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Abstract: A map on a closed surface is a two-cell embedding of a finite connected graph. Maps on
surfaces are conveniently described by certain trivalent graphs, known as flag graphs. Flag graphs
themselves may be considered as maps embedded in the same surface as the original graph. The flag
graph is the underlying graph of the dual of the barycentric subdivision of the original map.
Certain operations on maps can be defined by appropriate operations on flag graphs. Orientable
surfaces may be given consistent orientations, and oriented maps can be described by a generating
pair consisting of a permutation and an involution on the set of arcs (or darts) defining a partially
directed arc graph. In this paper we describe how certain operations on maps can be described
directly on oriented maps via arc graphs.
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1. Maps and Oriented Maps

A mapM on a closed surface is a two-cell embedding of a finite connected graph G = (V, E)
(see, e.g., [1] or [2]). Equivalently, every map can be viewed as a set of three fixed-point-free involutions
r0, r1 and r2 acting on a set of flags Ω with the property that r0r2 is also a fixed-point-free involution,
in which case we denote the map asM = (Ω, 〈r0, r1, r2〉); see, for instance, [3] (p. 415). With this
second point of view, each map can be described completely using a three-edge colored cubic graph,
called the flag graph, whose vertices are elements of Ω, where ω1 and ω2 are connected by an edge
colored i in the flag graph if and only if ri(ω1) = ω2. Generally, only connected flag graphs are
considered. The graph G is called the skeleton or the underlying graph of a mapM.

In some cases, one may relax the conditions and allow fixed points in some of the involutions
r0, r1 and r2. Such a structure describes a map in a surface with a boundary and with its flag graph
containing semi-edges. We call such a map and respective flag graph degenerate.

If the surface in which the map resides is orientable, thenM is said to be an orientable map. There is
a well-known test involving flag graphs to determine whether a given map is orientable:

Proposition 1. A map is orientable if and only if its flag graph is bipartite.

In a bipartite flag graph, the flags (i.e., vertices) of the map come in two color classes; the vertices
in a single color class of flags are called arcs. Restricting attention to one set of arcs corresponds
to choosing an orientation of the orientable map, and we call the restricted graph an oriented map;
each orientable map gives rise to two oppositely oriented oriented maps. We note that in a map there
are four flags per edge of the skeleton, while in an oriented map there are two arcs per edge. That is,
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if Ω denotes the set of flags of the flag graph, and Σ denotes one of the sets of arcs of the oriented
graph, then |Ω| = 4|E| and |Σ| = 2|E|, where E is the set of edges of the skeleton of the original map.

Considering only oriented maps, as we do in this paper, allows us to treat each of the two
orientations of an orientable map separately. It also allows us to introduce the notion of an
oriented symmetry type graph, which captures the symmetry properties that are preserved under
orientation-preserving automorphisms of an oriented map. Most researchers consider maps and
oriented maps separately. A prominent exception is found in the lecture notes of Roman Nedela
(see [4]), where both maps and oriented maps are studied using the same tools. The main difference
between our approach and Nedela’s is that Nedela puts the emphasis on groups, while we focus
mainly on graphs (flag graphs and arc graphs).

More technically, we define an oriented map to be a structureMo := {Σ, 〈r, R〉}, where r is a
fixed-point-free involution and R is any permutation acting on a set of objects Σ, called arcs. We also
view the oriented map Mo as a partially directed graph, called an arc graph, whose vertices are
elements of Σ, having some edges directed and some undirected. The directed edges form a directed
2-factor, corresponding to the action of the permutation R on elements of Σ. The undirected edges
form an undirected 1-factor, corresponding to the action of the involution r on the elements of Σ.
Again, the only other constraint usually imposed on such a structure is the fact that the arc graph must
be connected. If the involution r is not fixed-point-free, then we say that the corresponding arc graph
is degenerate.

We note that each oriented map Mo gives rise to its skeleton graph G in the following way:
the vertices of G are the orbits of R on Σ and the edges of G are the orbits of r on Σ. A vertex is
incident with an edge if and only if the corresponding orbits have a non-empty intersection. Using this
description, we can generate an oriented mapMo from any orientable mapM = {Ω, 〈r0, r1, r2〉} by
first observing that, becauseM is orientable, the flag graph is bipartite, with bipartite sets Ω+ and
Ω−. We define Σ = Ω+, r = r0r2 and R = r1r2; we note that by the nature of the bipartition of the
vertices ofM, the elements of Σ are in one-to-one correspondence with the endpoints of the edges
(i.e., the arcs) of the flag graph ofM. (If we instead define r̂ = r2r0 and R̂ = r2r1, then we get the
“other” orientation ofM.) A fragment of an oriented mapMo is shown in Figure 1, with a portion of
the underlying mapM also shown.

