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Abstract: Hesitant fuzzy linguistic decision making is a focus point in linguistic decision making,
in which the main method is based on preference ordering. This paper develops a new hesitant
fuzzy linguistic TOPSIS method for group multi-criteria linguistic decision making; the method is
inspired by the TOPSIS method and the preference degree between two hesitant fuzzy linguistic term
sets (HFLTSs). To this end, we first use the preference degree to define a pseudo-distance between
two HFLTSs and analyze its properties. Then we present the positive (optimistic) and negative
(pessimistic) information of each criterion provided by each decision maker and aggregate these by
using weights of decision makers to obtain the hesitant fuzzy linguistic positive and negative ideal
solutions. On the basis of the proposed pseudo-distance, we finally obtain the positive (negative)
ideal separation matrix and a new relative closeness degree to rank alternatives. We also design
an algorithm based on the provided method to carry out hesitant fuzzy linguistic decision making.
An illustrative example shows the elaboration of the proposed method and comparison with the
symbolic aggregation-based method, the hesitant fuzzy linguistic TOPSIS method and the hesitant
fuzzy linguistic VIKOR method; it seems that the proposed method is a useful and alternative
decision-making method.

Keywords: group multi-criteria decision making; the TOPSIS method; hesitant fuzzy linguistic term
set; pseudo-distance; aggregation operator

1. Introduction

In real-world practices, we always face tasks and activities in which it is necessary to use
decision-making processes. Generally, decision making is a cognitive process based on different
mental and reasoning processes that lead to the choice of a suitable alternative from a set of possible
alternatives in a decision situation [1–5]. Because of the inherent complexity and uncertainty of the
decision situation or the existence of multiple and conflicting objectives, decision-making problems are
complex and difficult; particularly in the era of big data, decision making becomes more complicated
because the huge amounts of decision information and alternatives are continuously growing.
Many new decision-making methods, such as granular computing techniques [1,6–10], have been
proposed for expressing complex or uncertain information in decision-making processes and solving
decision-making problems [11–23].

Nowadays, decision-making methods with hesitant fuzzy linguistic term sets (HFLTSs) are a focus
point in linguistic decision making (LDM). In many qualitative decision environments, experts think of
several possible linguistic values or richer expressions than a single term for an indicator, alternative,
variable, and so forth. Accordingly, Rodríguez et al. [24] proposed the concept of HFLTSs to overcome
the drawback of existing fuzzy linguistic approaches: the elicitation of single and very simple terms
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to encompass and express the qualitative information. Formally, by taking into account the idea
of hesitant fuzzy sets [25] and using extended context-free grammars of a linguistic variable [26],
HFLTSs allow us to use different and great flexible forms to represent decision makers’ knowledge
and preferences in LDM. To make a multi-criteria linguistic decision with HFLTSs, Rodríguez et al.
developed the “min−upper” and “max−lower” operators to combine HFLTSs and obtain a linguistic
interval for each alternative; then the linguistic intervals are used to build a preference relation between
alternatives, and a nondominance choice degree is applied to obtain a solution set of alternatives
for the decision problem. The use of the min−upper and max−lower operators produced the first
method to deal with hesitant fuzzy linguistic information; since then, many researchers have paid
attention to linguistic decision making with HFLTSs, such as in [27], where Lee and Chen proposed
likelihood-based comparison relations of HFLTSs and several hesitant fuzzy linguistic aggregation
operators to overcome the drawbacks of the methods in [24,28]. In [29], Liu and Rodríguez proposed a
fuzzy envelope of HFLTSs for linguistic decision making with HFLTSs. In [30], Montserrat-Adell et al.
provided a lattice structure of the set of HFLTSs by means of the operations intersection and connected
union, and presented two distances between hesitant fuzzy linguistic sets in the lattice structure,
which can be used in linguistic decision making with HFLTSs. In [31], Rodríguez et al. presented a
group decision-making model based on HFLTSs. In [28], Wei et al. defined new negation, max-union
and min-intersection closed operations for HFLTSs; then they proposed a hesitant fuzzy linguistic
weighting averaging operator and a hesitant fuzzy linguistic ordered weighting averaging operator to
deal with multi-criteria decision-making problems with HFLTSs. Up to now, operations and extensions
of HFLTSs [32–38], hesitant fuzzy linguistic measures and aggregation operators [39–43], and HFLTSs
in decision making [44–47] have been widely studied.

In the existing decision-making methods, despite the existence of different decision-making
processes in the literature that are composed of different phases, the TOPSIS method proposed
in [5] is a useful, important and widely studied multiple-attribute group decision-making method;
formally, the TOPSIS method originates from the concept that the selected alternative should have
the shortest distance from the positive ideal solution and the farthest distance from the negative
ideal solution. Its decision-making process can be expressed in the following five steps [48]:
(1) The normalization of the decision matrix; (2) the construction of the weighted normalized decision
matrix; (3) the determination of positive and negative ideal solutions; (4) the calculation of separation
measures and relative closeness; (5) the ranking of alternatives. Since then, many extended TOPSIS
methods have been applied to different multiple-attribute decision making scenarios [49–55]; for
example, Chen [56] proposed an extended TOPSIS method for multiple-attribute decision making by
considering triangular fuzzy numbers and defining the crisp Euclidean distance between two fuzzy
numbers. Similarly, Ashtiani et al. [57] extended the TOPSIS method to solve a multiple-attribute
decision-making problem with interval-valued fuzzy sets. He and Gong [58] provided a natural
generalization of the TOPSIS method to solve a multiple-attribute decision-making problem with
intuitionistic fuzzy sets. Liu et al. [59] developed a new TOPSIS method for decision-making problems
with interval-valued intuitionistic fuzzy data. Yue [60] presented a method for solving decision-making
problems with an interval number and extended his method to intuitionistic fuzzy sets. In [61],
Liang et al. proposed an extended TOPSIS method with linguistic neutrosophic numbers to evaluate
investment risks of metallic mines. In [62], Sałabun proposed a new method to estimate the mean error
of TOPSIS with the use of a fuzzy reference model.

