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Abstract: A new denoising algorithm and feature extraction algorithm that combine a new kind of
permutation entropy (NPE) and variational mode decomposition (VMD) are put forward in this paper.
VMD is a new self-adaptive signal processing algorithm, which is more robust to sampling and noise,
and also can overcome the problem of mode mixing in empirical mode decomposition (EMD) and
ensemble EMD (EEMD). Permutation entropy (PE), as a nonlinear dynamics parameter, is a powerful
tool that can describe the complexity of a time series. NPE, a new version of PE, is interpreted as
distance to white noise, which shows a reverse trend to PE and has better stability than PE. In this
paper, three kinds of ship-radiated noise (SN) signal are decomposed by VMD algorithm, and a series
of intrinsic mode functions (IMF) are obtained. The NPEs of all the IMFs are calculated, the noise
IMFs are screened out according to the value of NPE, and the process of denoising can be realized by
reconstructing the rest of IMFs. Then the reconstructed SN signal is decomposed by VMD algorithm
again, and one IMF containing the most dominant information is chosen to represent the original SN
signal. Finally, NPE of the chosen IMF is calculated as a new complexity feature, which constitutes the
input of the support vector machine (SVM) for pattern recognition of SN. Compared with the existing
denoising algorithms and feature extraction algorithms, the effectiveness of proposed algorithms is
validated using the numerical simulation signal and the different kinds of SN signal.

Keywords: denoising; feature extraction; VMD; permutation entropy; ship-radiated noise;
pattern recognition

1. Introduction

As a part of underwater acoustic signal processing, research on denoising and feature extraction
of ship play a very important role in the modern sea battlefield. SN signal contains more characteristic
parameters of ship, which is an important indicator of the performance of ship. Therefore, the denoising
and feature extraction for SN are critical technologies in the underwater acoustic field [1]. Due to the
presence of noise, the physical characteristics of real signal are covered up. That has a great influence
on signal analysis, detection, feature extraction, classification and recognition. As the premise of
feature extraction, denoising can improve the performance of feature extraction for SN. Research on
feature extraction for SN is helpful for the accurate identification of enemy targets, and has significance
in theory and practice [2].

Because underwater acoustic signal is non-stationary, non-Gaussian and nonlinear, the traditional
signal processing algorithms cannot process it effectively. The Fourier Transform can only show
characteristics in the frequency domain; also, the wavelet transform has the limits of the selection of
basic functions and decomposition level. As a completely self-adaptive signal processing algorithm,
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EMD is widely applied not only to fault diagnosis and medical science but also in underwater acoustic
signal processing and economics [3]. EMD can decompose the multi-component signal into a series of
IMFs based on the local characteristics; nevertheless, EMD has the problems of mode mixing and end
effects. To solve the problem of mode mixing, an improved algorithm called EEMD was proposed by
Wu et al. in 2009 [4], which can effectively reduce the degree of mode mixing by adding white noise
repeatedly. However, both EMD and EEMD lack the foundation of mathematical theory and have the
defect of poor robustness [5].

VMD [6], first introduced by Dragomiretskiy et al., is a non-recursive algorithm to analyze
non-linear and non-stationary signal, which can adaptively decompose a complex signal into a series
of quasi-orthogonal IMFs [7]. Each IMF is compact around a center frequency which can be estimated
online. Compared with the EMD and EEMD algorithms, VMD has not only a solid theoretical
foundation but also good robustness to noise. It has been applied in the fields of biomedical
sciences [8,9], mechanical diagnosis [10] and underwater acoustic signal processing [11]. PE is one of
the most effective ways to detect the randomness and dynamic changes of time sequence based on
comparison of neighboring values [12–14]. However, NPE [15], a new kind of PE, was proposed to
classify different sleep stages by Bandt in 2017. NPE is interpreted as distance to white noise, and is
regarded as a key parameter that measures depth of sleep. Compared with PE, NPE shows a reverse
trend to PE and has better stability for different lengths of time series.

