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Abstract: A hesitant intuitionistic fuzzy linguistic set (HIFLS) that integrates both qualitative and
quantitative evaluations is an extension of the linguistic set, intuitionistic fuzzy set (IFS), hesitant
fuzzy set (HFS) and hesitant intuitionistic fuzzy set (HIFS). It can describe the qualitative evaluation
information given by the decision-makers (DMs) and reflect their uncertainty. In this article, we defined
some new operational laws and comparative method for HIFLSs. Then, based on these operations, we
propose two prioritized aggregation (PA) operators for HIFLSs: prioritized weighted averaging operator
for HIFLSs (HIFLPWA) and prioritized weighted geometric operator for HIFLSs (HIFLPWG). Based on
these aggregation operators, an approach for multi-attribute decision-making (MADM) is developed
under the environment of HIFLSs. Finally, a practical example is given to show the practicality and
effectiveness of the developed approach by comparing with the other representative methods.

Keywords: linguistic set; hesitant intuitionistic fuzzy numbers; aggregation operators; linguistic
scale function; multi-attribute decision-making (MADM)

1. Introduction

In modern decision science, one of the most important research topics is multi-attribute
decision-making (MADM) which can select the best alternative according to multiple influential
attributes [1–3] Generally, the decision-makers (DMs) use crisp numbers to manifest their preferences
about the alternative in traditional MADM problems. However, due to deficiency of information,
insufficiency of data and time pressure, the attribute values, especially for qualitative attribute values,
generally cannot be manifested by real numbers, and some of them are easier to be expressed by
fuzzy values. Since Zadeh [4] presented fuzzy set (FS), many extensions of FSs were made by
researchers [5–7]. In Zadeh’ FSs, there is only the membership degree (MD) with a single value
in the closed interval [0, 1]. Obviously, it is insufficient to depict complete information due to lack of
comprehensive and systematic knowledge.

To deal with such cases, Torra [8] made an extension of the FSs and proposed the concept of
hesitant fuzzy set (HFS). In HFSs, the MD of an element in a universe is a set of several possible values in
the closed interval [0, 1]. After that, many MADM methods [9–14] and measures including correlation,
distance, similarity and entropy [15–18] have been proposed for HFS by many researchers. Liao and
Xu [19,20] presented the subtraction and division operations, and hybrid arithmetical averaging
for HFSs (HFHAA), hybrid arithmetical geometric for HFSs (HFHAG), the quasi HFHAA and the
quasi HFHAG operators, Xia and Xu [21], and Zhang [22] proposed power aggregation operators for
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HFS and successfully they are applied to MADM. Zhu et al. [23] presented the dual HFSs (DHFSs).
Singh [24] proposed some distance and similarity measures for DHFSs.

When the problems faced that are too ill-defined or complex are described by quantitative
expression, the linguistic variables (LVs) are an efficient tool to depict quantitative information [25].
LVs have been studied and applied by many researchers in various fields [2,26–29], and may be a single
linguistic term (LT) [30] or interval LTs, namely uncertain LVs. Rodriguez et al. [31,32] presented the
hesitant fuzzy LT set which contains several LTs. Moreover, by combining LVs and HFSs, Lin et al. [33]
introduced the hesitant fuzzy linguistic set (HFLS), in which the LV is with a set of several possible MDs
in the closed interval [0, 1]. After that, Wu et al. [34] found some limitations in the HFLS and proposed
some new operations based on the linguistic scale function (LSF). However, in HFLSs, only the MD
was considered and the non-membership degree (NMD) is ignored, which may cause information
distortion and loss. IFS introduced by Atanassov [5] consists of MD and NMD, i.e., the MD is explained
as the epistemic certainty, while the NMD is explained as the epistemic negativity. IFSs have been
widely used by many researchers and participants [35,36]. Motivated by the idea of IFS and HFLS,
Liu et al. [37] presented hesitant intuitionistic fuzzy linguistic set (HIFLS), hesitant intuitionistic fuzzy
linguistic element (HIFLE) and defined some basic operational rules, score and accuracy functions for
HIFLEs. Then, based on these operational rules, some aggregation operators were defined and applied
to MADM. However, there are some existing limitations in the operations, the score and accuracy
functions defined for HIFLEs.

Aggregation operators are necessary tools in information fusion in MADM problems [38–41].
In practical situation, generally, DMs should consider prioritization between different criteria.
To handle such kind of situation, Yager [21] was the first to propose PA operator and applies it
to MADM problems. Liu et al. [42] proposed prioritized OWA operator to deal with intuitionistic
trapezoidal fuzzy information. However, in [21], the criteria values were discussed in real number
domain, and there have been no aggregation operators that consider the priorities for HIFLNs.

The advantage of the HIFLEs is they can fully depict complex uncertain information; however, there
are some shortcomings in the operational rules and the comparison method of HIFLEs, for example,
when one NMD of HIFLEs equals to zero, then the effects of other NMDs on operational result of
addition operation do not play a significant role. In addition, some HIFLEs cannot be compared by
the existing methods. Thus, it is necessary to study the new operational rules and comparison method.
Moreover, the PA operator has the advantage that it can consider the priority among the criteria, and
it can solve the MADM problems with priority among the attributes. Therefore, the purpose of this
article is: (1) to propose new operational results for HIFLEs to overcome the existing shortcomings;
(2) to develop a new comparison method for HIFLEs; (3) to propose some PA operators for HIFLEs;
and (4) to develop a decision method for the MADM problems with priority among the attributes based
on the proposed operators.

The rest of the article is organized as follows. In Section 2, some basic concepts about LT sets (LTSs),
HFSs, HFLSs, IFS, LSF and PA operators are briefly reviewed. In Section 3, we explain some existing
limitations in the operations, score and accuracy function of HIFLEs, and define some new operations,
score and accuracy functions for HIFLEs. In Section 4, two prioritized aggregation operators for
HIFLEs are developed. In Section 5, based on these defined operators, a MCDM method is proposed.
In Section 6, comparison and discussion with the existing aggregation operators through the same
example are illustrated. Finally, conclusion and references are given.

2. Preliminaries

2.1. LTS

Let S = {s0, s2, . . . , sz} be a finite LTS with odd cardinality, where sj is a possible value from
the LT, and z + 1 is the length of S. For example, when z = 4, a set of five LTs S is defined as follows:

S = {s0 = very low, s1 = low, s2 = medium, s3 = high, s4 = very high}
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Clearly, the middle LT denotes the assessments of “indifference” and the other LTs are set on both
sides of it symmetrically. In such cases, for any LTS S, su and sv can satisfy the following properties:

(1) The set is ordered: su > sv, i f u > v;
(2) Negation operator: Neg(su) = sv such that v = z− u;
(3) Maximum operator: max(su, sv) = su, i f u ≥ v; and
(4) Minimum operator: min(su, sv) = su, i f u ≤ v.

To keep the information, the discrete LTS S is extended to a continuous LTS (CLTS)
S = { sϑ|ϑ ∈ [0, z]} which satisfies all the properties defined above. If sϑ ∈ S, then sϑ is an original
LT. Otherwise, sϑ is the virtual LT. Generally, the DMs can use original LT for the assessment of
alternatives and the virtual LT is only used in the calculation [2]. The algebraic operational laws of the
LVs can be found in [2,3].

2.2. HFLS

Definition 1 [8]. Let U be a non-empty fixed set, then a HFS on U can be defined as

H = { 〈u, h(u)〉|u ∈ u} (1)

where h(u) = ∪υ(u)∈h(u){ν(u)} is a group of some values in [0, 1] expressing the possible MDs of the element
u ∈ U to the set H, the h(u) is called a hesitant fuzzy element (HFE), and H is regarded as the set of all
HFEs [43].