In [63], Beg and Rashid firstly proposed the TOPSIS method for HFLTSs, in which, the one
decision matrix X is calculated by aggregating the opinions of decision makers; the HFLTS positive-
and negative-ideal solutions are obtained by the minimization of the minimal and maximal assessments
of cost criteria and the maximization of the minimal and maximal assessments of benefit criteria; then
the positive-ideal separation matrix (negative-ideal separation matrix) is constructed by distances
between X and the positive-ideal (negative-ideal) solution, which can be used to obtain the relative
closeness of each alternative and rank all the alternatives. In this paper, we develop a new hesitant
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fuzzy linguistic TOPSIS method for group multi-criteria linguistic decision making, in which, we
use the preference degree to define a pseudo-distance between two HFLTSs, and we present the
positive and negative information of each criterion provided by each decision maker. Making use
of the weighted 2-tuple linguistic aggregation operator, we aggregate the positive and negative
information provided by m decision makers to obtain the HFLTS positive- and negative-ideal solutions.
Finally, we utilize the pseudo-distance to calculate distances between the assessments of the decision
maker and the HFLTS positive- and negative-ideal solutions, and provide a new relative closeness
degree of each alternative to rank all the alternatives. The rest of this paper is structured as follows:
In Section 2, we briefly review basic concepts and operations of HFLTSs and Beg and Rashid’s TOPSIS
method. In Section 3, we define the pseudo-distance between two HFLTSs and analyze its properties.
We provide the positive and negative information of each criterion and aggregate these to obtain
the HFLTS positive- and negative-ideal solutions. Accordingly, we propose the new hesitant fuzzy
linguistic TOPSIS method for group multi-criteria linguistic decision making and design an algorithm
to carry out hesitant fuzzy linguistic decision making. In Section 4, we utilize an example to illustrate
the practicality of the new hesitant fuzzy linguistic TOPSIS method and compare the method with
Rodriguez’s method [24], Beg and Rashid’s method [63] and Liao’s method [45]. We conclude the
paper in Section 5.

2. Preliminaries

In this section, we briefly review concepts and operators of HFLTSs and the TOPSIS method for
HFLTSs, and we present the two important hesitant fuzzy linguistic decision-making methods, that is,
Rodriguez’s method and Beg and Rashid’s method.

Definition 1. [24] Let S be a linguistic term set, S = {s0; · · · , sg}, a HFLTS, HS, is an ordered finite subset
of the consecutive linguistic terms of S.

The basic operations on HFLTSs are as follows [24]:

1. Lower bound: HS− = min(si) = sj, si ∈ HS and si ≥ sj∀i;
2. Upper bound: HS+ = max(si) = sj, si ∈ HS and si ≤ sj∀i;
3. Complement: Hc

S = S− HS = {si|si ∈ S and si /∈ HS};
4. Union: H1

S ∪ H2
S = {si|si ∈ H1

S or si ∈ H2
S};

5. Intersection: H1
S ∩ H2

S = {si|si ∈ H1
S and si ∈ H2

S};
6. Envelope: env(HS) = [HS− , HS+ ].

Rodríguez et al. [24] proposed the min−upper and max−lower operators to obtain the core
information of hesitant fuzzy linguistic assessments of each alternative; then preference degrees [64]
are used to deal with multi-criteria linguistic decision making with HFLTSs. Formally, the min−upper
and max−lower operators are as follows: Let X = {x1, . . . , xn} be a set of alternatives, C = {c1, . . . , cm}
be a set of criteria, S = {s0, · · · , sg} be a linguistic term set, and {H j

S(xi)|i ∈ {1, . . . , n}, j ∈ {1, . . . , m}}
be a set of HFLTSs. The min−upper operator consists of the following two steps:

1. Apply the upper bound HS+ for each HFLTS that is associated with each alternative:

HS+(xi) = {H1
S+(xi), . . . , Hm

S+(xi)}, i ∈ {1, . . . , n}

2. Obtain the minimum linguistic term for each alternative:

HS+
min

(xi) = min{H j
S+(xi)|j ∈ {1, . . . , m}}, i ∈ {1, . . . , n}

The max−lower operator consists of the following two steps:
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1. Apply the lower bound HS− for each HFLTS that is associated with each alternative:

HS−(xi) = {H1
S−(xi), . . . , Hm

S−(xi)}, i ∈ {1, . . . , n}

2. Obtain the maximum linguistic term for each alternative:

HS−max
(xi) = max{H j

S−(xi)|j ∈ {1, . . . , m}}, i ∈ {1, . . . , n}

Let H′max(xi) = max{HS+
min

(xi), HS−max
(xi)} and H′min(xi) = min{HS+

min
(xi), HS−max

(xi)}; then the
core information of hesitant fuzzy linguistic assessments of alternative xi is

H′(xi) = [H′min(xi), H′max(xi)]

On the basis of the core information of each alternative and the preference degrees [64] between
two sets of core information, the nondominance degree NDDi of each alternative can be calculated,
and the best alternatives are the set of nondominated alternatives XND = {xi|xi ∈ X, NDDi =

maxxj∈X{NDDj}}.

Example 1. [24] Let X = {x1, x2, x3}, C = {c1, c2, c3} and S = {nothing (s0), very low (s1), low (s2),
medium (s3), high (s4), very high (s5), perfect (s6)}. Assessments provided by the decision maker are shown in
Table 1.

Table 1. Assessments of X with respect to criteria C.

c1 c2 c3

x1 {s1, s2, s3} {s4, s5} {s4}
x2 {s2, s3} {s3} {s0, s1, s2}
x3 {s4, s5, s6} {s1, s2} {s4, s5, s6}

The min−upper operator and the max−lower operator are used to obtain the core information of
each alternative, such as for alternative x1, HS+(x1) = {H1

S+(x1), H2
S+(x1), H3

S+(x1)} = {s3, s5, s4},
HS−(x1) = {H1

S−(x1), H2
S−(x1), H3

S−(x1)} = {s1, s4}, HS+
min

(x1) = min {s3, s5, s4} = s3, HS−max
(x1) =

max{s1, s4} = s4, H′max(x1) = max {HS+
min

(x1), HS−max
(x1)} = s4, H′min(xi) = min{HS+

min
(x1),

HS−max
(x1)} = s3 and H′(x1) = [H′min(x1), H′max(x1)] = [s3, s4]. Similarly, H′(x2) = [s2, s3] and

H′(x3) = [s2, s4].
On the basis of H′(x1), H′(x2) and H′(x3), preference degrees [64] between them can be calculated; for

example, for H′(x1) and H′(x2), their preference degree is p12 = P(a1 > a2) =
max{4−2,0}−max{3−3,0}

(4−3)+(3−2) = 1
and the binary preference relation between the three alternatives is

P = [pjj′ ]3×3 =

 − 1 0.667
0 − 0.333

0.333 0.667 −


Then the nondominance degree NDDi of xi can be calculated, that is, NDDi = min{1− pS

ji|j 6= i} and pS
ji =

max{pji − pij, 0}. Such as NDD1 = min{1− pS
21, 1− pS

31} = min{1−max{0− 1, 0}, 1−max{0.333−
0.667, 0}} = 1, similarly, NDD2 = 0 and NDD3 = 0.666; x1 is selected.