There is a class of denoising algorithms to eliminate noise, which include signal decomposition,
screening and reconstruction of components. The basic idea of these algorithms extracts components
of signal that was obtained by means of a signal decomposition algorithm and identifies and removes
noise components according to the screening principle. Then, the useful components of signal are
reconstructed to realize denoising. It is important to select appropriate decomposition algorithm and
screening criteria. For example, the denoising algorithm using wavelet analysis has been widely used
in different kinds of fields, and achieved good results [16,17]. However, it is limited by the selection of
wavelet basis function and the decomposition level [18]. In addition, denoising algorithms based on
EMD and its extended algorithms have been extensively studied. In research [19], the high-frequency
IMF obtained by EMD is regarded as a noise component, and the rest of the IMFs are reconstructed to
achieve denoising. However, this algorithm cannot completely remove noise signal, and lead to the
lack of some detailed information. To overcome the shortcomings of these denoising algorithms, some
improved denoising algorithms are proposed, which mainly achieve denoising through threshold
denoising for IMFs [20,21]. However, the selection of different threshold has a great impact on the
result of denoising. These improved denoising algorithms still have some limitations. A new denoising
algorithm based on VMD and correlation coefficient is proposed in [22]; it uses the IMFs obtained by
VMD to reconstruct the IMFs according to the correlation coefficients between IMFs and original signal
to realize denoising. However, the selection of correlation coefficient threshold is a difficult problem.

Recently, many new feature extraction algorithms have been developed and are based on signal
decomposition algorithms and measuring complexity in different fields [23–26]. In research [27],
a novel fault feature extraction algorithm for rotating equipment is proposed using improved
autoregressive minimum entropy deconvolution and VMD, which is proven to be a more powerful
algorithm than the existing ones. In research [28], a feature extraction algorithm for partial discharge
is proposed using sample entropy combined with VMD. In the field of underwater acoustic signal
processing, PE and multi-scale PE (MPE), as complexity features, are used to extract complexity
features of SN combined with EMD and VMD respectively in [11,29]. It has been verified that the two
feature extraction algorithms outperform the traditional feature extraction algorithms [30,31].

In this paper, VMD algorithm is used to decompose simulation and real signals, which can
accurately decompose signal into IMFs. In addition, NPE has a strong ability for noise recognition.
Considering the better performance of VMD and NPE for SN signal, a new denoising algorithm
and feature extraction algorithm are presented. The remainder of the paper is organized as follows:
in Section 2, the algorithms of VMD, PE, and NPE are described; the review of the denoising and
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feature extraction algorithm is presented in Section 3; then, the denoising algorithm and feature
extraction algorithm are, respectively, applied to SN signal in Sections 4 and 5; finally, Section 6
concludes this paper.

2. Theory Description

2.1. VMD Algorithm

VMD, as a new signal processing algorithm, is able to adaptively decompose a multi-component
signal into multiple numbers of quasi-orthogonal IMFs concurrently. By comparing with
EMD and EEMD, VMD has a solid mathematical foundation and defined the IMF as
amplitude-modulated-frequency-modulated (AM-FM) signal, like

uk(t) = Ak(t) cos(φk(t)), (1)

where t and Ak(t) represent time the envelope, φk(t) and uk(t) denote the phase and the IMFs. Each
IMF has a center frequency and limited bandwidth. In the VMD algorithm, the key decomposition
process is the constrained variational problem, which is expressed as

min
{uk},{wk}

 K
∑

k=1

∥∥∥∥∥∂t[(δ(t) + j
πt ) ∗ uk(t)]e−jwkt

∥∥∥∥∥
2

2


s.t.