Definition 2 [43]. Let h1 = ∪υ1∈h1{υ1}, h2 = ∪υ2∈h2{υ2} be two HFEs, and κ ≥ 0, then some operational
laws for HFEs are given as follows:

h1 + h2 = ∪υ1∈h1, υ2∈h2{1− (1− υ1)(1− υ2)}; (2)

h1 × h2 = ∪υ1∈h1, υ2∈h2{υ1υ2}; (3)

κh1 = ∪υ1∈h1{1− (1− υ1)
κ}; (4)

hκ
1 = ∪υ1∈h1{υ1

κ}. (5)

Definition 3 [33]. Let U be a non-empty universal set and S be a CLTS of S = {s0, s1, . . . , sz}, then a HFLS
on U can be represented by

D̃ = {
〈

u, sϑ(u), hD̃(u)
〉∣∣∣u ∈ U } (6)

where sϑ(u) ∈ S, hD̃(u) = ∪vD̃(u)∈hD̃(u){vD̃(u)} is a group of some possible MDs of the element u ∈ U to the

LTsϑ(u) in [0, 1]. Then, d̃ =
〈

u, sϑ(u), hD̃(u)
〉

is called hesitant fuzzy linguistic number (HFLN).

2.3. IFS

Definition 4 [5]. Let U be a universal set. An IFS M on U is defined as follows:

M = { 〈a, m(a), n(a)〉|a ∈ U } (7)

where m(a) and n(a), respectively, represent the MD and NMD of the element a ∈ U to the set M.
Then, m̃ = 〈m, n〉 is called an intuitionistic fuzzy number (IFN).

Definition 5 [5]. Let m̃1 = 〈m1, n1〉 and m̃2 = 〈m2, n2〉 be two IFNs and κ ≥ 0. Then, some basic operational
rules for IFNs are defined below:

(1) m̃1 + m̃2 = 〈m1 + m2 −m1m2, n1n2〉;
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(2) m̃1 × m̃2 = 〈m1m2, n1 + n2 − n1n2〉;
(3) m̃κ

1 =
〈
mκ

1, 1− (1− n1)
κ〉; and

(4) κm̃1 =
〈
1− (1−mκ

1), n1
κ
〉
.

2.4. PA Operators

Definition 6 [21]. Let G̃ = {G̃1, G̃2 , . . . , G̃l} be a family of attributes, and ensure that there exist a
prioritization among the attributes represented by a linear ordering G̃1 > G̃2 > . . . . > G̃l , which denote
that the criterion G̃d has a high priority than G̃ f , if d < f . G̃d(u) is an assessment value representing the
performance of the alternative u under the criterion G̃d and satisfies G̃d ∈ [0, 1]. if

PA(G̃1(u), G̃2(u), · · · , G̃l(u)) =
l

∑
d=1

wdG̃d(u) (8)

then PA operator has been successfully applied in a situation where the attributes are real values. Therefore, the PA
operator can be extended to the HIFLNs.

2.5. LSF

To describe the semantics more flexibly, LSFs are assigned to different semantic values based on
the different application situations [44].

Definition 7 [44]. Let sj ∈ S be a LT, where S = { sj
∣∣j = 0, 1, 2, . . . , 2k}. If θj ∈ [0, 1] is a numerical value,

then the LSF F∗ is a function from sj to θj(j = 0, 1, 2, . . . , 2k), and is defined as follows:

F∗ : sj → θj (j = 0, 1, . . . , 2k) (9)

where 0 ≤ θ0 < θ1 < . . . . < θ2k. Clearly, the symbol θj(j = 0, 1, 2, . . . , 2k) reflects the preference of DMs
when they are using the LT sj ∈ S(j = 0, 1, 2, . . . , 2k). Thus, the function value can express the semantics of
the LTs. There are three types of LSFs.

(1) The first type of LSF is defined as:

F∗1 (sj) = θj =
j

2k
(j = 0, 1, . . . , 2k) (10)

Here θj ∈ [0, 1], and all LTs are divided evenly in [0, 1].
(2) The second type of LSF is defined as:

F∗2 (sj) = θj =


γk−γk−j

2γk−2
(j = 0, 1, 2, . . . , k)

γk+γj−k−2
2γk−2

(j = k + 1, k + 2 . . . , 2k)
(11)

The value of γ can be determined by γ = k
√

m [44], where k represents the scale level, and m is
the importance ratio, of which indicator A is far more important than indicator B. In general, m = 9.
If k = 7, then γ = 7

√
9 = 1.37.

Then, all LTs are non-uniformly distributed in [0, 1], and the closer to both ends the LT is, the more
deviation there is between adjacent two LTs.
(3) The third type of LSF is defined as

F∗3 (sj) = θj =


kα−(k−j)α

2kα (j = 0, 1, 2, . . . , k)
kβ−(j−k)β

2kβ (j = k + 1, k + 2 . . . , 2k)
(12)
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Here α, β ∈ (0, 1]. If α = β = 1, then θj = j
2k . In this situation, all LTs are non-uniformly

distributed in [0, 1], and the closer to both ends the LT is, the smaller the deviation is between two
adjacent LTs.

To keep all the given information, the above-mentioned functions can be extended to
F∗ : S→ θ(θ ∈ [0, 1]), where F∗ is a strictly monotonically increasing and continuous function.
Then, the inverse function of F∗ is expressed by F∗−1.

3. HIFS and Their Operations

3.1. The Definition and Operational Rules of HIFLNs

Definition 8 [37]. Let U be the universe of discourse set and S be a CLTS. Then a HIFLS is an object which is
mathematically represented as

A = {
〈

u, sϑ(u), hA(u)
〉∣∣∣u ∈ U } (13)

where sϑ(u) ∈ S, hA(u) = ∪
(mA(u), nA(u))∈hA(u)

{mA(u), nA(u)} is a set of IFNs, respectively representing

the some possible MDs and NMDs of the element u ∈ U to the LT sϑ(u). In addition, we shall call

a =
〈

sϑ(u), hA(u)
〉

a HIFLN.

Definition 9 [37]. Let a1 =
〈

sϑ(a1)
, h(a1)

〉
and a2 =

〈
sϑ(a2)

, h(a2)
〉

be any two HIFLNs and ρ ≥ 0.
Then, some operational laws for HIFLNs are defined as follows:

a1 + a2 =

〈
sϑ(a1)+ϑ(a2)

, ∪
(m(a1), n(a1))∈h(a1),(m(a2), n(a2))∈h(a2)

{m(a1) + m(a2)−m(a1)m(a2), n(a1)n(a2)}
〉

; (14)

a1 × a2 =

〈
sϑ(a1)×ϑ(a2)

, ∪
(m(a1), n(a1))∈h(a1),(m(a2), n(a2))∈h(a2)

{m(a1)m(a2), n(a1) + n(a2)− n(a1)n(a2)}
〉

; (15)

ρa1 =

〈
sρ×ϑ(a1)

, ∪
(m(a1), n(a1))∈h(a1)

{1− (1−m(a1))
ρ, (n(a1))

ρ}
〉

; (16)

ρa1 =

〈
sϑρ(a1)

, ∪
(m(a1), n(a1))∈h(a1)

{(m(a1))
ρ, 1− (1− n(a1))

ρ}
〉

. (17)

Obviously, the above operations for HIFLNs defined by Liu et al. [37] have some limitations,
which are stated as follows.