Beg and Rashid proposed an alternative hesitant fuzzy linguistic group decision method, that is,
the TOPSIS method for HFLTSs [63]. In the TOPSIS method, the main concepts are a distance between
two HFLTSs and the HFLTS positive- and negative-ideal solutions, which can be formalized as follows:
Let H1

S and H2
S be the two HFLTSs on S = {s0, · · · , sg}, env(H1

S) = [sp, sq] and env(H2
S) = [sp′ , sq′ ];

then the distance between H1
S and H2

S is
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d(H1
S, H2

S) = |q′ − q|+ |p′ − p|

Let {X1, · · · , Xm} be m HFLTS decision matrices provided by m decision makers; then the one
decision matrix formed by aggregating the opinions of m decision makers is X = [xij], where xij =

[spij , sqij ] and

spij = min{minm
l=1(maxHl

Sij
), maxm

l=1(minHl
Sij
)} (1)

sqij = max{minm
l=1(maxHl

Sij
), maxm

l=1(minHl
Sij
)} (2)

Let Ωb and Ωc be collections of benefit and cost criteria, respectively. The HFLTS positive-ideal
(negative-ideal) solution A+(A−) is defined as follows:

A+ = [((maxm
l=1(maxi Hl

Sij
))|j ∈ Ωb, (minm

l=1(mini Hl
Sij
))|j ∈ Ωc)

((maxm
l=1(maxi Hl

Sij
))|j ∈ Ωb, (minm

l=1(mini Hl
Sij
))|j ∈ Ωc)] (3)

A− = [((minm
l=1(mini Hl

Sij
))|j ∈ Ωb, (maxm

l=1(maxi Hl
Sij
))|j ∈ Ωc)

((minm
l=1(mini Hl

Sij
))|j ∈ Ωb, (maxm

l=1(maxi Hl
Sij
))|j ∈ Ωc)] (4)

where i = 1, · · · , n is the ith considered alternative; j = 1, · · · , r is the jth criterion used for evaluating
the alternatives; A+ = [V+

1 , · · · , V+
r ]; A− = [V−1 , · · · , V−r ]; and V+

j or V−j have the form [vpj , vqj ].
On the basis of the distance between two HFLTSs and the HFLTS positive- and negative-ideal solutions,
the positive-ideal separation matrix D+ and negative-ideal separation matrix D− between X and the
positive- and negative-ideal solutions can be calculated as follows:

D+ =

 d(x11, V+
1 ) + · · ·+ d(x1r, V+

r )
...

d(xn1, V+
1 ) + · · ·+ d(xnr, V+

r )

 , D− =

 d(x11, V−1 ) + · · ·+ d(x1r, V−r )
...

d(xn1, V−1 ) + · · ·+ d(xnr, V−r )

 (5)

Accordingly, the relative closeness (RC) of each alternative to the ideal solution is as follows:

RC(Ai) =
D−i

D+
i + D−i

(6)

where D+
i = ∑r

j=1 d(xij, V+
j ) and D−i = ∑r

j=1 d(xij, V−j ). Ranking alternatives are carried out by using
the following rule: the greater the value of RC(Ai), the better the alternative Ai.

3. The Proposed TOPSIS for HFLTSs

In this section, we develop a new hesitant fuzzy linguistic TOPSIS method for linguistic
decision-making problems. Compared with Beg and Rashid’s TOPSIS method, there are three
different aspects: (1) We use the preference degree to define a pseudo-distance between two HFLTSs;
(2) We present the positive and negative information of each criterion provided by each decision maker;
considering weights of decision makers, we aggregate the positive and negative information provided
by all decision makers to obtain the HFLTS positive- and negative-ideal solutions, respectively;
(3) We propose a new relative closeness degree to rank alternatives. All of these are elaborated
on in the following subsections.

3.1. A Pseudo-Distance between Two HFLTSs

The preference degree between two HFLTSs has been studied by many researchers [24,27,28,65];
generally, we let H1

S and H2
S be the two HFLTSs on S = {s0, · · · , sg}, env(H1

S) = [sp, sq] and
env(H2

S) = [sp′ , sq′ ]. Then the preference degree p(H1
S ≥ H2

S) between H1
S and H2

S is as follows:
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p(H1
S ≥ H2

S) = max{1−max{ q′ − p
(q− p) + (q′ − p′)

, 0}, 0} (7)

For example, let S = {nothing (s0), very low (s1), low (s2), medium (s3), high (s4), very high
(s5), perfect (s6)}. For HFLTSs H1

S = {s3, s4, s5} and H2
S = {s2, s3, s4}, env(H1

S) = [s3, s5] and
env(H2

S) = [s2, s4]; then

p(H1
S ≥ H2

S) = max{1−max{4− 3
2 + 2

, 0}, 0} = 3
4

Formally, the preference degree between two HFLTSs has the following properties:
(1) 0 ≤ p(H1

S ≥ H2
S) ≤ 1; (2) p(H1

S ≥ H2
S) + p(H2

S ≥ H1
S) = 1; (3) if q′ ≤ p, then p(H1

S ≥ H2
S) = 1;

(4) if q ≤ p′, then p(H1
S ≥ H2

S) = 0.

Definition 2. Let H1
S and H2

S be any two HFLTSs on S = {s0, · · · , sg} and the HFLTS HS on S be the
reference set; then we define the following:

d(H1
S, H2

S) = |p(H1
S ≥ HS)− p(H2

S ≥ HS)| (8)

Intuitively, d(H1
S, H2

S) is the difference of preference degrees between two HFLTSs (H1
S and H2

S)
and the the reference set HS. According to Equations (7) and (8), we have the following property:

Proposition 1. Let H1
S, H2

S and H3
S be HFLTSs on S = {s0, · · · , sg} and the HFLTS HS on S be the reference

set; then

1. d(H1
S, H2

S) ≥ 0;
2. d(H1

S, H2
S) = d(H2

S, H1
S);

3. d(H1
S, H2

S) ≤ d(H1
S, H3

S) + d(H3
S, H2

S).

Proof. According to Equation (8), d(H1
S, H2

S) ≥ 0 and d(H1
S, H2

S) = d(H2
S, H1

S) is apparent. Here, we
prove Proposition 1. as follows:

d(H1
S, H2

S) = |p(H1
S ≥ HS)− p(H2

S ≥ HS)|
= |p(H1

S ≥ HS)− p(H3
S ≥ HS) + p(H3

S ≥ HS)− p(H2
S ≥ HS)|

≤ |p(H1
S ≥ HS)− p(H3

S ≥ HS)|+ |p(H3
S ≥ HS)− p(H2

S ≥ HS)|
= d(H1

S, H3
S) + d(H3

S, H2
S)

That is, d(H1
S, H2

S) ≤ d(H1
S, H3

S) + d(H3
S, H2

S) holds.

Proposition 1 means that d(H1
S, H2

S) is the pseudo-distance between HFLTSs H1
S and H2

S on
S = {s0, · · · , sg}. In fact, we let env(H1

S) = [sp, sq], env(H2
S) = [sp′ , sq′ ] and env(HS) = [sp0 , sq0 ].