Figure 1. A fragment of an oriented map. The arcs are shown as black vertices; the green arrows
correspond to the action of R on the arcs, and blue edges, to the action of r. The dashed lines and
white vertices are from the underlying unoriented map. Orientation is counterclockwise, indicated
with arrows.
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Conversely, any oriented map Mo := {Σ, 〈r, R〉} gives rise to the associated orientable map
M = {Ω, 〈r0, r1, r2〉} in the following way: let Σ0 and Σ1 be two copies (colored using colors 0 and 1)
of Σ, with elements σ0 and σ1 respectively, and define

Ω := Σ0 ∪ Σ1

r0(σ0) := r(σ)0 r0(σ1) := r(σ)1

r2(σ0) := r(σ)1 r2(σ1) := r(σ)0

r1(σ0) := R(σ)1 r1(σ1) := R−1(σ)0

It is straightforward to show that the skeleton of an oriented map is isomorphic as a graph to the
skeleton of the underlying orientable map.

Example 1. The cube may be considered either as

• an oriented map:Mo := {Σ, 〈r, R〉}, or
• as an (orientable) map:M = {Ω, 〈r0, r1, r2〉}.

These two representations are depicted in Figure 2.

R

r

Figure 2. The cube may be considered as an oriented map determined by R and r, or as a map
determined by r0, r1, r2.

We recall that two mapsM(1) = {Ω(1), 〈r(1)0 , r(1)1 , r(1)2 〉} andM(2) = {Ω(2), 〈r(2)0 , r(2)1 , r(2)2 〉} are

isomorphic if there exists a bijection h between Ω(1) and Ω(2) such that hr(1)i = r(2)i h for i = 0, 1, 2,
and we call such a bijection a map isomorphism.

Similarly, we say that two oriented maps M(1)
o = {Σ(1), 〈r(1), R(1)〉} and M(2)

o =

{Σ(2), 〈r(2), R(2)〉} are isomorphic if there exists a bijection h between Σ(1) and Σ(2) such that
hr(1) = r(2)h and hR(1) = R(2)h. Such a bijection is called an oriented map isomorphism.

As usual, the isomorphisms of a structure to itself are called automorphisms and form a group.
By AutM we denote the group of map automorphisms, and similarly by AutMo we denote the group
of oriented map isomorphisms.

Lemma 1 (Fundamental Lemma of Symmetries of Maps). The action of the automorphism group AutM
of the mapM = {Ω, 〈r0, r1, r2〉} is semi-regular on the set of flags Ω.

Lemma 2 (Fundamental Lemma of Symmetries of Oriented Maps). The action of the automorphism group
AutMo of the oriented mapM = {Σ, 〈r, R〉} is semi-regular on the set of arcs Σ.
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The validity of both lemmas follows from the fact that for connected structures, any element
(flag or arc) can be mapped to any other element in at most one way. Namely, if the image w of a given
element v is chosen, then the images of all its neighbours are uniquely determined. By repeating the
argument, either the full automorphism is constructed or a contradiction proves that no automorphism
mapping v to w exists.

Definition 1. If the automorphism group of a map has k orbits, the map is called a k-orbit map.

Definition 2. If the automorphism group of an oriented map has k orbits, the oriented map is called a k-orbit
oriented map.

The Fundamental Lemmas of Symmetries of Maps and Oriented Maps have several interesting
consequences that follow by the application of basic permutation group theory:

Corollary 1. LetM = {Ω, 〈r0, r1, r2〉} be a map.

• The cardinality of each orbit of AutM on Ω is equal to the order of AutM.
• |AutM| is a divisor of |Ω|.
• The projectionM→M/AutM is a regular covering projection.
• The quotient T(M) =M/AutM = {Ω′, 〈r′0, r′1, r′2〉} is a degenerate flag graph, called the symmetry

type graph.
• The order k = |Ω′| of T(M) is equal to k = |Ω|/|AutM|, andM is a k-orbit map.

For the definition of a regular covering projection, the reader is referred, for example, to [1].
Symmetry type graphs have been used previously in the analysis of maps; see, for instance, [5–9] .

We extend these results of maps to oriented maps in the obvious way by introducing a useful tool that
we call an oriented symmetry type graph (see Figure 3):

Corollary 2. LetMo = {Σ, 〈R, r〉} be an oriented map.