(1) In the additive operation in Equation (14), if only one NMD equals zero, then the effects of other
grades on the overall aggregated result do not play a significant role in the aggregation process.

(2) In the additive operation in Equation (14), the two parts including LVs and IFNs of HIFLNs
are completely independent in operations, which may disregard the correlation among them.
Take a = 〈s3, {0.2, 0.3}, {0.4, 0.5}〉; for example, {0.2, 0.3} and {0.4, 0.5} are IFNs representing
the possible MDs and NMDs of the element that belongs to s3; that is, {0.2, 0.3} and {0.4, 0.5}
are the explanatory parts of s3 and should be closely related in the additive operations.

(3) The negation operator for HIFLN is not defined.

To solve the above shortcomings, we define some new operational rules for HIFLNs based on
LSFs as follows.
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Definition 10. Let a1 =
〈

sϑ(a1)
, h(a1)

〉
and a2 =

〈
sϑ(a2)

, h(a2)
〉

be any two HIFLNs and ρ ≥ 0.
Then, some new operational laws for HIFLNs are given as follows:

a1 + a2 =

〈 F∗−1(F∗(sϑ(a1)
) + F∗(sϑ(a2)

)), ∪
(m(a1), n(a1))∈h(a1),(m(a2), n(a2))∈h(a2){

F∗(sϑ(a1)
)m(a1)+F∗(sϑ(a2)

)m(a2)

F∗(sϑ(a1)
)+F∗(sϑ(a2)

)
,

F∗(sϑ(a1)
)n(a1)+F∗(sϑ(a2)

)n(a2)

F∗(sϑ(a1)
)+F∗(sϑ(a2)

)

} 〉
; (18)

a1 × a2 =

〈
F∗−1(F∗(sϑ(a1)

) + F∗(sϑ(a2)
)), ∪

(m(a1), n(a1))∈h(a1),(m(a2), n(a2))∈h(a2)

{{m(a1)m(a2), n(a1) + n(a2)− n(a1)n(a2)}}

〉
; (19)

ρa1 =
〈

F∗−1(ρF∗(s(ϑ)), h(a)
〉

; (20)

aρ
1 =

〈
F∗−1((F∗(s(ϑ)))

ρ), ∪
(m(a1), n(a1))∈h(a1)

{(m(a1))
ρ, 1− (1− n(a1))

ρ}
〉

; (21)

nega1 =

〈
F∗−1((F∗(s2t)− F∗(sϑ(a1)

))), ∪
(m(a1), n(a1))∈h(a1)

{n(a1), m(a1)}
〉

. (22)

Example 1. Let S = {s0, s1, s2, s3, s4, s5, s6} = {very poor, slightly poor, poor, f air, slightly
good, good, very good}, a1 = 〈s1, {(0.2, 0.6), (0.4, 0.5)}〉, a2 = 〈s4, {(0.5, 0.2), (0.6, 0.1)}〉 and ρ = 3,

(1) If F∗1 (si) =
i
6 (0 ≤ i ≤ 6), then

a1 + a2 = 〈s5.0004, {(0.4400, 0.2800), (0.52, 0.20), (0.48, 0.26), (0.56, 0.15)}〉;

a1 × a2 = 〈s0.6668, {(0.1, 0.68), (0.12, 0.64), (0.2, 0.6), (0.24, 0.55)}〉;

3a1 = 〈s3, {(0.2, 0.6), (0.4, 0.5)}〉;

a3
1 = 〈s0.0278, {(0.008, 0.936), (0.064, 0.875)}〉;

neg a1 = 〈s5, {(0.6, 0.2), (0.5, 0.4)}〉.

(2) If F∗2 (si) =

{
κr−κr−i

2κr−2 (0 ≤ i ≤ r)
κr+κi−r−2

2κr−2 (r ≤ i ≤ 2r)
, κ = 1.4, then

a1 + a2 = 〈s5.322, {(0.4197, 0.3607), (0.4929, 0.2339), (0.4732, 0.2803), (0.5464, 0.2071)}〉;

a1 × a2 = 〈s0.5741, {(0.1, 0.68), (0.12, 0.64), (0.2, 0.6), (0.24, 0.55)}〉;

3a1 = 〈s4.41, {(0.2, 0.6), (0.4, 0.5)}〉;

a3
1 = 〈s0.0433, {(0.008, 0.936), (0.064, 0.875)}〉;

neg a1 = 〈s5, {(0.6, 0.2), (0.5, 0.4)}〉.

(3) If F∗3 (si) =

 rζ−(r−i)ζ

2rζ (0 ≤ i ≤ r)
rη+(i−r)η

2rη (r ≤ i ≤ 2r)
, ζ = η = 0.8, then

a1 + a2 = 〈s4.894, {(0.451, 0.2655), (0.5345, 0.1539), (0.4836, 0.2491), (0.5672, 0.1654)}〉;

a1 × a2 = 〈s0.7164, {(0.1, 0.68), (0.12, 0.64), (0.2, 0.6), (0.24, 0.55)}〉;

3a1 = 〈s2.675, {(0.2, 0.6), (0.4, 0.5)}〉;
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a3
1 = 〈s0.0199, {(0.008, 0.936), (0.064, 0.875)}〉;

neg a1 = 〈s5, {(0.6, 0.2), (0.5, 0.4)}〉.

3.2. Comparison Method for HIFLNs

The comparison method for HIFLNs defined by Liu et al. [37] is given below.

Definition 11 [37]. Suppose a =
〈

sϑ(a), h(a)
〉

is a HIFLN. Then, the score function (SF) E(a) is defined
as follows:

E(a) =

 1
6= h(a) ∑

(m(a), n(a))∈h(a)
(m(a)− n(a))

 ϑ(a)
r

(23)

where 6= h(a) is the number of IFNs in h(a), and r + 1 is the cardinality of the LTS S. The greater is the SF
E(a), the greater is the HIFLN a.

Definition 12 [37]. Suppose a =
〈

sϑ(a), h(a)
〉

is a HIFLN. Then the accuracy function (AF) H(a) is defined
as follows:

H(a) =

 1
6= h(a) ∑

(m(a), n(a))∈h(a)
(m(a) + n(a))

 ϑ(a)
r

(24)

where 6= h(a) is the number of IFNs in h(a), and r + 1 is the cardinality of the LTS S. The greater is the AF
H(a), the greater is the HIFLN a.

Based on the above SF and AF, the comparison rules given by Liu et al. [37] show the following:

Definition 13 [37]. Let a1 =
〈

sϑ(a1)
, h(a1)

〉
and a2 =

〈
sϑ(a2)

, h(a2)
〉

be two HIFLNs, and E(ai) andH(ai)

are, respectively, the SFs and AFs ai (i = 1, 2), then

(1) If E(a1) < E(a2), then a1 < a2; and
(2) If E(a1) = E(a2), then

(a) If H(a1) < H(a2), then a1 < a2; and
(b) If H(a1) = H(a2), then a1 = a2.

The SF and AF defined by Liu et al. [37] have some limitations in some special cases for comparing
two HIFLNs; they can be shown by an example.

Example 2. Let S = {s0, s1, s2, s3, s4, s5, s6}, a1 = 〈s4, {(0.7, 0.3), (0.8, 0.2)}〉 and

a2 = 〈s4, {(0.9, 0.1), (0.6, 0.4)}〉.

Then, by the above SF and AF defined by Liu et al. [37], we have,

E(a1) = E(a2) = 0.750, H(a1) = H(a2) = 0.750.