According to Equation (8), if H1
S = H2

S, then d(H1
S, H2

S) = 0 is apparent. If d(H1
S, H2

S) = 0, we have
p(H1

S ≥ HS) = p(H2
S ≥ HS), and according to Equation (7), we have

max{1−max{ q0 − p
(q− p) + (q0 − p0)

, 0}, 0} = max{1−max{ q0 − p′

(q′ − p′) + (q0 − p0)
, 0}, 0}

If p 6= p′, q0 ≤ p and q0 ≤ p′, then p(H1
S ≥ HS) = p(H2

S ≥ HS) = 1; this means that d(H1
S, H2

S) = 0 if
and only if H1

S = H2
S does not always hold. As a special case, in Equation (8), we consider the condition

H2
S = HS, that is, the pseudo-distance between HFLTS H1

S and the reference set HS. According to
property 2 of the preference degree, p(H2

S ≥ HS) + p(HS ≥ H2
S) = 1; thus 2p(HS ≥ HS) = 1, that is,
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p(HS ≥ HS) = 0.5, and hence the pseudo-distance between H1
S and the reference set HS is reduced

as follows:

d(H1
S, HS) = |p(H1

S ≥ HS)− p(HS ≥ HS)| = |p(H1
S ≥ HS)− 0.5|

=

{
0.5, if q0 ≤ p or q ≤ p0

| q−p0
(q−p)+(q0−p0)

− 0.5|, otherwise
(9)

Accordingly, we can develop an ordering of HFLTSs on S = {s0, · · · , sg} on the basis of the
reference set; that is, for any two HFLTSs H1

S and H2
S on S = {s0, · · · , sg} and the reference set HS,

H1
S �HS H2

S if and only if d(H1
S, HS) ≤ d(H2

S, HS). Intuitively, the order �HS on HFLTSs means that
the closer the HFLTS H1

S is to the reference set HS, the bigger H1
S is. According to Equation (9), it can

be easily proved that the order �HS on HFLTSs is a pre-order, that is, �HS satisfies the following:

1. The reflexive property: H1
S �HS H1

S.
2. Transitivity: if H1

S �HS H2
S and H2

S �HS H3
S, then H1

S �HS H3
S.

We note that if HFS is the set of all HFLTSs on S = {s0, · · · , sg}, then (HFS,�HS) is a pre-order set.

Example 2. Let S = {nothing (s0), very low (s1), low (s2), medium (s3), high (s4), very high (s5), perfect
(s6)}. For the HFLTSs H1

S = {s3, s4, s5} and H2
S = {s2, s3, s4}, and env(H1

S) = [s3, s5] and env(H2
S) =

[s2, s4], suppose the reference set HS = {s4, s5} and env(HS) = [s4, s5]. According to Equation (9), we
have d(H1

S, HS) = | 5−4
(5−3)+(5−4) − 0.5| = 1

6 and d(H2
S, HS) = 0.5, that is, H1

S �HS H2
S as a result of

d(H1
S, HS) =

1
6 < d(H2

S, HS) = 0.5.

3.2. The HFLTS Positive- and Negative-Ideal Solutions

A group multi-criteria hesitant fuzzy linguistic decision-making problem is described as follows:
m decision makers M = {d1, · · · , dm} are asked to assess n alternatives A = {a1, · · · , an} with
respect to r criteria C = {c1, · · · , cr} by using HFLTSs on S = {s0, · · · , sg}; formally, decision maker
di(i = 1, · · · , m) provides the decision matrix to express his or her assessments, that is,

Di = (ei
jk)n×r =

c1 · · · cr

a1
...

an

 ei
11
...

ei
n1

· · ·
...
· · ·

ei
1r
...

ei
nr

 (10)

where ei
jk ∈ HFS(j ∈ {1, · · · , n}, k ∈ {1, · · · , r}) means that decision maker di(i = 1, · · · , m) assesses

alternative aj with respect to criterion ck by using the HFLTS ei
jk on S = {s0, · · · , sg}. On the basis of

the decision matrix Di, we provide the following definitions.

Definition 3. In the decision matrix Di, the positive information of each ck provided by decision maker di is

Ci(ck) = [max{min(ei
jk)|j = 1, · · · , n}, max{max(ei

jk)|j = 1, · · · , n}] (11)

The negative information of ck provided by decision maker di is

Hi(ck) = [min{min(ei
jk)|j = 1, · · · , n}, min{max(ei

jk)|j = 1, · · · , n}] (12)

Example 3. Let A = {a1, a2, a3} be a set of three alternatives, C = {c1, c2, c3} be a set of criteria defined for
each alternative and S = {nothing (s0), very low (s1), low (s2), medium (s3), high (s4), very high (s5), perfect
(s6)} be the linguistic term set. The assessments provided by decision maker di are shown in Table 2.
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Table 2. Assessments of A with respect to criteria C provided by decision maker di.

c1 c2 c3

a1 {s1, s2, s3} {s4, s5} {s3, s4}
di a2 {s2, s3} {s3, s4} {s0, s1, s2}

a3 {s4, s5, s6} {s1, s2} {s4, s5, s6}

For the criterion c1, we have ei
11 = {s1, s2, s3}, ei

21 = {s2, s3} and ei
31 = {s4, s5, s6}; hence

max{min(ei
j1)|j = 1, 2, 3} = max{min{s1, s2, s3}, min{s2, s3}, min{s4, s5, s6}} = max{s1, s2, s4} = s4,

max{max(ei
j1)|j = 1, 2, 3} = max{max{s1, s2, s3}, max{s2, s3}, max{s4, s5, s6}} = max{s3, s6} = s6,

min{min(ei
j1)|j = 1, 2, 3} = min{min{s1, s2, s3}, min{s2, s3}, min{s4, s5, s6}} = min{s1, s2, s4} = s1 and

min{max(ei
j1)|j = 1, 2, 3} = min{max{s1, s2, s3}, max{s2, s3}, max{s4, s5, s6}} = min{s3, s6} = s3; that

is, the positive information and negative information of c1 provided by decision maker di are Ci(c1) = [s4, s6]

and Hi(c1) = [s1, s3], respectively.

We can notice from Example 3 that the positive information of ck is the optimistic information
according to assessments of all alternatives provided by decision maker di; the negative information
of ck is the pessimistic information according to assessments of all alternatives provided by decision
maker di. Compared with Beg and Rashid’s method [63], Equations (1) and (2) are aimed at
aggregating the opinions of m decision makers; the result is the one decision matrix Xn×r. However,
Equations (11) and (12) are used to aggregate the opinions of n alternatives provided by decision maker
di with respect to the criterion ck; the results are the optimistic information vector (Ci(c1), · · · , Ci(cr))

and the pessimistic information vector (Hi(c1), · · · , Hi(cr)) provided by decision maker di with
respect to the criteria.