• The cardinality of each orbit of AutMo on Σ is equal to the order of AutMo.
• |AutMo| is a divisor of |Σ|.
• The projectionMo →Mo/AutMo is a regular covering projection.
• The quotient To(Mo) = Mo/AutMo = {Σ′, 〈R′, r′〉} is a degenerate arc graph, called the oriented

symmetry type graph.
• The order ko = |Σ′| of To(Mo) is equal to ko = |Σ|/|AutMo|, andMo is a ko-orbit oriented map.

We now demonstrate an application of symmetry type graphs and oriented symmetry type graphs.
A map is regular (in the strong sense, i.e., the order of its automorphism group is |AutM| = |Ω| = 4|E|)
if and only if its symmetry type graph is a one-vertex graph (k = 1). Similarly, an oriented map is
regular (i.e., the order if its orientation-preserving automorphism group is |AutMo| = |Σ| = 2|E|) if
and only if its symmetry type graph is a one-vertex graph (ko = 1). We note that a regular oriented
map may be either a regular or chiral (orientable) map.

In general, the underlying orientable map of a ko-orbit oriented map is either a ko- or 2ko-orbit map.
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Figure 3. An example of a symmetry type graph of a regular map and an oriented symmetry type graph
of an oriented regular map; in this case, they may be viewed as the symmetry/oriented symmetry type
graph of the cube.

Example 2. The n-sided pyramids for n > 3 all have the the same symmetry type graph and the same oriented
symmetry type graph. The case n = 4 is depicted in Figure 4.
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(a) The flag graph of the square pyramidM. (b) The quotient T(M).

(c) The arc graph of the square pyramidMo. (d) The quotient T(Mo).

Figure 4. The four-sided pyramid represented as a mapM and as an oriented mapMo, with the
corresponding symmetry type graph T(M) and oriented symmetry type graph To(Mo).

(a) The flag graph of the square pyramidM.
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Figure 4. The four-sided pyramid represented as a mapM and as an oriented mapMo, with the
corresponding symmetry type graph T(M) and oriented symmetry type graph To(Mo).
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2. Operations On Oriented Maps

Operations on maps with the property that the new map resides in the same surface as the
original map have been the subject of active investigation (see [6,7,10–13]). If the underlying surface
is orientable, we may choose one orientation that induces an orientation of the corresponding map,
making it an oriented map. If we keep the surface orientation, the operation may be shifted from maps
to oriented maps. In the context of this paper, we work entirely with the generating permutations r
and R of the oriented map to describe these operations.

Each operation Op in this paper can be described in the following way. Each arc σ of the original
oriented map Mo = {Σ, 〈r, R〉} gives rise to k arcs σ0, σ1, . . . , σk−1 of the resulting oriented map
Op(Mo) := {Σ′, 〈r′, R′〉}, where Σ′ = Σ0 ∪ Σ1 ∪ . . . Σk−1 and each Σi consists of copies of arcs of Σ
with subscript i. If r is the original involution and R is the original permutation ofMo, we denote by r′

and R′ the respective permutations of the resulting map Op(Mo), which reside in the same surface as
Mo with the same orientation asMo. Because |Σ′| = k|Σ| we call k the edge-multiplier of Op. We derive
the action of five operations, Dual (Du), Medial (Me), Truncation (Tr), Snub (Sn), and Chamfer (Ch),
by considering directly their local effect on the vertices and edges of an oriented mapMo. Each of
these operations is well known from the study of polyhedra. We present the definition of r′ and R′

for each of these operations, by describing their action on the k arcs σ1, . . . , σk of Op(Mo) associated
with each arc σ ofMo. Illustrations corresponding to the derivation of each of these new r′ and R′ are
given in the corresponding figures.

2.1. Orientation Reversal Re or *

An operation with edge-multiplier 1 that can be defined on oriented maps but has no counterpart
on maps is the orientation reversal, Re. Given an oriented mapMo = {Σ, 〈r, R〉}, the reversal is given
byM∗

o := {Σ, 〈r, R−1〉}. In other words, we have the following:

r′(σ0) = r(σ)0 R′(σ0) = R−1(σ)0 Re (1)

2.2. Dual Du and Improper Dual IDu

The definition of dual seems that it should be straightforward. We are tempted to define it as
follows:

r′(σ0) = r(σ)0 R′(σ0) = R(r(σ))0 IDu

However, if we draw the corresponding figure, it becomes obvious that the map defined by the
above rules is oriented in the opposite direction from the original map. Hence, we call it the improper
dual IDu. A local portion of a map, along with the derivation of its Du and IDu, is shown in Figure 5.