Obviously, these two HIFLNs a1 and a2 cannot be compared. To overcome the above existing limitation in
this example, we define new SF and AF based on LSFs for comparing with HIFLNs.

Definition 14. Let a =
〈

sϑ(a), h(a)
〉

be a HIFLN, and then the SF S(a) can be defined as follows:

S(a) = F∗(sϑ(a))× C(h(a)) (25)
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where C(h(a)) = 1
6=h ∑

(m(a), n(a))∈h(a)

(
(m(a))+1−n(a)

2

)
. 6= h represents the number of IFNs in h(a).

Definition 15. Let a =
〈

sϑ(a), h(a)
〉

be a HIFLN. A variance function D(h(a)) of h(a) is represented as

D(h(a)) = 1
6=h ∑

(m(a), n(a))∈h(a)

((
(m(a))+1−n(a)

2

)
− C(h(a))

)2
. Thus, the AF A(h(a)) is given as follows:

A(a) = F∗(sϑ(a))× [1− D(h(a))] (26)

where 6= h represents the number of IFNs in h(a).

Definition 16. Let a1 =
〈

sϑ(a1)
, h(a1)

〉
and a2 =

〈
sϑ(a2)

, h(a2)
〉

be two HIFLNs, and let E(ai) and H(ai)

be, respectively, the SFs and AFs of ai (i = 1, 2), then

(1) If S(a1) < S(a2), (S(a1) > S(a2)), then a1 < a2(a1 > a2); and
(2) If S(a1) = S(a2), then

(a) If A(a1) < A(a2), (A(a1) > A(a2)), then a1 < a2, (a1 > a2); and
(b) If A(a1) = A(a2), then a1 = a2.

Example 3. Consider Example 2 by Definition 16, and we take F∗(sϑ) =
i

2r , then,

S(a1) = 0.5, S(a2) = 0.5,
A(a1) = 0.6650, A(a2) = 0.6517.

Thus, we have a1 > a2.

4. Prioritized Aggregation Operators for HIFLNs

In this part, we propose some PA operators based on new operational laws for HIFLNs.

4.1. The HIFLPWA Operator

Definition 17. Let aj(j = 1, 2, . . . , k) be a group of HIFLNs, then the HIFLPWA operator is given as follows:

HIFLPWA(a1, a2, . . . , an) =
T1

∑k
z=1 Tz

a1 +
T2

∑k
z=1 Tz

a2 + . . . +
Tk

∑k
z=1 Tz

ak = ⊕k
j=1

Tjaj

∑k
z=1 Tz

(27)

where Tj =
j−1
∏
l=1

S(al) (j = 2, 3, . . . , k), T1 = 1, and S(al) is the SF of al .

Based on new operational laws defined for HIFLNs, we have the following theorem.

Theorem 1. Suppose aj(j = 1, 2, . . . , k) is a group of HIFLNs. Then, the aggregated result obtained by
Definition 17 is also a HIFLN, and

HIFLPWA(a1, a2, . . . , ak) =

〈
F∗−1

(
k
∑

j=1

(
Tj

∑k
z=1 Tz

F∗(sϑ(aj)
)

))
, ∪
(m(a1), n(a1))∈h(a1),..., (m(ak), n(ak))∈h(ak){

∑k
j=1 F∗(sϑ(aj)

)mjTj

∑k
j=1 F∗(sϑ(aj)

)Tj
,

∑k
j=1 F∗(sϑ(aj)

)njTj

∑k
j=1 F∗(sϑ(aj)

)Tj

}〉
(28)

Proof. Weon (28)
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(1) When k = 2, since
T1

∑k
z=1 Tz

a1 =

〈
F∗−1

(
T1

∑k
z=1 Tz

F∗(sϑ(a1)
)

)
, h(a1)

〉
T2

∑k
z=1 Tz

a2 =

〈
F∗−1

(
T2

∑k
z=1 Tz

F∗(sϑ(a2)
)

)
, h(a2)

〉
we have,

HIFLPWA(a1, a2)
T1

∑k
z=1 Tz

a1 +
T2

∑k
z=1 Tz

a2

=

〈
F∗−1

(
T1

∑k
z=1 Tz

F∗(sϑ(a1)
) + T1

∑k
z=1 Tz

F∗(sϑ(a2)
)

)
, ∪
(m(a1), n(a1))∈h(a1), (m(a2), n(a2))∈h(a2){

F∗(sϑ(a1)
)m1T1+F∗(sϑ(a2)

)m2T2

F∗(sϑ(a1)
)T1+F∗(sϑ(a2)

)T2
,

F∗(sϑ(a1)
)n1T1+F∗(sϑ(a2)

)n2T2

F∗(sϑ(a1)
)T1+F∗(sϑ(a2)

)T2

}〉 (29)

Thus, Equation (28) holds for k = 2.

(2) Let us assume that Equation (28) is true for k = g, i.e.,

HIFLPWA(a1, a2, . . . , ag) = T1
∑k

z=1 Tz
a1 +

T2
∑k

z=1 Tz
a2 + . . . + Tg

∑k
z=1 Tz

ag

=

〈
F∗−1

(
g
∑

j=1

(
Tj

∑k
z=1 Tz

F∗(sϑ(aj)
)

))
, ∪
(m(a1), n(a1))∈h(a1),..., (m(ag), n(ag))∈h(ag){

∑
g
j=1 F∗(sϑ(aj)

)mjTj

∑
g
j=1 F∗(sϑ(aj)

)Tj
,

∑
g
j=1 F∗(sϑ(aj)

)njTj

∑
g
j=1 F∗(sϑ(aj)

)Tj

}〉 (30)

When k = g + 1, then by the operations defined for HIFLNs and by Equations (29) and (30),
we have

HIFLPWA(a1, a2, . . . , ag+1) =

〈
F∗−1

(
g
∑

j=1

(
Tj

∑k
z=1 Tz

F∗(sϑ(aj)
)

))
, ∪
(m(a1), n(a1))∈h(a1),..., (m(ag), n(ag))∈h(ag){

∑
g
j=1 F∗(sϑ(aj)

)mjTj

∑
g
j=1 F∗(sϑ(aj)

)Tj
,

∑
g
j=1 F∗(sϑ(aj)

)njTj

∑
g
j=1 F∗(sϑ(aj)

)Tj

}
+

〈
F∗−1

(
Tg+1

∑k
z=1 Tz

F∗(sϑ(ag+1)
)

)
, h(ag+1)

〉

=

〈
F∗−1

(
g+1
∑

j=1

(
Tj

∑k
z=1 Tz

F∗(sϑ(aj)
)

))
, ∪
(m(a1), n(a1))∈h(a1),..., (m(ag+1), n(ag+1))∈h(ag+1)∑

g+1
j=1 F∗(sϑ(aj)

)mjTj

∑
g+1
j=1 F∗(sϑ(aj)

)Tj
,

∑
g+1
j=1 F∗(sϑ(aj)

)njTj

∑
g+1
j=1 F∗(sϑ(aj)

)Tj


〉

Therefore, Equation (28) is true for all k. Hence,

HIFLPWA(a1, a2, . . . , ak) = T1
∑k

z=1 Tz
a1 +

T2
∑k

z=1 Tz
a2 + . . . + Tk

∑k
z=1 Tz

ak

=

〈
F∗−1

(
k
∑

j=1

(
Tj

∑k
z=1 Tz

F∗(sϑ(aj)
)

))
, ∪
(m(a1), n(a1))∈h(a1),..., (m(ak), n(ak))∈h(ak){

∑k
j=1 F∗(sϑ(aj)

)mjTj

∑k
j=1 F∗(sϑ(aj)

)Tj
,

∑k
j=1 F∗(sϑ(aj)

)njTj

∑k
j=1 F∗(sϑ(aj)

)Tj

}〉

Q.E.D.