In a group multi-criteria hesitant fuzzy linguistic decision-making problem, for each criterion
ck, we denote the positive and negative information of ck as Ci(ck) = [spki , sqki ] and Hi(ck) = [sp′ki

, sq′ki
]

provided by decision maker di(i = 1, · · · , m). We suppose weights W = {w1, · · · , wm} of m decision
makers; then we can use the weighted 2-tuple linguistic aggregation operator [66,67] to obtain the
positive and negative information of ck provided by m decision makers, that is,

C(ck) =
m

∑
i=1

wiCi(ck) =
m

∑
i=1

wi[spki , sqki ] = [spk , sqk ] (13)

H(ck) =
m

∑
i=1

wi Hi(ck) =
m

∑
i=1

wi[sp′ki
, sq′ki

] = [sp′k
, sq′k

] (14)

where pk = round(∑m
i=1 wi pki), qk = round(∑m

i=1 wiqki), p′k = round(∑m
i=1 wi p′ki) and q′k =

round(∑m
i=1 wiq′ki), and round(·) is the usual round operation. For example, let the positive

information of c1 be C1(c1) = [s3, s4], C2(c1) = [s4, s6] and C3(c1) = [s2, s5], which are provided
by three decision makers with weights W = {0.3, 0.5, 0.2} in a group multi-criteria hesitant fuzzy
linguistic decision-making problem; then the positive information of c1 provided by the three decision
makers is

C(c1) =
3

∑
i=1

wiCi(ck) =
m

∑
i=1

wi[spki , sqki ] = [sround(∑3
i=1 wi pki)

, sround(∑3
i=1 wiqki)

]

= [sround(0.3×3+0.5×4+0.2×2), sround(0.3×4+0.5×6+0.2×5)] = [sround(3.3), sround(5.2)] = [s3, s5]

Definition 4. In a group multi-criteria hesitant fuzzy linguistic decision-making problem, (C(c1), · · · , C(cr))

and (H(c1), · · · , H(cr)) are called the HFLTS positive-ideal solution (HPIS) and the HFLTS negative-ideal
solution (HNIS), where C(ck) and H(ck) (k = 1, · · · , r) are decided by Equations (13) and (14), respectively.
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3.3. The New Hesitant Fuzzy Linguistic TOPSIS Method

On the basis of Sections 3.1 and 3.2, we propose a hesitant fuzzy linguistic TOPSIS method that
involves the following steps:

Step 1: Let m decision makers M = {d1, · · · , dm} be asked to assess n alternatives
A = {a1, · · · , an} with respect to r criteria C = {c1, · · · , cr} by using HFLTSs on S = {s0, · · · , sg};
decision maker di(i = 1, · · · , m) with weight wi provides the decision matrix Di = (ei

jk)n×r to express
his or her assessments, where wi ≥ 0 and ∑m

i=1 wi = 1.
Step 2: For each decision matrix Di = (ei

jk)n×r, making use of Equations (11) and (12), we obtain
the positive information Ci(ck) = [spki , sqki ] and the negative information Hi(ck) = [sp′ki

, sq′ki
] of

ck(k = 1, · · · , r). Then we utilize weight wi(i = 1, · · · , m) and Equations (13) and (14) to calculate
the positive and negative information C(ck) = [spk , sqk ] and H(ck) = [sp′k

, sq′k
] of each ck(k = 1, · · · , r)

provided by m decision makers; we can obtain the HFLTS positive- and negative-ideal solutions
as follows:

HPIS = (C(c1), · · · , C(cr)), HNIS = (H(c1), · · · , H(cr)) (15)

Step 3: We calculate the one decision matrix D by aggregating assessments of decision makers;
that is, we use weights (w1, · · · , wm) and the weighted 2-tuple linguistic aggregation operator to
aggregate m decision matrices (D1, · · · , Dm):

D = (ejk)n×r =

c1 · · · cr

a1
...

an


[sp11 , sq11 ]

...
[spn1 , sqn1 ]

· · ·
...
· · ·

[sp1r , sq1r ]
...

[spnr , sqnr ]

 =

c1 · · · cr

a1
...

an


∑m

i=1 wiei
11

...
∑m

i=1 wiei
n1

· · ·
...
· · ·

∑m
i=1 wiei

1r
...

∑m
i=1 wiei

nr



=

c1 · · · cr

a1
...

an


[ ∑m

i=1 wispi
11

, ∑m
i=1 wisqi

11
]

...
[ ∑m

i=1 wispi
n1

, ∑m
i=1 wisqi

n1
]

· · ·
...
· · ·

[ ∑m
i=1 wispi

1r
, ∑m

i=1 wisqi
1r

]
...

[ ∑m
i=1 wispi

nr
, ∑m

i=1 wisqi
nr

]

 (16)

where pjk = round(∑m
i=1 wi pi

jk) and qjk = round(∑m
i=1 wiqi

jk) for every j = 1, · · · , n and k = 1, · · · , r,
respectively, and round(·) is the usual round operation.

Step 4: On the basis of Equation (9) and the HFLTS positive- and negative-ideal solutions of
Equation (15), we calculate the positive-ideal separation matrix D+ and the negative-ideal separation
matrix D− between assessments of decision makers and the HFLTS positive- and negative-ideal
solutions, that is,

D+ =

a1
...

an

 d(e11, C(c1)) + · · ·+ d(e1r, C(cr))
...

d(en1, C(c1)) + · · ·+ d(enr, C(cr))

 (17)

D− =

a1
...

an

 d(e11, H(c1)) + · · ·+ d(e1r, H(cr))
...

d(en1, H(c1)) + · · ·+ d(enr, H(cr))

 (18)

where d(ejk, C(ck)) is the pseudo-distance between ejk = [spjk , sqjk ] and the reference set C(ck),
and d(ejk, H(ck)) is the pseudo-distance between ejk and the reference set H(ck).

If we consider weights V = {v1, · · · , vr} of r criteria such that vk ≥ 0 and ∑r
k=1 vk = 1,

then the positive-ideal separation matrix D+ and the negative-ideal separation matrix D− have
the following forms:



Symmetry 2017, 9, 289 10 of 19

D+ =

a1
...

an

 v1d(e11, C(c1)) + · · ·+ vrd(e1r, C(cr))
...

v1d(en1, C(c1)) + · · ·+ vrd(enr, C(cr))

 (19)

D− =

a1
...

an

 v1d(e11, H(c1)) + · · ·+ vrd(e1r, H(cr))
...

v1d(en1, H(c1)) + · · ·+ vrd(enr, H(cr))

 (20)

Step 5: The ranking of alternatives in the original TOPSIS method is based on “the shortest
distance from the positive-ideal solution and the farthest from the negative-ideal solution”; formally,
this is also fulfilled by the relative closeness degree of each alternative in the existing TOPSIS methods.
In the paper, on the basis of D+ and D−, we provide the following relative closeness degree RC(aj) of
each alternative:

D+
j = d(ej1, C(c1)) + · · ·+ d(ejr, C(cr)) =

r

∑
k=1

d(ejk, C(ck)) (21)

D−j = d(ej1, H(c1)) + · · ·+ d(ejr, H(cr)) =
r

∑
k=1

d(ejk, H(ck)) (22)

D+
min = min{D+

1 , · · · , D+
n }, D−max = max{D−1 , · · · , D−n } (23)

RC(aj) =
D+

min
D+

j
+

D−j
D−max

(24)

Formally, the relative closeness degree RC(aj) of each alternative aj is in [0, 2]. More importantly,
RC(aj) is a monotone function in its components; that is, RC(aj) is increasing for D−j and decreasing

for D+
j . This is coincidental with “the shortest distance from the positive-ideal solution and the farthest

from the negative-ideal solution”.
Step 6: Rank all the alternatives aj(j = 1, · · · , n) according to the relative closeness degree RC(aj).