K
∑

k=1
uk = s,

(2)

where s represent the processed signal, K is the number of IMFs, ∗ represents convolution. δ and
j stand for impulse response and imaginary unit. wk is the center frequency for each decomposed
component, uk is also the decomposed mono-component. The above constrained variational problem
in Equation (2) is addressed by using the penalty factor and the Lagrangian multiplier. The augmented
Lagrangian is given by

L({uk}, {wk}, λ) = α
K
∑

k=1

∥∥∥∥∥∂t[(δ(t) + j
πt ) ∗ uk(t)]e−jwkt

∥∥∥∥∥
2

2

+

∥∥∥∥∥ f (t)−
K
∑

k=1
uk(t)

∥∥∥∥∥
2

2

+

〈
λ(t), f (t)−

K
∑

k=1
uk(t)

〉
,

(3)

where λ and α are the Lagrangian multiplier and balancing parameter. The alternating direction
multiplier method (ADMM) is applied to obtain the saddle point, then the uk, wk and λ are updated in
frequency, like

ûn+1
k (w) =

f̂ (w)− ∑
i<k

ûn
i (w)− ∑

i>k
ûn

i (w) + λ̂n(w)
2

1 + 2α(w− wn
k )

2 , (4)

wn+1
k =

r ∞
0 w

∣∣∣ûn+1
k

∣∣∣2dw
r ∞

0

∣∣∣ûn+1
k

∣∣∣2dw
, (5)

λ̂n+1(w) = λ̂n(w) + τ

(
f̂ (w)−∑

k
ûn+1

n (w)

)
, (6)
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where ∧ and τ indicate Fourier Transform and time step. The algorithm executes until the convergence
stop condition is satisfied. The stop condition is given by

∑k

∥∥∥ûn+1
k − ûn

k

∥∥∥2

2
/
∥∥∥ûn

k

∥∥∥2

2
< e, (7)

where e is the accuracy for convergence. The process of algorithm is depicted in Figure 1. The detail of
VMD algorithm and experiment are shown in [6]. In this paper, the decomposition level K is the most
important parameter, which can be set according to the decomposition level of EMD, and the penalty
factor is 2000.
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2.2. PE and NPE

PE was described to detect the dynamic changes of time series by comparison with neighboring
value of time series. Given a time series X = {x1, x2, · · · , xN} with length N, the specific steps of PE
are illustrated as follows:

(1) Embedded dimension m of the time series X with a time delay τ is constructed as follows:

{x(1), x(1 + τ), · · · , x(1 + (m− 1)τ)}
...

{x(j) , x(j + τ), · · · , x(j + (m− 1)τ )}
...

{x (K), x(K + τ), · · · , x(K + (m− 1)τ )} j = 1, 2, · · · , K

, (8)

where K is n− (m− 1)τ.
(2) Each vector {x(i), x(i + τ), · · · , x(i + (m− 1)τ)} of X is rearranged in ascending order as

x(i + (j1 − 1)τ) ≤ x(i + (j2 − 1)τ) ≤ · · · ≤ x(i + (jm − 1)τ). (9)

If x(i + (j1 − 1)τ) = x(i + (j2 − 1)τ), then x(i + (j1 − 1)τ) ≤ x(i + (j2 − 1)τ) (j1 ≤ j2).
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(3) Therefore, for time series X, each vector of X can be obtained as

S(l) = (j1, j2, · · · , jm), (10)

where l = 1, 2, · · · , K, K ≤ m!. There are m! different symbol series, and S(l) only indicates one
symbol series.

(4) The probability of each symbol series is calculated as P1, P2, · · · , PK, the PE of time series X
can be defined according to the form of Shannon entropy as

HP(m) = −
K

∑
j=1

Pj ln Pj. (11)

(5) When Pj = 1/m!, Hp(m) reaches the maximum ln(m!). Consequently, the PE can be
standardized as

HP = HP(m)/ ln(m!). (12)

It is obvious that the value of Hp is from 0 to 1. The details of PE method are shown in [12].
NPE, a new version of PE, is interpreted as distance to white noise. The steps of NPE is same with

PE from step (1) to step (3). In step (4), the NPE of time series X can be defined as

NHp =
K

∑
j=1

(Pj −
1

m!
)

2
=

K

∑
j=1

P2
j −

1
m!

, (13)

in the Formula (10), −Pj ln Pj is replaced by P2
j , and a constant − 1

m! is added. When Pj =
1

m! , NHP
reaches the smallest value 0, this means that the distance to white noise is 0.