Next, we give some properties of the HIFLPWA operator.
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Theorem 2 (boundedness). Let aj(j = 1, 2, . . . , k) be a group of HIFLNs. If

a− =
〈

minj{sϑ(aj)
}, (m−, n+)

〉
, a− =

〈
maxj{sϑ(aj)

}, (m+, n−)
〉

,

where (m−, n+) = ∪
(mj,nj)∈h(a1),h(a2),...,h(ak)

{(minmj, maxnj)}, (m+, n−) = ∪
(mj,nj)∈h(a1),h(a2),...,h(ak)

{(maxmj, minnj)}, then

S(a−) ≤ S(HIFLPWA(a1, a2, . . . , ak) ≤ S(a+).

Proof. Let HIFLPWA(a1, a2, . . . , ak) = a =
〈

sϑ(a), h(a)
〉

, and then S(a) = F∗(sϑ(a))× C(h(a)).
For LT minj{sϑ(aj)

} ≤ sϑ(aj)
≤ maxj{sϑ(aj)

} for all j, we have

min
j
{sϑ(aj)

} = F∗−1
(

k
∑

l=1

(
Tl

∑k
z=1 Tz

F∗
(

min
j
{sϑ(aj)

}
)))

≤ F∗−1
(

k
∑

l=1

(
Tl

∑k
z=1 Tz

F∗
(

sϑ(al)

)))
= sϑ(a)

≤ F∗−1
(

k
∑

l=1

(
Tl

∑k
z=1 Tz

F∗
(

max
j
{sϑ(aj)

}
)))

= max
j
{sϑ(aj)

}

and then min
j
{sϑ(aj)

} ≤ sϑ(aj)
≤ max

j
{sϑ(aj)

}.

Similarly, since

C(m−, n+) = (m−, n+)

= C

(
∑k

j=1 F∗(sϑ(aj)
)Tj .m−

∑k
j=1 F∗(sϑ(aj)

)Tj
,

∑k
j=1 F∗(sϑ(aj)

)Tj .n+

∑k
j=1 F∗(sϑ(aj)

)Tj

)

≤ C

(
∪

(m(a1), n(a1))∈h(a1),...,(m(ak), n(ak))∈h(ak)

∑k
j=1 F∗(sϑ(aj)

)Tj .mj

∑k
j=1 F∗(sϑ(aj)

)Tj
,

∑k
j=1 F∗(sϑ(aj)

)Tj .nj

∑k
j=1 F∗(sϑ(aj)

)Tj

)
= C(h(a))

≤ C

(
∑k

j=1 F∗(sϑ(aj)
)Tj .m+

∑k
j=1 F∗(sϑ(aj)

)Tj
,

∑k
j=1 F∗(sϑ(aj)

)Tj .n−

∑k
j=1 F∗(sϑ(aj)

)Tj

)
= (m+, n−) = C(m+, n−)

Therefore,

S(a−) = F∗
(

min
j
{sϑ(aj)

}
)

.C((m−, n+)) ≤ F∗
(

sϑ(aj)

)
.C(h(a))

≤ F∗
(

max
j
{sϑ(aj)

}
)

.C((m+, n−)) = S(a+)

Thus, S(a−) ≤ S(HIFLPWA(a1, a2, . . . , ak) ≤ S(a+).

Theorem 3 (commutativity). Suppose aj(j = 1, 2, . . . , k) is a group of HIFLNs and (
_
a 1,

_
a 2 , . . . ,

_
a k) be

any permutation of (a1, a2, . . . , ak). Then,

HIFLPWA(a1, a2, . . . , ak) = HIFLPWA(
_
a 1,

_
a 2 , . . . ,

_
a k).
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The weight of aj is determined by the priority and value of aj, and will not be affected by its
position in the permutation. Thus, Theorem 3 is obvious, and therefore the proof of Theorem 3 is
omitted here.

It should be noted that the HIFLPWA operator is idempotent in a special case. Take a = 〈s3, (0.4, 0.5)〉
= a1 = a2, then HIFLPWA(a1, a2) = 〈s3, (0.4, 0.5)〉. That is to say, if all the HIFNs are equal
and they consists of single IFN, then HIFLPWA operator is idempotent; otherwise, it cannot satisfy
idempotency. For example, take a = 〈s2, (0.3, 0.2), (0.4, 0.3)〉 = a1 = a2, then HIFLPWA(a1, a2) =

〈s1.98, (0.3871, 0.2580), (0.4516, 0.3622), (0.4516, 0.3226), (0.5161, 0.3871)〉 6= a. In addition, the HIFLPWA
operator does not satisfy monotonicity, because the weights will be recalculated and vary if the values
used in the HIFLPWA operator are changed. It is difficult to consider monotonic property when the
parameters are irregularly variable.

4.2. The HIFLPWG Operator

In this section, we define HIFLPWG operator for HIFLNs and discuss some related properties of
this operator.

Definition 18. Let aj(j = 1, 2, . . . , k) be a group of HIFLNs, then the HIFLPWG operator is given as follows:

HIFLPWG(a1, a2, . . . , an) = a

T1
∑k

z=1 Tz
1 × a

T2
∑k

z=1 Tz
2 × . . .× a

Tk
∑k

z=1 Tz

k =
k
⊗

j=1
a

Tj

∑k
z=1 Tz

j (31)

where Tj =
j−1
∏
l=1

S(al)(j = 2, 3, . . . , k), T1 = 1, and S(al) is the SF of al .

The HIFLPWG operator has the same properties as that of HIFLPWA operator.

Theorem 4. Suppose aj(j = 1, 2, . . . , k) is a group of HIFLNs. Then, the aggregated result obtained by
Definition 18 is also a HIFLN, and

HIFLPWG(a1, a2, . . . , ak) =

〈
F∗−1

 k
∏
j=1

(
F∗(sϑ(aj)

)
) Tj

∑k
z=1 Tz

, ∪
(m(a1), n(a1))∈h(a1),..., (m(ak), n(ak))∈h(ak) k

∏
j=1

(
mj
) Tj

∑k
z=1 Tz , 1−

k
∏
j=1

(
1− nj

) Tj

∑k
z=1 Tz


〉 (32)

where Tj =
j−1
∏
l=1

S(al)(j = 2, 3, . . . , k), T1 = 1, and S(al) is the SF of al .

The proof is the same as Theorem 1, thus it is omitted here.

Theorem 5 (Boundedness). Suppose aj(j = 1, 2, . . . , k) is a group of HIFLNs. If

a− =
〈

minj{sϑ(aj)
}, (m−, n+)

〉
,a− =

〈
maxj{sϑ(aj)

}, (m+, n−)
〉

,

where

(m−, n+) = ∪
(mj , nj)∈h(a1), h(a2),..., h(ak)

{(minmj, maxnj)},(m+, n−) = ∪
(mj , nj)∈h(a1), h(a2),..., h(ak)

{(maxmj, minnj)},

then,
S(a−) ≤ S(HIFLPWG(a1, a2, . . . , ak) ≤ S(a+).
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Proof. The proof is same as Theorem 2, thus it is omitted here.

Theorem 6 (commutativity). Suppose aj(j = 1, 2, . . . , k) is a group of HIFLNs and (
_
a 1,

_
a 2 , . . . ,

_
a k) be

any permutation of (a1, a2, . . . , ak). Then

HIFLPWG(a1, a2, . . . , ak) = HIFLPWG(
_
a 1,

_
a 2 , . . . ,

_
a k).