The greater the value RC(aj), the better the alternative aj; that is, for any j, j′ ∈ {1, · · · , n}, aj � aj′ if
and only if RC(aj) ≥ RC(aj′).

On the basis of the above-mentioned six steps, we provide the following algorithm to implement
the new hesitant fuzzy linguistic TOPSIS method to solve hesitant fuzzy linguistic group multi-criteria
decision-making problems.

4. Numerical Example

In this section, we utilize an example to illustrate the practicality of the new hesitant fuzzy
linguistic TOPSIS method, and compare it with Rodriguez’s method [24], Beg and Rashid’s method [63]
and Liao’s method [45].

Example 4. Let A = {a1, a2, a3} be a set of three alternatives and C = {c1, c2, c3} be a set of criteria defined
for each alternative. Three decision makers M = {d1, d2, d3} with weights W = {0.3, 0.5, 0.2} use linguistic
terms S = {nothing (s0), very low (s1), low (s2), medium (s3), high (s4), very high (s5), perfect (s6)} to assess
three alternatives with respect to three criteria (shown in Table 3).
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Table 3. The hesitant fuzzy linguistic assessments of alternatives provided by decision makers.

c1 c2 c3

a1 {s4, s5, s6} {s5, s6} {s4, s5, s6}
d1(0.3) a2 {s4, s5, s6} {s4, s5, s6} {s1, s2, s3}

a3 {s5, s6} {s4, s5, s6} {s6}

a1 {s4, s5} {s5, s6} {s3, s4, s5}
d2(0.5) a2 {s3, s4, s5} {s4, s5} {s2, s3}

a3 {s2, s3, s4} {s3, s4} {s4, s5}

a1 {s3, s4} {s4, s5} {s5, s6}
d3(0.2) a2 {s5, s6} {s3, s4} {s3, s4}

a3 {s4, s5} {s3, s4, s5} {s5, s6}

By using the new hesitant fuzzy linguistic TOPSIS method (Algorithm 1), the hesitant fuzzy linguistic
group multi-criteria decision making can be carried out as follows:

(1) On the basis of Table 3, we can obtain three decision matrices provided by the three decision makers,
as follows:

D1 =

 [s4, s6] [s5, s6] [s4, s6]

[s4, s6] [s4, s6] [s1, s3]

[s5, s6] [s4, s6] [s6, s6]

 , D2 =

 [s4, s5] [s5, s6] [s3, s5]

[s3, s5] [s4, s5] [s2, s3]

[s2, s4] [s3, s4] [s4, s5]


D3 =

 [s3, s4] [s4, s5] [s5, s6]

[s5, s6] [s3, s4] [s3, s4]

[s4, s5] [s3, s5] [s5, s6]


(2) On the basis of Equations (11)–(14), we can calculate the positive and negative information of

each criterion provided by the three decision makers. For example, for criterion c1, the positive
and negative information provided by decision maker d1 are C1(c1) = [max{s4, s5}, max{s6}] =

[s5, s6] and H1(c1) = [min{s4, s5}, min{s6}] = [s4, s6]; similarly, C2(c1) = [s4, s5], H2(c1) =

[s2, s4], C3(c1) = [s5, s6] and H3(c1) = [s3, s4]. Making use of the weights (0.3, 0.5, 0.2),
we obtain C(c1) = [sround(0.3×5+0.5×4+0.2×5), sround(0.3×6+0.5×5+0.2×6)] = [s5, s6] and H(c1) =

[sround(0.3×4+0.5×2+0.2×3), sround(0.3×6+0.5×4+0.2×4)] = [s3, s5]; the others are shown in Table 4.

Table 4. The positive and negative information of each criterion provided by decision makers.

c1 c2 c3

d1(0.3) C1 [s5, s6] [s5, s6] [s6, s6]
H1 [s4, s6] [s4, s6] [s1, s3]

d2(0.5) C2 [s4, s5] [s5, s6] [s4, s5]
H2 [s2, s4] [s3, s4] [s2, s3]

d3(0.2) C3 [s5, s6] [s4, s5] [s5, s6]
H3 [s3, s4] [s3, s4] [s3, s4]

C [s5, s6] [s5, s6] [s5, s6]
H [s3, s5] [s3, s5] [s2, s3]

(3) On the basis of the weights (0.3, 0.5, 0.2), we aggregate D1, D2 and D3 to obtain the one decision matrix
D, that is,

D = 0.3D1 + 0.5D2 + 0.2D3 =

 [s4, s5] [s5, s6] [s4, s6]

[s4, s6] [s4, s5] [s2, s3]

[s3, s5] [s3, s5] [s5, s6]


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(4) On the basis of the one decision matrix D and the HFLTS positive- and negative-ideal
solutions HPIS = ([s5, s6], [s5, s6], [s5, s6]) and HNIS = ([s3, s5], [s3, s5], [s2, s3]), we use
Equations (9), (17) and (18) to calculate the positive- and negative-ideal separation matrices D+ and
D−, that is,

D+ =

 d([s4, s5], [s5, s6]) + d([s5, s6], [s5, s6]) + d([s4, s6], [s5, s6])

d([s4, s6], [s5, s6]) + d([s4, s5], [s5, s6]) + d([s2, s3], [s5, s6])

d([s3, s5], [s5, s6]) + d([s3, s5], [s5, s6]) + d([s5, s6], [s5, s6])


.
=

 0.5 + 0 + 0.17
0.17 + 0.5 + 0.5

0.5 + 0.5 + 0

 =

 0.67
1.17

1



D− =

 d([s4, s5], [s3, s5]) + d([s5, s6], [s3, s5]) + d([s4, s6], [s2, s3])

d([s4, s6], [s3, s5]) + d([s4, s5], [s3, s5]) + d([s2, s3], [s2, s3])

d([s3, s5], [s3, s5]) + d([s3, s5], [s3, s5]) + d([s5, s6], [s2, s3])


=

 0.17 + 0.5 + 0.5
0.25 + 0.17 + 0

0 + 0 + 0.5

 =

 1.17
0.42
0.5


(5) On the basis of Equations (21)–(24), we obtain the relative closeness degrees RC(aj) of each alternative,

which are shown in Table 5.

Table 5. The relative closeness degrees of alternatives.

