise hand sign words that have similar
gestures. However, when we tested our algorithm with the test subject without any constraint on five
signers (subjects 21–25), who were asked to stand in front of various complex backgrounds and could
wear any shirt, the best correct classification rate in this case was around 70–80% on average.

To prove our generality over sign languages, we also implemented our proposed algorithm with
the RWTH-BOSTON-50 data set, which consists of 31 isolated American Sign Language words. The
result showed that the sign language word recognition was 88.56% and 91.35% on the validation
set only and for both the training and validation sets, respectively. This shows that our algorithm is
flexible enough to be implemented on any sign language.

Since the objective function of our sgUPCMed algorithm is based on the validity indices PC and
PE as in the Unsupervised Possibilistic C-Means (UPCM), the exponential membership functions were
used to describe the degree of belonging. This is an advantage of our system, because the system
can detect the outliers (too far from prototypes) of Thai Sign Language by yielding very low or close
to zero membership values for those outliers. However, one constraint of the sgUPCMed algorithm
was that it sometimes generated coincident clusters when we ran multiprototype clustering. It might
generate prototypes with very close locations, because of the relaxing constraint of the columns and
rows of the independent possibilistic values.

We also compared our method with the HMM method, and demonstrated that the best
classification of our method is better than HMM on all of the experiments. The HMM method
may create higher misclassification rates than our method because of the chance that the selected
probability-based HMM model is not the actually the best one. Although our system provides better
classification rates than previous methods for Thai Sign Language, there are still some issues regarding
its performance that we could improve. For instance, the string representation process could be
improved by using other features, because the SIFT method could not extract some interesting points
from images with complex natural backgrounds. Hence, the classification rates in these cases were low.

Although our system performs very well in translating hand sign, the final goal is to translate
continuous sign language. Some research studies are already investigating continuous sign language
translation [59–61]. Our future plan is to embed our system into a continuous sign language
translation system.

One of the disadvantages of the system might be from the transformation from 3D images to 2D
images. Our future work will consider including 3D information in the acquisition process of the data
set before implementing it into the translation system.
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