The weight of aj is only determined by the priority and value of aj, and it will not be affected
by the position order in the permutation. Thus, Theorem 6 is obvious, and therefore the proof is
omitted here.

It should be noted that the HIFLPWG operator is idempotent in a special case. Take a = 〈s3, (0.4, 0.5)〉
= a1 = a2, then HIFLPWG(a1, a2) = 〈s3, (0.4, 0.5)〉. That is to say, all the HIFLNs are equal and consist of
single IFN, then HIFLPWG operator is idempotent, otherwise it cannot satisfy the property of idempotency.
Similar to HIFPWA operator, the property of monotonicity cannot be considered for HIFPWG operator
due to the same reason.

5. MAMD Method with HIFLNs

In this part, the HIFLPWA and HIFPWG operators will be used to solve the MADM problems
with HIFLNs.

5.1. Decision Steps Based on the HIFLPWA and HIFPWG Operators

For MADM problems with HIFNs, let us suppose that there is a set of attributes denoted
by C = {c1, c2, . . . , cg} and the prioritization relationship between them is c1 > c2 > . . . > cg.
Each attribute in cz has a higher priority than the attribute cl if z < l. In addition, there is a set of
alternatives denoted by {m1, m2, . . . , mk}, and the DMs gave the evaluation value of the attribute cj
for alternative mi by the HIFLN cj(mi), (i = 1, 2, . . . , k, j = 1, 2, . . . , g). Suppose that d = cj(mi) is the
evaluation matrix. Finally, a ranking result for the alternatives is required.

The method for above MADM problem involves following main steps:
(1) Normalize the evaluation matrix.
Generally, there are two common types of attributes in MADM problems: maximizing attributes

and minimizing attributes. To establish a uniform attribute types, the minimizing attributes are
converted into maximizing attributes using the negation operation in Equation (22).

(2) Calculate Tij(i, 1, 2, . . . , k, j = 1, 2, . . . , g).
(3) Get the overall assessment values Mi(i = 1, 2, . . . , k) of mi by applying HIFLPWA or

HIFLPWG operator, i.e.,

Mi = HIFLPWA
(
c1(m1), c2(m2), . . . , cg(mi)

)
or

= HIFLPWG
(
c1(m1), c2(m2), . . . , cg(mi)

)
(4) Obtain the score and accuracy values of Mi.
(5) Rank all the alternatives based on score and accuracy values, and then select the

best alternative.

5.2. Illustrative Example

Background: The following case is adopted from [36].

Example 4. Talented people are the most valued asset in the knowledge economy, so it is very important for a
company to choose the right man to do the right thing to improve performance. Now, there is an opening for the
supervisor position, whose responsibility is to do production planning and inventory control, and then to optimize
supply chain system. By the initial examination, there are five candidates Mi(i = 1, 2, 3, 4, 5) who will be further
evaluated by experts based on four attribute: their attitude c1, ability c2, leadership c3 and skills c4. Based on the
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experience and knowledge obtained by past recruiting, we know there exist prioritization relationships between these
four criteria, denoted by c1 > c2 > c3 > c4. The experts evaluate five candidates mi(i = 1, 2, 3, 4, 5) for four
attributes cj(j = 1, 2, 3, 4) under the LTS S = {s0 = very poor, s1 = slightly poor, s2 = poor, s3 = f air,
s4 = slightly good, s5 = good, s6 = very good}, and construct the following decision matrix d = cj(mi) shown
in Table 1. The goal is to select the best candidate.

Table 1. The decision matrix with HIFLNs for Example 4.

Candidates c1 c2 c3 c4

m1 〈s5,
{

(0.5, 0.1),
(0.8, 0.1)

}
〉 〈s5, {(0.5, 0.2)}〉 〈s5,

{
(0.6, 0.2),
(0.9, 0.0)

}
〉 〈s5, {(0.8, 0.0)}〉

m2 〈s2,
{

(0.2, 0.6),
(0.6, 0.2)

}
〉 〈s4,

{
(0.4, 0.5),
(0.6, 0.2)

}
〉 〈s3, {(0.7, 0.1)}〉 〈s4,

{
(0.4, 0.5),
(0.6, 0.2)

}
〉

m3 〈s3,
{

(0.4, 0.5),
(0.6, 0.1)

}
〉 〈s4, {(0.4, 0.5)}〉 〈s6,

{
(0.8, 0.1),
(0.9, 0.1)

}
〉 〈s4, {(0.4, 0.5)}〉

m4 〈s4, {(0.4, 0.5)}〉 〈s5,
{

(0.2, 0.6),
(0.5, 0.4)

}
〉 〈s3,

{
(0.6, 0.2),
(0.7, 0.1)

}
〉 〈s3, {(0.5, 0.4)}〉

m5 〈s2,
{

(0.3, 0.5), (0.5, 0.4),
(0.5, 0.3)

}
〉 〈s3, {(0.6, 0.4)}〉 〈s3,

{
(0.4, 0.5),
(0.7, 0.1)

}
〉 〈s2, {(0.9, 0.1)}〉

The steps are shown as follows.

Step 1. Normalize the decision matrix.

Because all attributes are all benefit type, this step is omitted.
Step 2. Calculate Tij (i = 1, 2, 3, 4, 5, j = 1, 2, 3, 4), and get

Tij =


1 0.542 0.687 0.750
1 0.383 0.4 0.383
1 0.300 0.875 0.300
1 0.312 0.375 0.275
1 0.3 0.313 0.300


Step 3. Calculate the overall assessment values Mi(i = 1, 2, . . . , k) of mi by the HIFLPWA operator,

we can get

M1 = 〈s5.00, {(0.599, 0.116), (0.668, 0.070), (0.699, 0.116), (0.769, 0.070)}〉,

M2 =

〈
s2.892, {(0.394, 0.455), (0.443, 0.382), (0.443, 0.382), (0.492, 0.308)

(0.521, 0.328), (0.570, 0.254), (0.570, 0.254), (0.619, 0.181)}

〉
,

M3 = 〈s4.303, {(0.597, 0.303), (0.646, 0.292), (0.654, 0.190), (0.703, 0.179)}〉,

M4 = 〈s3.828, {(0.399, 0.465), (0.414, 0.450), (0.441, 0.444), (0.456, 0.429)}〉,

M5 =

〈
s2.320, {(0.463, 0.426), (0.526, 0.341), (0.553, 0.381), (0.617, 0.296)

(0.553, 0.336), (0.617, 0.251)}

〉
.

or by the HIFLPWG operator, we can get

M1 = 〈s5.00, {(0.587, 0.120), (0.645, 0.073), (0.687, 0.120), (0.755, 0.073)}〉,

M2 =

〈
s2.755, {(0.322, 0.497), (0.346, 0.454), (0.346, 0.454), (0.372, 0.406)

(0.535, 0.308), (0.575, 0.248), (0.575, 0.248), (0.617, 0.182)}

〉
,

M3 = 〈s3.733, {(0.511, 0.385), (0.533, 0.385), (0.602, 0.220), (0.628, 0.220)}〉,

M4 = 〈s3.778, {(0.399, 0.458), (0.411, 0.446), (0.446, 0.439), (0.459, 0.426)}〉,
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M5 =

〈
s2.277, {(0.416, 0.436), (0.456, 0.379), (0.544, 0.379), (0.456, 0.317)

(0.544, 0.327), (0.596, 0.259)}

〉
.