σ

R(σ)

R−1(σ)

r(σ)

R(r(σ))

R−1(r(σ))

r(R−1(σ))

IDu

σ
r′(σ)

R′(σ)

R′−1(σ)

Du

σ
r′(σ)

R′−1(σ)

R′(σ)

Figure 5. Improper dual (IDu) and dual (Du) of an oriented map, local figure. In the center is a local
portion of an oriented map, to the left is is the local picture of IDu, and to the right is Du. Because there
is only one copy of Σ used in the construction of IDu and Du, we have suppressed the 0 subscript on the
arcs for clarity.
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The correct definition of the orientation preserving dual Du is as follows:

r′(σ0) = R(r(R−1(σ)))0 R′(σ0) = r(R−1(σ))0 Du

2.3. Truncation (Tr)

The truncation operation is a well-known operation that has been applied to polyhedra and maps
on many occasions; see, for instance, [14]. It is derived from the geometric operation in which the
vertices of a convex polyhedron are cut off shallowly to form a new polyhedron. Here, we present it in
the oriented version. Each arc σ of the oriented mapMo := {Σ, 〈r, R〉} gives rise to three arcs σ0, σ1
and σ2 of the truncated oriented map Tr(Mo) := {Σ′, 〈r′, R′〉}. Hence the edge-multiplier of Tr is 3.
See Figure 6. We define r′ and R′ as follows:

r′(σ0) = r(σ)0 R′(σ0) = σ1 Tr

r′(σ1) = R(σ)2 R′(σ1) = σ2 Tr

r′(σ2) = R−1(σ)1 R′(σ2) = σ0 Tr

σ

R(σ)

R−1(σ)

r(σ)
Tr

R(σ)2

R−1(σ)1

r(σ)0

σ1

σ2

σ0

Figure 6. Truncated oriented map Tr, local figure.

2.4. Medial (Me)

Another operation of the same type is the medial Me, with edge-multiplier 2. It is derived from
the geometric operation in which the vertices of a convex polyhedron are cut off at the midpoints of
the edges (sometimes called full truncation or rectification) to form a new polyhedron. For example,
the medial of a cube is the cuboctahedron. The medial of ordinary maps has been studied in [5].
The medial of an oriented map is defined as follows (see Figure 7):

r′(σ0) = R(σ)1 R′(σ0) = σ1 Me

r′(σ1) = R−1(σ)0 R′(σ1) = r(σ)0 Me

σ

R(σ)

R−1(σ)

r(σ)

Me

R(σ)1

R−1(σ)0

σ0

σ1

r(σ)1

r(σ)0

Figure 7. Medial Me of an oriented map, local figure.

2.5. Snub (Sn)

The snub is an operation with edge-multiplier 5 that can only be defined on oriented (or orientable)
maps; see Figure 8. Geometrically, it corresponds to the new polyhedron formed by moving all faces
of a convex polyhedron outwards, twisting each face about its center, and adding pairs of triangular
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faces in place of the original edges. We note that definitions provided by Conway (discussed in [10])
and Coxeter [14] differ slightly.

r′(σ0) = r(σ)4 R′(σ0) = σ1 Sn

r′(σ1) = r(σ)1 R′(σ1) = σ2 Sn

r′(σ2) = σ3 R′(σ2) = R−1(σ)3 Sn

r′(σ3) = σ2 R′(σ3) = σ4 Sn

r′(σ4) = r(σ)0 R′(σ4) = R(σ)0 Sn

σ

R(σ)

R−1(σ)

r(σ)

Sn

σ3

σ4

σ2

σ0

σ1

r(σ)3

r(σ)4

r(σ)2

r(σ)0

r(σ)1

R(σ)3
R(σ)4

R(σ)2

R(σ)0

R(σ)1

R−1(σ)3

R−1(σ)4

R−1(σ)2

R−1(σ)0

R−1(σ)1

Figure 8. Snub Sn of an oriented map, local figure.