In order to prove the stability of NPE with different data lengths, simulation experiments of
sinusoidal signal with different frequencies are carried out. The simulation signal is sin(2π f t), f
represents frequency and sampling frequency is 104 Hz. For PE and NPE, the parameters of time delay
and the embedded dimension are set as one and three respectively. Tables 1 and 2 show the PEs and
NPEs of simulation signal with different frequencies and lengths, respectively. As it can be seen in
Tables 1 and 2, NPE is more stable than PE for simulation signal with different frequencies and lengths.

Table 1. The PEs of different frequencies and data lengths.

Data Length 100 Hz 200 Hz 500 Hz 1000 Hz

1000 0.445 0.4869 0.5937 0.7154
2000 0.4447 0.4866 0.5929 0.7139
3000 0.449 0.496 0.5834 0.6915

Table 2. The NPEs of different frequencies and data lengths.

Data Length 100 Hz 200 Hz 500 Hz 1000 Hz

1000 0.3137 0.2948 0.2418 0.1678
2000 0.3137 0.2948 0.2419 0.1681
3000 0.3136 0.2945 0.2426 0.171
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2.3. Analysis of the Simulation Signal Using VMD and NPE

In order to verify the effectiveness of the new algorithm, simulation experiments are carried out.
The simulation signals are given by 

S1 = cos(100πt)
S2 = cos(200πt)
S3 = cos(400πt)
S = S1 + S2 + S3

, (14)

where S1, S2 and S3 are the three components of S, sampling frequency is 104 Hz. The parameters of
time delay and the embedded dimension are also one and three respectively. Three algorithms are used
to decompose S. The original signals and the decomposition results are shown in Figure 2. For EEMD,
the white noise standard deviation and the number of white noise are set as 0.3 and 100. As it can be
seen in Figure 2, VMD shows the best performance when the decomposition level is 3, the IMFs by
VMD are more similar to the original signals. Also, Tables 3 and 4 show the PEs and NPEs of IMFs by
three different decomposition algorithms. As it can be seen in Tables 3 and 4, the NPEs of IMFs by
VMD are closer to real values than other NPEs and PEs of IMFs. Therefore, the proposed algorithm
can well reflect the features of the original signal, which is very beneficial to feature extraction.
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Figure 2. The simulation signals and the decomposition result of EMD, EEMD and VMD. (a) Original
signals; (b) EMD result; (c) EEMD result; (d) VMD result.
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Table 3. The PEs of IMFs.

Signal PE EMD EEMD VMD

S1 0.4213 IMF3 0.4217 IMF5 0.4291 IMF3 0.4195
S2 0.4483 IMF2 0.449 IMF4 0.4816 IMF2 0.4469
S3 0.4946 IMF1 0.4962 IMF3 0.4963 IMF1 0.4936

Table 4. The NPEs of IMFs.

Signal NPE EMD EEMD VMD

S1 0.3235 IMF3 0.3235 IMF5 0.321 IMF3 0.3235
S2 0.3137 IMF2 0.3137 IMF4 0.3007 IMF2 0.3137
S3 0.2947 IMF1 0.2944 IMF3 0.2944 IMF1 0.2946

3. Denoising and Feature Extraction Algorithms Using VMD and NPE

3.1. Denoising Algorithm

In view of the advantages of NPE and VMD, a new denoising algorithm can be designed. The main
steps are as follows:

Step 1 Decompose signal by EMD.
Step 2 Select the decomposition level of VMD according to the decomposition level of EMD.
Step 3 Decompose signal by VMD, IMFs can be obtained.
Step 4 Calculate the NPE of each IMF.
Step 5 Screen out the noise IMFs according to the value of NPE. Normally when NPE of IMF is less

than 0.1, it is regarded as the noise IMF.
Step 6 Reconstruct the useful IMFs with NPE greater than 0.1. After the reconstruction, the process

of denoising is completed.

3.2. Feature Extraction Algorithm

VMD has many applications in feature extraction, the effectiveness of the algorithm is illustrated
in many researches. However, NPE as a new PE is only used in the field of medicine. A new feature
extraction algorithm combining VMD and NPE can be designed.