Step 4. The SFs for the candidate mi(i = 1, 2, 3, 4, 5) can be obtained, as listed in Table 2.
Step 5. The ranking order of the candidates mi(1, 2, 3, 4, 5) is given in Table 2.

Table 2. SFs and ranking orders of the candidates.

HIFLPWA HIFLPWG

S(M1) 0.6627 0.6550
S(M2) 0.2864 0.2551
S(M3) 0.5053 0.3939
S(M4) 0.3128 0.3106
S(M5) 0.2352 0.2187

Ranking order m1 > m3 > m4 > m2 > m5 m1 > m3 > m4 > m2 > m5

In Table 2, one can see that the ranking orders obtained through HIFLPWA and HIFLPWG
operators are the same, and m1 is the best candidate, while m5 is the worst candidate.

To show the influence on the ranking results from the different LSFs, we adopt different LSFs in
Steps 2–4 to obtain the SFs and ranking orders, which are listed in Table 3.

Table 3. Ranging results from the different LSFs.

LSFs HIFLPWA HIFLPWG Ranking Order

F∗2 (sj)
S1 = 0.6161, S2 = 0.2860,
S3 = 0.5043, S4 = 0.3009,

S5 = 0.2588

S1 = 0.6090, S2 = 0.2632,
S3 = 0.3908, S4 = 0.2964,

S5 = 0.2434

m1 > m3 > m4 >
m2 > m5

F∗3 (sj)
S1 = 0.6761, S2 = 0.2778,
S3 = 0.5059, S4 = 0.3182,

S5 = 0.2250

S1 = 0.6682, S2 = 0.2442,
S3 = 0.3953, S4 = 0.3172,

S5 = 0.2075

m1 > m3 > m4 >
m2 > m5

* Si expresses S(Mi).

In Table 3, we can know that the same ranking result m1 > m3 > m4 > m2 > m5 was obtained
when different LSFs were used.

5.3. Validity Verification of the Proposed Methods

In this part, we verify the validity of the proposed methods; let us consider another example
adapted from [37], with some different data.

Example 5. An investment enterprise wants to invest in the best company, and it must invest its money in
one of the following four possible companies: m1 is a car company; m2 is food company; m3 is a computer
company; and m4 is an arms company. Based on the LTS S = {s0, s1, s2, s3, s4, s5, s7}, the decision makers
should consider the following four attributes: c1 is the risk factor; c2 is the growth factor; c3 is the social political
factor; and c4 is the environmental factor. Based on history analysis, prioritization relationships exist between
these four attributes, denoted by c1 > c2 > c3 > c4. The assessment values of the companies are represented by
HIFLNs, and the decision matrix is constructed, as shown in Table 4. Then, the proposed approach is utilized to
rank the companies.
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Table 4. The decision matrixof Example 5.

c1 c2 c3 c4

m1

〈
s2,
{

(0.4, 0.4),
(0.3, 0.5)

}〉 〈
s4,
{

(0.6, 0.1),
(0.4, 0.3)

}〉 〈
s3,
{

(0.4, 0.5),
(0.7, 0.2)

}〉
〈s4, {(0.5, 0.3)}〉

m2〈s3, {(0.4, 0.3)}〉
〈

s5,
{

(0.7, 0.1),
(0.6, 0.2)

}〉
〈s4, {(0.8, 0.1)}〉

〈
s5,
{

(0.6, 0.1),
(0.7, 0.2)

}〉
m3

〈
s2,
{

(0.6, 0.2),
(0.4, 0.3)

}〉
〈s4, {(0.7, 0.3)}〉

〈
s3,
{

(0.6, 0.2),
(0.5, 0.3)

}〉
〈s5, {(0.4, 0.2)}〉

m4〈s3, {(0.2, 0.4)}〉
〈

s3,
{

(0.6, 0.1),
(0.5, 0.2)

}〉
〈s4, {(0.5, 0.4)}〉

〈
s4,
{

(0.6, 0.3),
(0.5, 0.4)

}〉

Then, the decision steps are shown as follows.

Step 1. Because all attributes are all benefit type, initialization is omitted.
Step 2. Calculate Tij (i, j = 1, 2, 3, 4), we have

Tij =


1 0.4333 0.3 0.4
1 0.625 0.567 0.625
1 0.467 0.325 0.4
1 0.7 0.367 0.4


Step 3. Calculate the overall assessment values Mi(i = 1, 2, . . . , k) of mi by the HIFLPWA operator,

we can get

M1 =

〈
s2.922,

{
(0.481, 0.305), (0.525, 0.262), (0.426, 0.361), (0.469, 0.318),
(0.449, 0.337), (0.493, 0.294), (0.394, 0.393), (0.437, 0.350)

}〉
,

M2 = 〈s4.089, {(0.614, 0.152), (0.642, 0.179), (0.587, 0.317), (0.614, 0.232)}〉,

M3 = 〈s2.939, {(0.579, 0.229), (0.564, 0.244), (0.517, 0.260), (0.502, 0.275)}〉,

M4 = 〈s3.311, {(0.435, 0.303), (0.416, 0.323), (0.409, 0.329), (0.390, 0.349)}〉.

or by the HIFLPWG operator, we can get

M1 =

〈
s2.776,

{
(0.453, 0.346), (0.490, 0.302), (0.417, 0.379), (0.451, 0.336)
(0.396, 0.400), (0.428, 0.359), (0.364, 0.430), (0.394, 0.391)

}〉
,

M2 = 〈s3.988, {(0.5697, 0.1477), (0.5505, 0.1722), (0.5697, 0.2009), (0.5894, 0.1723)}〉,

M3 = 〈s2.794, {(0.5758, 0.2180), (0.5604, 0.2315), (0.4785, 0.2623), (0.4658, 0.2786)}〉,

M4 = 〈s3.281, {(0.3741, 0.2576), (0.3631, 0.2699), (0.3552, 0.3135), (0.3449, 0.3407)}〉.

Step 4. Calculate the SFs for the company mi(i = 1, 2, 3, 4) as follows.

1. Use HIFLPWA operator, we have

S(m1) = 0.275, S(m2) = 0.475, S(m3) = 0.316, S(m4) = 0.300.

2. Use the HIFLPWG operator, we have

S(m1) = 0.244, S(m2) = 0.464, S(m3) = 0.296, S(m4) = 0.291.
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Step 5. The ranking order of the companies mi(1, 2, 3, 4, 5) is shown as follows.

m2 > m3 > m4 > m1.

Thus, we can know that the ranking order obtained by the HIFLPWA operators is that m2 is the
best company and m1 is the worst company among the four companies. Moreover, the ranking order
obtained by the HIFLPWG operators is the same as that obtained from HIFLPWA operators. That is to
say, m2 is the best company while m1 is the worst company.

Now, using the aggregation operators defined by Liu et al. [37], we get the following SFs. The SFs
of the companies calculated by the HIFLWA operators are

E(m1) = 0.0097, E(m2) = 0.0.48, E(m3) = 0.025, E(m4) = 0.012.

Because E(m2) > E(m3) > E(m4) > E(m1), thus, m2 > m3 > m4 > m1.
The SFs calculated using HIFLWG operator are

E(m1) = 0.0261, E(m2) = 0.263, E(m3) = 0.126, E(m4) = 0.0349.

Because E(m2) > E(m3) > E(m4) > E(m1). Therefore, m2 > m3 > m4 > m1.
Obviously, there are the same ranking results by the proposed methods in this article and the

methods proposed by Liu et al. [37]. Hence, this shows validity of the proposed methods in this article.