D+
j D−

j RC(aj)

a1 0.67 1.17 0.67
0.67 + 1.17

1.17 = 2

a2 1.17 0.42 0.67
1.17 + 0.42

1.17
.
= 0.92

a3 1 0.5 0.67
1 + 0.5

1.17
.
= 1.1

D+
min = 0.67 D−max = 1.17

(6) According to RC(aj) of each alternative in Table 5, we obtain that the ranking of alternatives is a1 � a3 �
a2, given that RC(a1) > RC(a3) > RC(a2), and that a1 is the the most satisfying alternative.

In the following, we compare the new hesitant fuzzy linguistic TOPSIS method with Rodriguez’s
method [24], Beg and Rashid’s method [63] and Liao’s method [45] by using Example 4, in which,
because Rodriguez’s method and Liao’s method are used to carry out the hesitant fuzzy linguistic
multi-criteria decision making, we use the decision matrix D1 provided by decision maker d1 as the
hesitant fuzzy linguistic multi-criteria of decision making for comparison with the three methods.
Then we use Beg and Rashid’s method in Example 4 and compare this with the proposed method.
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Algorithm 1: The new hesitant fuzzy linguistic TOPSIS method

Input The decision matrix Di = (ei
jk)n×r(i = 1, · · · , m) and weights (w1, · · · , wm) of m decision makers.

Output The ranking of n alternatives A = {a1, · · · , an} and the most satisfying alternative A.
Begin
for each i = 1, · · · , m and k = 1, · · · , r do
Ci(ck) = [spki , sqki ] and Hi(ck) = [sp′ki

, sq′ki
] (in each Di by using Equations (11) and (12) to obtain the

positive and negative information)
end
for i = 1 : m and each k = 1, · · · , r do
C(ck) = [spk , sqk ] and H(ck) = [sp′k

, sq′k
] (using weight wi(i = 1, · · · , m), and Equations (13) and (14) to

obtain the positive and negative information of each ck)
HPIS = (C(c1), · · · , C(cr)) and HNIS = (H(c1), · · · , H(cr)) (the HFLTS positive- and negative-ideal

solutions)
end
for i = 1 : m do
D = ∑m

i=1 wiDi (using weight wi and Equation (16) to obtain the one decision matrix)
end
for k = 1 : r do
D+ = d(D, HPIS) and D− = d(D, HNIS) (using Equations (9), (17) and (18) or (19) and (20) to obtain

positive- and negative-ideal separation matrices)
end
for j = 1 : n do
D+

min and D−max (in D+ and D− using Equation (23))

RC(aj) =
D+

min
D+

j
+

D−j
D−max

(using Equation (24) to obtain the relative closeness degree of each alternative)

end
Output A = {aj|∀j′ ∈ {1, · · · , n}, RC(aj) ≥ RC(aj′ )}
end

4.1. Comparison with Rodriguez’s and Liao’s Methods

Rodriguez’s method is also called the symbolic aggregation-based method [24] and Liao’s method
is called the hesitant fuzzy linguistic VIKOR (HFL-VIKOR) method [45]; here, we use the decision
matrix D1 provided by decision maker d1 in Example 4 to show the symbolic aggregation-based
method, the HFL-VIKOR method and the proposed method, and carry out a comparison of the three
methods, as follows:

(1) The positive- and negative-ideal solutions: The symbolic aggregation-based method utilizes
min−upper and max−lower operators to construct the core information of each alternative.
For example, for a1 of the decision matrix D1, the min bounds of c1, c2 and c3 are s4, s5 and s4; thus
the min−upper of a1 is s5. The max bounds of c1, c2 and c3 are s6, s6 and s6; thus the max−lower
of a1 is s6, and hence the core information of a1 is [s5, s6]. Intuitively, the core information reduces
HFLTSs of each alternative with respect to the criteria into a linguistic interval.
The HFL-VIKOR method utilizes the score function and the variance function of HFLTSs [45] to
rank HFLTSs of all alternatives with respect to each criterion; for example, for c3 of the decision
matrix D1, according to the score functions and the variance functions of [s4, s6], [s1, s3] and [s6, s6],
we obtain [s6, s6] > [s4, s6] > [s1, s3]; hence the positive- and negative-ideal solutions of c3 in the
decision matrix D1 are [s6, s6] and [s1, s3], respectively.
The proposed method uses Equations (11) and (12) to obtain the positive and negative information
of each criterion. Intuitively, the positive information of each criterion in the decision matrix D1

is also the optimistic information of all the alternatives provided by decision maker d1, and the
negative information of each criterion is the pessimistic information of all the alternatives, which
can be understood as the positive- and negative-ideal solutions provided by decision maker d1.
Table 6 shows the comparison of the three methods.
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Table 6. The positive- and negative-ideal solutions of the three methods.

The Positive-Ideal Solution The Negative-Ideal Solution The Core Information

The method [24] − − ([s5, s6], [s3, s4], [s6, s6])
The method [45] ([s5, s6], [s5, s6], [s6, s6]) ([s4, s6], [s6, s6], [s1, s3]) −

The proposed method ([s5, s6], [s5, s6], [s6, s6]) ([s4, s6], [s4, s6], [s1, s3]) −

(2) The ranking of alternatives: In the symbolic aggregation-based method, on the basis of the core
information of each alternative, a binary preference relation p(aj > aj′) between two alternatives is
calculated on the basis of Equation (7); then the nondominance degree (NDDj) of each alternative
is used to obtain the set of nondominated alternatives, which indicates the degree to which
alternative aj is not dominated by the remaining alternatives.
In the HFL-VIKOR method, the hesitant fuzzy linguistic group utility measure HFLGUj and the
hesitant fuzzy individual regret measure HFLIRj for the alternative aj are defined by the hesitant
fuzzy linguistic Euclidean Lp−metric; then the hesitant fuzzy linguistic compromise measure
HFLCj is established, that is,

HFLCj = θ
HFLGUj −HFLGU+

HFLGU− −HFLGU+ + (1− θ)
HFLIRj −HFLIR+

HFLIR− −HFLIR+

in which, HFLGU+ = min{HFLGU1, HFLGU2, HFLGU3}, HFLGU− = max{HFLGU1, HFLGU2,
HFLGU3}, HFLIR+ = min{ HFLIR1, HFLIR2, HFLIR3} and HFLIR− = max{ HFLIR1, HFLIR2,
HFLIR3}; θ ∈ [0, 1] is the weight of the strategy of the majority of the criteria or the maximum
overall utility. By ranking HFLGUj, HFLIRj and HFLCj in descending order, the final optimal
solution should be that which makes these measures attain the minimum values.