The main steps are as follows:

Step 1 Decompose the reconstructed signal by EMD.
Step 2 Select the decomposition level of VMD according to the decomposition level of EMD.
Step 3 Decompose the reconstructed signal by VMD, IMFs can be obtained.
Step 4 Calculate the energy intensity of each IMF.
Step 5 Select the principal IMF, namely PIMF. Normally PIMF is the IMF with the maximum

energy intensity.
Step 6 Calculate the NPEs of PIMFs.
Step 7 Put the NPEs of PIMFs into SVM, the classification results can reflect the effectiveness of the

feature extraction algorithm.

4. Denoising of Simulation Signal

To prove the validity of the denoising algorithm, two simulation experiments are carried out.
Moreover, the proposed denoising algorithm is compared with the existing algorithms.
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4.1. Simulation Experiment 1

The clear signal S is composed of S1, S2 and S3, and the noisy signal Y has two components:
S and N. The simulation signals are listed as follows:

S1 = 0.8 sin(20πt)
S2 = 0.5 sin(100πt)
S3 = 0.2 sin(200πt)
N = 0.5randn(t)
S = S1 + S2 + S3
Y = S + N

, (15)

where S1, S2 and S3 represent the three sinusoidal signals of different frequencies. N is 0.5 times the
standard Gaussian white noise. The sampling frequency is 1 kHz, and data length is 1000. The clear
signal S and the noisy signal Y are shown in Figure 3, and the decomposition result of signal Y by
VMD is shown in Figure 4. The decomposition level of VMD is the same with EMD.
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As shown in Figure 4, it can easily be seen that S1, S2 and S3 correspond to IMF9, IMF8 and IMF7,
which are the useful IMFs. Tables 5–7 are listed the correlation coefficients (CC) between each IMF and
Y, and PE and NPE of Each of IMF. For PE and NPE, the parameters of time delay and the embedded
dimension are one and three respectively.

Table 5. The CCs between IMFs and Y.

Parameter IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9

CC 0.1643 0.1425 0.1567 0.1633 0.147 0.1607 0.196 0.4075 0.6919

Table 6. The PEs of IMFs.

Parameter IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9

PE 0.9296 0.9909 0.999 0.9764 0.9466 0.8782 0.7427 0.6054 0.4463

Table 7. The NPEs of IMFs.

Parameter IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9

NPE 0.0458 0.0088 0.0017 0.0084 0.0383 0.0688 0.1642 0.2416 0.3146

As shown in Tables 5–7, the proposed denoising algorithm using VMD and NPE is easier to
recognize the noise IMFs, because NPE of the useful IMF is one magnitude order higher compared
with NPE of the noise IMF. It is difficult to confirm the thresholds of CC and PE. When the thresholds
of CC, PE and NPE are set as 0.2, 0.9 and 0.1, the denoising results are shown in Figure 5. Furthermore,
the SNRs and root mean square errors (RMSE) of the noisy signal and the denoising results are listed in
Table 8. For wavelet (WT) denoising, soft threshold method is used to quantify the wavelet coefficient,
WT basis function and decomposition levels are db4 and 3, respectively. To summarize, it can be seen
that the proposed denoising algorithm has better denoising performance and overcomes the problem
of threshold selection.
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Figure 5. The denoising results of different algorithms. (a) Denoising using VMD and CC; (b) Denoising
using VMD and PE; (c) Denoising using VMD and NPE; (d) Denoising using WT.

Table 8. The result of SNRs for different algorithms.

Parameter Y CC PE NPE WT

SNR (db) 2.7178 12.0307 14.7721 15.5929 8.3378

RMSE 0.56 0.1448 0.1453 0.1434 0.1671

4.2. Simulation Experiment 2

In research [32], the convex 1-D 2-order total variation denoising algorithm for vibration signal
is proposed. In order to validate the effectiveness of the proposed denoising algorithm in this paper,
the same simulation experiments are carried out. The simulation signals are as follows:

S = sin(30πt + cos(60πt)), (16)

where S is a modulating signal shown in Figure 6a. The noisy signal is composed of S and Gaussian
white noise with mean 0 and variance 0.5 shown in Figure 6b.
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Figure 6. The clear signal, noisy signal and denoising result. (a) The clear signal; (b) The noisy signal;
(c) The denoising result of the proposed denoising algorithm.