5.4. Comparative Analysis

Example 6. To further illustrate the advantages of the proposed aggregation operator and SF defined in this
article, we can solve the same Example 5 given above and the HIFLNs in this matrix are provided in Table 5.

Table 5. The new decision matrix of Example 6.

c1 c2 c3 c4

m1〈
s2,
{

(0.5, 0.0),
(0.4, 0.3)

}〉 〈
s4,
{

(0.6, 0.1),
(0.5, 0.3)

}〉 〈
s3,
{

(0.4, 0.5),
(0.7, 0.2)

}〉
〈s3, {(0.5, 0.0)}〉

m2 〈s3, {(0.3, 0.0)}〉
〈

s5,
{

(0.5, 0.3),
(0.5, 0.0)

}〉
〈s5, {(0.6, 0.3)}〉

〈
s4,
{

(0.6, 0.0),
(0.4, 0.2)

}〉
m3〈

s2,
{

(0.8, 0.2),
(0.7, 0.0)

}〉
〈s4, {(0.6, 0.2)}〉

〈
s2,
{

(0.7, 0.0),
(0.0, 0.2)

}〉
〈s4, {(0.8, 0.1)}〉

m4 〈s3, {(0.1, 0.0)}〉
〈

s3,
{

(0.7, 0.2),
(0.8, 0.2)

}〉
〈s4, {(0.9, 0.0)}〉

〈
s4,
{

(0.6, 0.0),
(0.5, 0.4)

}〉

Now we use the aggregation operator defined on new operational laws in this article, and we get
the following SFs and ranking orders given in Table 6.

Table 6. SFs and ranking orders of alternatives using HIFLPWA and HIFLPWG operators for Example 6.

Alternatives HIFLPWA HIFLPWG Ranking Order

m1 S(m1) = 0.306 S(m1) = 0.288
m2 S(m2) = 0.434 S(m2) = 0.467 m2 > m4 > m3 > m1m3 S(m3) = 0.382 S(m3) = 0.303
m4 S(m4) = 0.412 S(m4) = 0.381

Then, we use the methods proposed by Liu et al. [37] to solve this example. The weights of the
attributes are calculated using PA operator.
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By HIFLWA operator [37], the SFs of the alternative are calculated as follow:

E(m1) = 0.0381, E(m2) = 0.0511, E(m3) = 0.0553, E(m4) = 0.0611

E(m4) > E(m3) > E(m2) > E(m1). Hence, m4 > m3 > m2 > m1.
We can see that the ranking orders obtained by our methods and by the methods of Liu et al. [37]

are totally different. We can analyze the reason as follows. As stated in Section 3.1, when we take the
non-membership function equal to zero of the corresponding LTs, there is no effect of other grades
on the overall aggregated values. That is to say, non-membership function of the LT does not play
any role in the aggregation process. In this example, there are some zeroes in non-memberships of
LTs, so the methods of Liu et al. [37] cannot give the reasonable ranking results, i.e., the ranking
result m4 > m3 > m2 > m1 is unreasonable and unacceptable, while the proposed methods in this
article can solve this problem, and can produce a reasonable ranking result, i.e., the ranking result
m2 > m4 > m3 > m1 is reasonable.

Example 7. To further show the advantages of the SF defined in this article, we consider the same Example 5,
and the HIFLNs given by the decision makers are listed in Table 7.

Table 7. The decision matrix of Example 7.

c1 c2 c3 c4

m1〈
s2,
{

(0.5, 0.0),
(0.4, 0.3)

}〉 〈
s4,
{

(0.6, 0.1),
(0.5, 0.3)

}〉 〈
s3,
{

(0.4, 0.5),
(0.7, 0.2)

}〉
〈s3, {(0.5, 0.0)}〉

m2 〈s3, {(0.3, 0.0)}〉
〈

s5,
{

(0.5, 0.3),
(0.5, 0.0)

}〉
〈s4, {(0.6, 0.3)}〉

〈
s5,
{

(0.6, 0.0),
(0.4, 0.2)

}〉
m3〈

s2,
{

(0.8, 0.2),
(0.7, 0.0)

}〉
〈s4, {(0.6, 0.2)}〉

〈
s3,
{

(0.7, 0.0),
(0.0, 0.2)

}〉
〈s3, {(0.8, 0.1)}〉

m4 〈s3, {(0.1, 0.0)}〉
〈

s3,
{

(0.7, 0.2),
(0.8, 0.2)

}〉
〈s4, {(0.9, 0.0)}〉

〈
s4,
{

(0.6, 0.0),
(0.5, 0.4)

}〉

Now, we use the aggregation operator defined on new operational laws in this article, and we get
the following SFs and ranking orders listed in Table 8.

Table 8. SFs and ranking orders of alternatives using HIFLPWA and HIFLPWG operators for Example 7.

Alternatives HIFLPWA HIFLPWG Ranking Order

m1 S(m1) = 0.306 S(m1) = 0.288
m2 S(m2) = 0.442 S(m2) = 0.468 m2 > m4 > m3 > m1
m3 S(m3) = 0.350 S(m3) = 0.291
m4 S(m4) = 0.412 S(m4) = 0.381

Then, we use the methods proposed by Liu et al. [37] to solve this example.
By HIFLWA operator [37], the SFs of the alternative are calculated as follow:

E(m1) = 0.0381, E(m2) = 0.0508, E(m3) = 0.0508, E(m4) = 0.0611

E(m4) > E(m3) = E(m2) > E(m1). Hence, m4 > m3 = m2 > m1.
As we can see that the SFs of the alternatives m2 and m3 produced by the methods of Liu et al. [37]

are equal, and we can distinguish which one is better than the other. While using the SF defined in this
article shows that m2 is better than m3. This shows that the proposed SF in this article is better than
that of proposed by Liu et al. [37].
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Based on above comparison analysis, the proposed methods for MADM for HIFLNs have the
following advantages.

Firstly, the HIFLNs can depict the assessment information of MADM problems more flexibly
because they can generalize most expressions of existing fuzzy information. This is a prerequisite for
guarantying accuracy of the final ranking.

Secondly, the operational laws defined for HIFLNs in this article are based on the LSFs. Different
results should be obtained using different LSFs, and three special examples of LSFs are proposed by
actual applications. Thus, DMs may choose or redefine the LSFs according to their preferences or
actual situations.

Thirdly, the proposed HIFLPWA and HIFLPWG operators can handle MADM problems with
different priority level criteria.

6. Conclusions

Considering the shortcomings in the existing studies, we proposed some new operational laws
of HIFLNs based on the LSFs which provided a flexible way to express the qualitative evaluation
information given by the DMs, and then we presented a new score function, accuracy function and
comparative method for the HIFLNs. Moreover, two PA operators for HIFLNs, i.e., the HIFLPWA and
HIFLPWG operators, were developed, which could consider the prioritized relationship among the
aggregated arguments. Based on the proposed prioritized aggregation operators, we developed two
MADM methods to process the decision making problems in which the attributes have the prioritized
relationship and the attribute values take the form of HIFLNs. Finally, some numerical examples are
demonstrated to show the effectiveness and practicality of the proposed methods. By comparison
analysis with the existing methods for HIFLNs, the results indicated that the proposed methods in
this article are more effective and general in solving MADM problem under the environment of the
HIFLNs by considering the prioritized relationship among the attributes and adopting the LSFs.

In the future, we shall study some new aggregation operators for HIFSs, such as Bonferroni
mean [40,41] and Heronian mean [38,39,45], or apply the proposed methods to solve real applications,
such as the evaluations for population, resources and environment [46–49].
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