2.6. Chamfer Ch

The chamfer operation is an operation with edge-multiplier 4; see Figure 9. Geometrically, it is
derived from shallowly slicing off the edges of a convex polyhedron. As a map operation, it was used,
for instance, in [8].

r′(σ0) = σ1 R′(σ0) = R(σ)0 Ch

r′(σ1) = σ0 R′(σ1) = σ2 Ch

r′(σ2) = σ3 R′(σ2) = r(R(σ))3 Ch

r′(σ3) = σ2 R′(σ3) = R−1(r(σ))1 Ch

σ

R(σ)

R−1(σ)

r(σ)

Ch
σ0

σ1

σ2 σ3
R(r(σ))3

R(σ)0

R(σ)1

r(R(σ))3

R−1(σ)0

Figure 9. Chamfer Ch of an oriented map, local figure.

2.7. One-Dimensional Subdivision Su1

The one-dimensional subdivision is an operation with edge-multiplier 2. It is a simple operation
that subdivides each edge of the oriented map. For maps, it has been used in several places in
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the literature (e.g., [11–13]). It is a building block for composite operations. The following is a
formal definition:

r′(σ0) = σ1 R′(σ0) = R(σ)0 Su1

r′(σ1) = σ0 R′(σ1) = r(σ)1 Su1

2.8. Composite Operations

Given two operations Op1 and Op2, it is natural to consider the operation Op that is obtained by
first applying Op1 and then Op2; that is, Op = Op2 Op1. It is not hard to see that the edge-multiplier of
Op is the product of edge-multipliers of Op1 and Op2. The following are some examples:

Su2 = Du Tr Du two-dimensional subdivision

BS = Su2 Su1 barycentric subdivision

Le = Tr Du leapfrog

Co = Du BS combinatorial map

An = Du Me angle map

Go = Du Me Tr gothic operation

Each of these operations has been used for maps. One can use the same formulae to define them
for oriented maps. Two-dimensional subdivision is sometimes called omni-capping. Each face of the
original map is subdivided into triangles by placing a new vertex in the center of the face and joining
it to each of the original vertices. Leapfrogging is an operation that has been studied extensively in
theoretical chemistry; see, for instance, [11]. For instance, the leapfrog of a dodecahedron is a truncated
icosahedron. In general, a leapfrog of a fullerene is another fullerene (see, e.g., [11]). In a similar way,
An has been used in [15] and Go has been used in [7]. The edge-multiplier for Su2 is 3; for BS, Co and Go,
the edge-multiplier is 6; and the edge-multiplier for An is 2. An early use of An can be found in [16],
where it is called the web graph. In [17], it is called the radial graph, and its dual Me is also discussed.
In [11–13], several operations on maps are discussed.

3. Some Properties of the Operations and k-Orbit Oriented Maps

There is an important paper by Orbanić, Pellicer and Weiss [18] in which, among other things, the
following theorem is proved.

Theorem 1. IfM is a k-orbit map, then its truncation Tr(M) is either a 3k-, 3k/2- or k-orbit map.

Motivated by [18], we define the following:

Definition 3. Let Op be a map operation. If there exists a k-orbit mapM such that Op(M) is a λk-orbit map,
then λ is called a flag-orbit multiplier. By Λ(Op) we denote the set of flag-orbit multipliers of Op.

For instance, Λ(Tr) = {1, 3/2, 3}.

Problem 1. Investigate sets of flag-orbit multipliers for various operations on maps.

So far, flag-orbit multipliers have been investigated for truncation, medials and
chamfering [5,8,9,18]. One could consider these operations on oriented maps, that is, as follows:

Definition 4. Let Op be an oriented-map operation. If there exists a k-orbit oriented mapMo such that Op(Mo)

is a λok-orbit oriented map, then λo is called an arc-orbit multiplier. By Λo(Op) we denote the set of arc-orbit
multipliers of Op.



Symmetry 2017, 9, 274 10 of 14

Problem 2. Investigate sets of arc-orbit multipliers for various operations on oriented maps.

In the case of maps, the main tools are symmetry type graphs. In the case of oriented maps, it seems
natural that we should use oriented symmetry type graphs.

We note that the operations Op, such as Tr, Me, Du, and Ch, have been studied for general maps,
and in the context of oriented maps, they satisfy the following condition: Op(Mo) ∼= Op(M∗

o )
∗. We call

such operations amphicheiral—equivalent to their mirror image. On the other hand, this is not the case
for the snub operation. We may define a different snub operation Sn∗(Mo) := Sn(M∗

o )
∗. Operations

that are not amphicheiral are called chiral. Therefore, the snub is a chiral operation. The snub can only
be defined for oriented maps. It certainly cannot be defined on a non-orientable map. If we try to
define it for an orientable map, there is no way to distinguish between Sn∗ and Sn; hence we have to
define them both simultaneously and name them arbitrarily.