The result of the proposed denoising algorithm is shown in Figure 6c. In addition, the results of
SNRs for different variances of Gaussian white noise and different denoising algorithms are shown in
Table 9. The results of the other three denoising algorithms can be seen in [32]. As shown in Table 9,
the proposed denoising algorithm has high SNRs for different variances of Gaussian white noise.

Table 9. The SNRs for different denoising algorithms.

Denoising Algorithms
The Variance of Gaussian White Noise

0.4 0.5 0.6

The Proposed Denoising Algorithm (db) 12.58 11.69 11.25
The Convex 1-D 2-Order Total Variation Algorithm (db) 12.13 11.31 10.28
The Convex 1-D 1-Order Total Variation Algorithm (db) 4.69 3.31 2.17

Wavelet Denoising Algorithm (db) 10.28 9.20 8.31
The noisy signal (db) 0.9778 –0.0494 –0.8239

5. Feature Extraction of SN

5.1. The Denoising of SN

The proposed denoising algorithm is applied to three kinds of SN. The same SN signals are
used in this paper and [11]; the details of SN signals can be found in [11]. The sampling frequency
and sampling points of three kinds of SN are set as 44.1 kHz and 5000, respectively. Each sample is
normalized to get the three kinds of normalized SN signal, namely, ship 1, ship 2 and ship 3, as shown
in Figure 7. The denoising results of three kinds of SN are also shown in Figure 7 [12].
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Figure 7. The three kinds of SN before and after denoising. (a) Ship 1 before denoising; (b) Ship 1 after
denoising; (c) Ship 2 before denoising; (d) Ship 2 after denoising; (e) Ship 3 before denoising; (f) Ship 3
after denoising.

5.2. The VMD of SN

For comparison purposes, the decomposition level of VMD is set to 8 for three kinds of SN after
denoising according to the results of EMD. The results of VMD for three kinds of SN are shown in
Figure 8. As shown in Figure 8, 8 IMFs of each ship are listed in descending order by frequency.
In this paper, PIMF is the IMF with the most energy intensity, which has the same definition in [11,29].
The distribution of PIMF for three kinds of SN is listed in Table 10.



Symmetry 2017, 9, 256 14 of 18

Symmetry 2017, 9, 256  13 of 17 

 

5.2. The VMD of SN 

For comparison purposes, the decomposition level of VMD is set to 8 for three kinds of SN after 
denoising according to the results of EMD. The results of VMD for three kinds of SN are shown in 
Figure 8. As shown in Figure 8, 8 IMFs of each ship are listed in descending order by frequency. In 
this paper, PIMF is the IMF with the most energy intensity, which has the same definition in [11,29]. 
The distribution of PIMF for three kinds of SN is listed in Table 10. 

(a) Ship 1 

(b) Ship 2 

(c) Ship 3 

Figure 8. The results of VMD for three kinds of SN. (a) Ship 1; (b) Ship 2; (c) Ship 3. 

Table 10. The distribution of PIMF for three kinds of SN. 

Level Ship 1 Ship 2 Ship 3
The level of PIMF 8 8 7 

-0.1
0

0.1

im
f1

-0.05
0

0.05

im
f2

-0.2
0

0.2

im
f3

-0.5
0

0.5

im
f4

-0.5
0

0.5

im
f5

-0.5
0

0.5

im
f6

-0.5
0

0.5
im

f7

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-0.5

0
0.5

im
f8

Sampling points

-0.02
0

0.02

im
f1

-0.1
0

0.1

im
f2

-0.1
0

0.1

im
f3

-0.2
0

0.2

im
f4

-0.2
0

0.2

im
f5

-0.2
0

0.2

im
f6

-0.5
0

0.5

im
f7

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-1
0
1

im
f8

Sampling points

-0.1
0

0.1

im
f1

-0.1
0

0.1

im
f2

-0.2
0

0.2

im
f3

-0.2
0

0.2

im
f4

-0.2
0

0.2

im
f5

-0.5
0

0.5

im
f6

-0.5
0

0.5

im
f7

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-0.2

0
0.2

im
f8

Sampling points

Figure 8. The results of VMD for three kinds of SN. (a) Ship 1; (b) Ship 2; (c) Ship 3.