In the proposed method, positive- and negative-ideal separation matrices D+ and D− are used to
obtain the relative closeness degree RC(aj) of each alternative, that is,

D+ =

 d([s4, s6], [s5, s6]) + d([s5, s6], [s5, s6]) + d([s4, s6], [s6, s6])

d([s4, s6], [s5, s6]) + d([s4, s6], [s5, s6]) + d([s1, s3], [s6, s6])

d([s5, s6], [s5, s6]) + d([s4, s6], [s5, s6]) + d([s6, s6], [s6, s6])

 .
=

 0.67
0.84
0.17


D− =

 d([s4, s6], [s4, s6]) + d([s5, s6], [s4, s6]) + d([s4, s6], [s1, s3])

d([s4, s6], [s4, s6]) + d([s4, s6], [s4, s6]) + d([s1, s3], [s1, s3])

d([s5, s6], [s4, s6]) + d([s4, s6], [s4, s6]) + d([s6, s6], [s1, s3])

 .
=

 0.67
0

0.67


RC(a1) =

0.17
0.67

+
0.67
0.67

.
= 1.25, RC(a2) =

0.17
0.84

+ 0 .
= 0.20, RC(a3) = 2

Table 7 shows the ranking comparison of the three methods.

Table 7. The ranking comparison of the three methods.

NDDj, HFLCj or RC(aj) The Ranking The Best

The method [24] (0, 0.5, 1) a1 ≺ a2 ≺ a3 a3
The method [45] (0∗, 1−, 0.6074) a2 ≺ a3 ≺ a1 a1

The proposed method (1.25, 0.20, 2) a2 ≺ a1 ≺ a3 a3

4.2. Comparison with Beg and Rashid’s Method

Beg and Rashid’s method is also called the hesitant fuzzy linguistic TOPSIS (HFL-TOPSIS)
method [63] and was used to carry out Example 4, as follows:



Symmetry 2017, 9, 289 15 of 19

(1) On the basis of Equations (1) and (2), we aggregate D1, D2 and D3 to obtain the one decision
matrix D:

D = ([min{max3
i=1(minei

jk), min3
i=1(maxei

jk)}, max{max3
i=1(minei

jk), min3
i=1(maxei

jk)}])3×3

=

 [s4, s4] [s5, s5] [s5, s5]
[s5, s5] [s4, s4] [s3, s3]
[s4, s5] [s4, s4] [s5, s6]


(2) On the basis of Equations (3) and (4), we calculate the HFLTS positive- and negative-ideal solutions

A+ and A−; here, we suppose that the criteria are beneficial, that is,

A+ = ([s5, s6], [s5, s6], [s6, s6]), A− = ([s2, s4], [s3, s4], [s1, s3])

(3) On the basis of the distance d(H1
S, H2

S) = |q′ − q|+ |p′ − p| between H1
S and H2

S, we obtain the
positive (negative)-ideal matrices D+ (D−) between D and A+ (A−), that is,

D+ =

 d([s4, s4], [s5, s6]) + d([s5, s5], [s5, s6]) + d([s5, s5], [s6, s6])
d([s5, s5], [s5, s6]) + d([s4, s4], [s5, s6]) + d([s3, s3], [s6, s6])
d([s4, s5], [s5, s6]) + d([s4, s4], [s5, s6]) + d([s5, s6], [s6, s6])

 =

 6
10
6


D− =

 d([s4, s4], [s2, s4]) + d([s5, s5], [s3, s4]) + d([s5, s5], [s1, s3])
d([s5, s5], [s2, s4]) + d([s4, s4], [s3, s4]) + d([s3, s3], [s1, s3])
d([s4, s5], [s2, s4]) + d([s4, s4], [s3, s4]) + d([s5, s6], [s1, s3])

 =

 11
7
9


According to D+ and D−, we can obtain the relative closeness (Equation (6)) of each alternative to

the ideal solution; Table 8 shows the comparison of the HFL-TOPSIS method and the proposed method.

Table 8. The comparison of the HFL-TOPSIS method and the proposed method.

Weights HPIS and HNIS RC(aj) The Ranking The Best

The method [63] − ([s5, s6], [s5, s6], [s6, s6]) (0.65, 0.41, 0.6) a2 ≺ a3 ≺ a1 a1
([s2, s4], [s3, s4], [s1, s3])

The proposed method
√

([s5, s6], [s5, s6], [s5, s6]) (2, 0.92, 1.1) a2 ≺ a3 ≺ a1 a1
([s3, s5], [s3, s5], [s2, s3])

Comparing the above-mentioned steps (1)–(3) with steps (1)–(6) of Example 4, we can notice the
following differences between the HFL-TOPSIS method and the proposed method: (a) The HFLTS
positive- and negative-ideal solutions are different; in the HFL-TOPSIS method, the decision matrices
of decision making are first aggregated by using operations min and max (Equations (1) and (2));
then the HFLTS positive- and negative-ideal solutions A+ and A− are obtained by using operations
min and max (Equations (3) and (4)), for which, the weights of decision makers or criteria are not
considered. In the proposed method, the weights of decision makers are used to aggregate the positive
and negative information of decision makers and obtain the HFLTS positive- and negative-ideal
solutions (Equations (11)–(14)). (b) The positive- and negative-ideal separation matrices are different;
in the HFL-TOPSIS method, d(H1

S, H2
S) = |q′ − q|+ |p′ − p| between H1

S and H2
S is used to obtain the

positive- and negative-ideal separation matrices, which satisfy three properties of the distance. In the
proposed method, the pseudo-distance between HFLTSs (Equation (8)) is used to obtain the positive-
and negative-ideal separation matrices, which are based on preference degrees between two HFLTSs.
(c) The relative closeness degrees of the HFL-TOPSIS method and the proposed method are different.
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5. Conclusions

Motivated by the TOPSIS method in decision making, in this paper, we have developed a new
hesitant fuzzy linguistic TOPSIS method for group multi-criteria hesitant fuzzy linguistic decision
making. In the proposed method, we presented the positive and negative information of ck provided
by decision maker di to express the optimistic and pessimistic information of all alternatives provided
by each decision maker. Making use of the weighted 2-tuple linguistic aggregation operator, we
aggregated the positive and negative information of ck provided by m decision makers to obtain the
HFLTS positive- and negative-ideal solutions. We defined the pseudo-distance between two HFLTSs
and used this to measure the distance between assessments of the decision maker and the HFLTS
positive- and negative-ideal solutions. On the basis of the obtained positive- and negative-ideal
separation matrices, we proposed a new relative closeness degree of each alternative, which could
be used to rank all the alternatives; intuitively, the greater the value of the relative closeness degree,
the better the alternative. We utilized an example to illustrate the performance, usefulness and
effectiveness of the new hesitant fuzzy linguistic TOPSIS method, and compared it with the symbolic
aggregation-based method, the HFL-TOPSIS method and the HFL-VIKOR method.

It seems that the pseudo-distance between two HFLTSs and the relative closeness degree of the
alternative are useful and alternative tools in hesitant fuzzy linguistic decision making. We will use
the two concepts in the other decision making method and consider the proposed hesitant fuzzy
linguistic TOPSIS to carry out hesitant fuzzy linguistic decision making with huge amounts of decision
information and alternatives in the future works.
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