We may carry this idea to oriented maps and to their oriented symmetry type graphs. We say that
an oriented map or oriented symmetry type graph is amphicheiral ifMo ∼=M∗

o , or T(Mo) ∼= T(M∗
o ).

Otherwise, it is chiral (in the sense of Conway). In practice, we may check whether a map is chiral by
reversing the directions of arrows and checking whether the resulting map is orientably isomorphic
to the original or not. All oriented symmetry type graphs up to four vertices are amphicheiral.
The smallest chiral graph is depicted in Figure 10.

Figure 10. Smallest chiral oriented symmetry type graph (both versions).

4. Edge-Transitive Oriented Maps

Recently it has been shown that symmetry type graphs are quite a powerful tool when studying
certain types of maps. For instance, they provide combinatorial, group-free approaches to the question
of classifying edge-transitive maps. In [19], Graver and Watkins classified edge-transitive maps
into 14 distinct types. In [20], Širáň, Tucker and Watkins showed that each of the 14 types admits
a realization by an oriented map. In [6], Orbanić et al. showed that the 14 types can naturally be
described by 14 symmetry type graphs, shown in Figure 11.

The main idea of the proof is to use the fact that in the edge-transitive case, the spanning subgraph
of the symmetry type graph determined by r0, r2 must be connected. There are five possibilities,
depicted in Figure 12. By inserting the edges of r1 in all possible ways, one obtains exactly the 14 types.

Karabáš [21] gives a list of low-genus orientable edge-transitive maps. Eight types of these maps
are mentioned. Karabáš and Pisanski [22] have shown that these eight classes correspond to eight
different oriented symmetry type graphs.

We note that for an oriented map, the number of edge orbits according to the
orientation-preserving automorphism group corresponds to the number of edges arising from r′

in the respective oriented symmetry type graph. This limits the search to oriented symmetry type
graphs on one or two vertices. We call such oriented maps edge-transitive in the strong sense.
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Figure 11. The 14 symmetry type graphs of edge-transitive maps.

Figure 12. Five possible quotients of an edge quadrangle.

On the other hand, an oriented map may not be edge-transitive in the strong sense, but it may
have an edge-transitive underlying (orientable) map. Such a map is edge-transitive in the weak sense.
One can classify such maps.

Theorem 2. ([22]) An oriented map is edge-transitive in the weak sense if and only if its oriented symmetry
type graph has two edges corresponding to r and there exists an extended automorphism reversing the arrows of
R that interchanges the two r-edges.

This, in turn, implies that a weak edge-transitive oriented map has at most four arc symmetry
classes, or equivalently, that its oriented symmetry type graph has at most four vertices. Figure 13
depicts all 17 oriented symmetry type graphs on at most four vertices. In addition to three strong
edge-transitive types, we obtain five weak edge-transitive types.

This rather simple combinatorial approach complements the much more sophisticated
group-theoretic approach by Jones [23].



Symmetry 2017, 9, 274 12 of 14

**

**

**

*

*

**

*

Figure 13. The 17 oriented symmetry type graphs on at most four vertices. Eight of these marked
by (**) or (*) correspond to edge-transitive maps. The three marked by (**) correspond to the strong
edge-transitive maps.

5. Conclusions

In this paper, we described the basics of operations on oriented maps and their oriented symmetry
type graphs. It would be interesting to carry over the investigations that were performed for similar
operations on maps and their symmetry types, such as those by Orbanić et al. [6], del Rio Francos [8,9],
and Hubard et al. [5] to oriented maps and their oriented symmetry type graphs. Another context in
which it would be interesting to investigate similar questions would be in the higher ranks provided
by maniplexes and oriented maniplexes (cf., Cunningham et al. [24]).

Finally, there exists a collection of operations on polyhedra, described using Conway polyhedron
notation [10,25], originally developed by John H. Conway but later promoted and expanded by George
W. Hart, that can be readily carried over to maps and oriented maps. We believe that our approach via
flag graphs and arc graphs should be applied to Conway operations to give them rigorous definitions.
Namely, to the best of our knowledge, currently only verbal and pictorial descriptions of Conway



Symmetry 2017, 9, 274 13 of 14

operations are available. A dictionary that would translate between the two notations would certainly
be useful. The reader is referred to [26–30] for related work and for further references. In particular,
this theory can be extended to hypermaps [28,31].
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5. Hubard, I.; del Río Francos, M.; Orbanić, A.; Pisanski, T. Medial symmetry type graphs. Electron. J. Comb.

2013, 20, 28.
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