Table 10. The distribution of PIMF for three kinds of SN.

Level Ship 1 Ship 2 Ship 3

The level of PIMF 8 8 7

5.3. Feature Extraction of SN

In research [11], feature extraction algorithm of SN has been proven to be more efficient than
traditional feature extraction algorithms, which extracts the features of SN using VMD and MPE.
In order to prove the validity of the proposed feature extraction algorithm, the NPEs of PIMFs are
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calculated by comparing with the PEs of PIMF (when the scale of MPE is 1 in [11]). Figures 9a and
10a are the PE and NPE distributions of PIMF before denoising, and Figures 9b and 10b are the
distributions after denoising (50 samples for each ship). As shown in Figures 9 and 10, ship 3 can be
easily identified using all the algorithms, the features of some samples for ship 2 and ship 3 are close.
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Figure 9. The PEs distribution of PIMFs before and after denoising. (a) The PEs before denoising;
(b) The PEs after denoising.
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Figure 10. The NPEs distribution of PIMFs before and after denoising. (a) The NPEs before denoising;
(b) The NPEs after denoising.

5.4. Classification of SN

The features of PEs and NPEs are put into SVM, the classification results can reflect
the effectiveness of the proposed denoising algorithm and the feature extraction algorithm.
Tables 11 and 12 are the PE and NPE classification results before denoising, and Tables 13 and 14
are the classification results after denoising. As shown in Tables 11–14, the recognition rates of PEs and
NPEs after denoising are higher than ones before denoising. In addition, the recognition rates of NPEs
are higher than ones of PEs, whether before or after denoising.
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Table 11. The PE classification results before denoising.

Ship
Train Test

Overall Correctness (%)
Number Correctness (%) Number Correctness (%)

Ship 1 25 15 25 16
79.33Ship 2 25 0 25 0

Ship 3 25 0 25 0

Table 12. The NPE classification results before denoising.

Ship
Train Test

Overall Correctness (%)
Number Error Number Error

Ship 1 25 10 25 12
85.33Ship 2 25 0 25 0

Ship 3 25 0 25 0

Table 13. The PE classification results after denoising.

Ship
Train Test

Overall Correctness (%)
Number Error Number Error

Ship 1 25 11 25 10
86Ship 2 25 0 25 0

Ship 3 25 0 25 0

Table 14. The NPE classification results after denoising.

Ship
Train Test

Overall Correctness (%)
Number Error Number Error

Ship 1 25 6 25 6
92Ship 2 25 0 25 0

Ship 3 25 0 25 0

6. Conclusions

VMD as a new self-adaptive signal processing algorithm is more robust to sampling and noise,
and also can overcome the problem of mode mixing in EMD and EEMD. NPE as a new version of PE is
interpreted as distance to white noise, which shows a reverse trend to PE and has better stability than
PE. Considering the better performance of VMD and NPE, a new denoising algorithm and feature
extraction algorithm are presented. The proposed algorithms mainly have the following advantages:

(1) NPE, a new kind of PE, is firstly applied to denoising and feature extraction of SN combined
with VMD.

(2) The simulation results show that the proposed denoising algorithm has better denoising
performance than the existing algorithms and overcomes the problem of threshold selection.

(3) The proposed denoising algorithm is used to denoise SN signal; it concluded that the features of
PE and NPE after denoising are beneficial to classification and recognition for SN signal.

(4) The proposed feature extraction algorithm is used to extract the feature of SN signal,
the experimental results show that the feature of NPE has a higher recognition rate than that of
PE in [11].

In further studies, the two algorithms will be greatly improved by achieving better denoising and
feature extraction performances.
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